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A B S T R A C T   

Although Parkinson’s Disease (PD) is typically described in terms of motor symptoms, depression is a common 
feature. We explored whether depression influences blood-based genome-wide DNA methylation (DNAm) in 692 
subjects from a population-based PD case-control study, using both a history of clinically diagnosed depression 
and current depressive symptoms measured by the geriatric depression scale (GDS). While PD patients in general 
had more immune activation and more accelerated epigenetic immune system aging than controls, the patients 
experiencing current depressive symptoms (GDS≥5) showed even higher levels of both markers than patients 
without current depressive symptoms (GDS<5). For PD patients with a history of clinical depression compared to 
those without, we found no differences in immune cell composition. However, a history of clinical depression 
among patients was associated with differentially methylated CpGs. Epigenome-wide association analysis 
(EWAS) revealed 35 CpGs associated at an FDR≤0.05 (569 CpGs at FDR≤0.10, 1718 CpGs at FDR≤0.15). Gene 
set enrichment analysis implicated immune system pathways, including immunoregulatory interactions between 
lymphoid and non-lymphoid cells (p-adj = 0.003) and cytokine-cytokine receptor interaction (p-adj = 0.004). 
Based on functional genomics, 25 (71%) of the FDR≤0.05 CpGs were associated with genetic variation at 45 
different methylation quantitative trait loci (meQTL). Twenty-six of the meQTLs were also expression QTLs 
(eQTLs) associated with the abundance of 53 transcripts in blood and 22 transcripts in brain (substantia nigra, 
putamen basal ganglia, or frontal cortex). Notably, cg15199181 was strongly related to rs823114 (SNP-CpG p- 
value = 3.27E-310), a SNP identified in a PD meta-GWAS and related to differential expression of PM20D1, 
RAB29, SLC41A1, and NUCKS1. The entire set of genes detected through functional genomics was most strongly 
overrepresented for interferon-gamma-mediated signaling pathway (enrichment ratio = 18.8, FDR = 4.4e-03) 
and T cell receptor signaling pathway (enrichment ratio = 13.2, FDR = 4.4e-03). Overall, the current study 
provides evidence of immune system involvement in depression among Parkinson’s patients.   

1. Introduction 

Parkinson’s disease (PD) is a progressive neurodegenerative disorder 
characterized by gradual loss of dopaminergic neurons in the substantia 
nigra region of the brain. While PD is typically described in terms of 
motor symptoms, neuropsychiatric symptoms and especially depression 
are common, both preceding and subsequent to motor symptom onset 

(Aarsland et al., 2012). Depression in PD is strongly related to dimin-
ished health-related quality of life, reduced function, and cognitive 
decline (Aarsland et al., 2012; Lieberman, 2006). Although often 
underdiagnosed, clinically relevant depressive symptoms occur in an 
estimated 35% of PD patients and epidemiologic evidence indicates a 
strong association between a history of major depression and subsequent 
development of PD(1). 
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The question remains whether depression is a prodromal symptom of 
PD or a risk factor for PD incidence. However, whichever is the case, 
there is mounting evidence for biologic underpinnings of depression in 
PD, including structural changes in the brain of depressed PD patients 
relative to non-depressed patients (e.g. loss of striatal dopamine trans-
porter availability (Weintraub et al., 2005); loss of white matter within 
the cortico–limbic network (Kostić et al., 2010)), alterations in neuro-
transmitter systems (e.g. dopaminergic and serotonergic circuits 
(Grosch et al., 2016; Lu et al., 2019; Mayberg et al., 1990)), and an 
involvement of inflammatory and neurotrophic factors (e.g. extended 
stress-induced activation of the brain via cytokines and glucocorticoids 
(Pace and Miller, 2009); downregulation of the MAPK–MEK pathway 
(Wang and Mao, 2019)). 

Depression likely arises due to a combination of environmental and 
genetic factors (Aarsland et al., 2012). Currently, we have a limited 
understanding of etiologic mechanisms that contribute to depression in 
PD. Here we are concentrating on DNA methylation (DNAm) as it may 
offer a readout for biologic pathways that are impacted. DNAm also 
regulates gene expression/repression (Moore et al., 2013) and it also 
reflects both environmental and genetic determinants (Law and 
Holland, 2019). Specifically, DNAm alterations may reflect key mech-
anisms through which exposures interact with genetic predisposition to 
determine an individual’s susceptibility. Furthermore, depression has 
also long been linked to immune dysregulation (Maes, 1995). For 
instance, PD, depression, and related risk factors, such as psychosocial 
stressors, can induce proinflammatory cytokines and have been associ-
ated with sustained epigenetic changes (Slavich and Irwin, 2014; Reale 
et al., 2009; Cunliffe, 2016; Zannas, 2019). Thus, blood may be an 
informative tissue for assessing depression related DNAm changes. 

To investigate blood-based DNA methylation related to depression in 
PD, we performed an epigenome-wide association study (EWAS) of both 
having a history of clinical depression and current depressive symptoms 
in 692 participants of a population-based case control study of PD with 
longitudinal data for patients. We further used publicly available data 
(GTEx and BIOS) to map the associated CpGs to different biologic layers, 
using methylation and expression quantitative trait loci (QTL) to assess 
networks of CpGs, SNPs, and transcripts related to depression in PD. 

2. Results 

Our analysis of blood-based DNAm draws from participants recruited 

as part of the Parkinson’s disease, Environment, and Genes (PEG) study 
(Ritz et al., 2016). Data are available on Gene Expression Omnibus 
(GEO), accession numbers GSE72774 and GSE72776(18,19). PEG is a 
population-based study of Parkinson’s disease, which enrolled patients 
and controls from California’s Central Valley (2001–2007 & 
2010–2016). Primary analysis was restricted to 465 PD patients of Eu-
ropean ancestry (based on AIMs ancestry markers) for whom we had 
DNAm data available and 227 controls of European ancestry. Given the 
limited sample size, we used the control population only to assess 
whether depression associations seen among the PD patients were also 
seen among the controls (i.e., related to depression in general, or related 
to depression in PD specifically). Characteristics of the study population 
can be found in Table 1. 

We assessed two indicators related to depression, first, having a 
history of clinical depression based on self-reported physician diagnosis 
and, second, having current depressive symptoms measured by the 
geriatric depression scale (GDS) at the time of blood draw. We dichot-
omized the GDS into groups with no or low depressive symptoms 
(GDS<5) and with depressive symptoms (GDS≥5). We selected this GDS 
cut-point as we have previously validated the indicator (GDS≥5) as 
having high specificity and sensitivity in distinguishing minor and major 
depression in a subset of our patient population (Thompson et al., 2011). 
This validity has also been shown in other studies of PD(21). An over-
view of the analysis plan is shown in Supplemental Fig. 1. 

Overall, 130 PD patients (28%) reported a history of clinical 
depression and 130 PD patients (28%) had current depressive symptoms 
at baseline. The two depression indicators were moderately correlated 
among the PD patients (Pearson’s R = 0.32, 95% CI = 0.25, 0.39), with 
70 of the patients having both a history of clinical depression and 
experiencing current depressive symptoms at the time of blood draw. 

2.1. Immune cell composition and current depression 

Using methylation levels as a surrogate for leukocyte composition 
(Houseman method (Houseman et al., 2012; Houseman et al., 2014)), 
we observed that current depressive symptoms were strongly related to 
differential levels of several epigenetic immune markers (Fig. 1). PD 
patients with current depressive symptoms (GDS≥5) on average had the 
highest proportion of neutrophils (69%, SD = 7%; Fig. 1A), followed by 
PD patients without depressive symptoms (67%, SD = 9%; Wilcoxon p 
= 0.008 comparing PD patients with and without depressive symptoms), 

Table 1 
Study characteristics (n = 692).   

PD Patients (n = 465) Controls (n = 227) 

No 
Depression 

Depression 
History 

Lower Depressive 
Symptoms (GDS 1–4) 

Higher Depressive 
Symptoms (GDS 5+) 

No Depression or 
Depressive Symptoms 

Depression 
History 

Higher Depressive 
Symptoms (GDS 5+) 

n (%) or Mean 
(SD) 

n = 335 n = 130 n = 334 n = 130 n = 167 n = 49 n = 23 

Age at blood 
draw 

71.8 (9.4) 68.8 (10.0)* 71.2 (9.43) 70.2 (10.3) 69.4 (12.0) 62.1 (13.0)* 62.1 (13.0) 

Age at diagnosis 69.4 (9.5) 66.0 (10.1)* 68.9 (9.5) 67.3 (10.4) – – – 
Male 211 (63) 71 (55) 195 (58) 86 (66) 102 (61) 35 (51)* 11 (48) 
PD duration at 

baseline 
2.6 (2.0) 3.1 (2.5)* 2.5 (2.0) 3.4 (2.5)* – – – 

Ever Smoker 148 (44) 67 (52) 150 (45) 65 (50) 95 (57) 29 (59) 20 (87)* 
Baseline Motor Scores 
HY3+ (yes) 58 (18) 23 (19) 45 (14) 35 (28) – – – 
UPDRS-III 21.0 (10.8) 23.2 (12.0) 19.2 (9.3) 27.9 (13.0)* – – – 
Bradykinesia 1.1 (0.9) 1.3 (0.9) 1.0 (0.8) 1.5 (1.0)* – – – 
Rigidity 3.4 (2.3) 3.9 (2.6) 3.2 (2.1) 4.4 (2.9)* – – – 
Tremor 3.1 (2.6) 3.1 (2.8) 2.9 (2.4) 3.6 (3.2)* – – – 
Gait/Balance 1.6 (1.4) 2.0 (1.9)* 1.4 (1.3) 3.4 (1.9)* – – – 
Axial Score 4.3 (3.1) 4.9 (3.5) 3.9 (2.7) 6.1 (3.8)* – – – 
Levodopa Use 

(yes) 
243 (73) 92 (72) 237 (71) 97 (76) – – – 

LED (mg/day) 300 (268) 336 (294) 292 (271) 356 (282)* – – – 

*p < 0.05. 
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and controls without depressive symptoms (61%, SD = 8%; p = 6.1e-14 
comparing PD patients with depressive symptoms to controls). The 
controls without depressive symptoms had the highest proportion of 
CD4T cells (15%, SD = 5%), followed by PD patients without depressive 
symptoms (12%, SD = 5%), and PD patients with depressive symptoms 
(10%, SD = 4%). Similar trends were also seen for other lymphocytes, 
notably CD8T, NK, and B cells. When combining cell composition 
markers into a neutrophil-to-lymphocyte (NLR) ratio, the PD patients 
with depressive symptoms had a significantly higher ratio (mean = 3.38, 
SD = 1.9) than both PD patients without depressive symptoms (mean =
2.78, SD = 1.4; p = 0.0098) and the controls (mean = 2.16, SD = 1.2; 
p7.2e-13; Fig. 1B). 

Given the differences we observed in immune cell composition, we 
assessed immune system epigenetic age acceleration as measured by the 
extrinsic epigenetic aging clock (Horvath and Levine, 2015). PD patients 
with depressive symptoms had significantly more immune system age 
acceleration (mean = 2.43 years, SD = 6.1) than both controls (mean =
− 2.23, SD = 6.2; p = 1.9e-9) and patients without depressive symptoms 
(mean = 0.33, SD = 7.5; p = 1.9e-4; Fig. 1C). 

However, when examining patients by a history of clinical depres-
sion instead of based on current depressive symptoms (GDS≥5), we 

found these differences were limited to current symptoms. Immune cell 
composition was similar among PD patients with and without a history 
of clinical depression (Supplemental Fig. 2). Furthermore, the observed 
differences were also specific to PD patients. Non-PD controls with 
higher levels of depressive symptoms (GDS≥5) and a history of clinical 
depression had a similar cell composition and immune system age ac-
celeration as controls without depressive symptoms or a history of 
clinical depression (Supplemental Fig. 3). 

2.2. Depression epigenome-wide association study 

In our primary analysis, we related the two depression indicators to 
genome-wide DNAm levels among PD patients, adjusting for cell 
composition (proportion of neutrophils and CD4Ts), age, sex, smoking, 
PD duration at baseline, European fractional ancestry, and study wave. 
Without controlling for cell composition, the GDS≥5 indicator for cur-
rent depressive symptoms was related to 129 CpGs at an FDR<0.05 and 
675 CpGs at an FDR<0.10 among PD patients. However, after control-
ling for cell composition, the current depressive symptoms indicator was 
not related to any CpG levels in site-by-site analysis (p > 7.1e-6; 
FDR>0.99). 

Fig. 1. Epigenetic Immune System Markers and Current Depressive Symptoms in PD. Mean comparisons of A) Houseman DNAm estimated leukocyte pro-
portions, B) Neutrophil-to-lymphocyte ratio (based on DNAm leukocyte proportions), and C) epigenetic immune system age acceleration (EEAA) across three groups: 
controls (no depressive symptoms), PD patients without depressive symptoms (GDS<5), and PD patients with depressive symptoms (GDS>5). 
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On the other hand, having a history of clinical depression prior to PD 
onset was associated with several differentially methylated positions 
(DMP). An overview of the results is displayed in a Manhattan plot 
(Supplemental Fig. 4). Overall, having a history of clinical depression 
was associated with 35 CpGs at an FDR<0.05, 569 CpGs at an 
FDR<0.10, 1718 CpGs at an FDR<0.15, and 5270 CpGs at an FDR<0.25 
(Supplemental Table 1). The top CpGs based on FDR are detailed in 
Table 2. The most significantly associated CpG was cg18774195 (FDR =
0.007) in the 5′UTR region of the SLC7A14 gene. Other notable CpGs 
included cg23426156 and cg11042505, linked to schizophrenia in 
EWAS(25,26), 32 CpGs linked to aging, and 6 CpGs linked to smoking. 
These CpGs are listed in the supplemental materials and were deter-
mined via query of the MRC-IEU catalog of epigenome-wide association 
studies (Battram et al., 2022). In sensitivity analysis, we assessed 
whether the CpGs associated with clinical depression among PD patients 
were also associated with a history of clinical depression among controls 
(Supplemental Table 1). From the 35 CpGs associated at FDR<0.05 
among the PD patients, three CpGs, cg22801913, cg21276379, and 
cg25290938 were also associated with depression among controls at p 
< 0.05. The three CpGs were located in body of gene C11orf49, the 
transcription start site of EPAS1, and the transcription start site of 
ARHGAP22, respectively, and all three were also associated with aging 
in a prior EWAS(27). Otherwise, of the 5270 CpGs associated at 
FDR<0.25 among the patients, 242 in total were also associated with 
depression among controls (p < 0.05), indicating that among our pop-
ulation most of the depression CpGs were specific to depression among 
PD. 

Among the patients, having a history of clinical depression prior to 
PD onset was also associated with differentially methylation regions 
(DMR) identified via Bumphunter in the ChAMP R package. Supple-
mental Table 2 details the DMR results. The most significant DMR was 
Chr1:205818668-205819609 (p = 2.0e-5, FWER = 0.007), a 941 base 
pair region with 9 CpGs. This region is part of the PM20D1 gene. 
PM20D1 has been associated with both PD and Alzheimer’s via meta- 
GWAS (top PD SNP in gene has GWAS meta p-value = 6.45e-08 
(28,29)) and is near NUCKS1, another PD gene identified in the meta- 
GWAS (top SNP in gene meta p-value = 1.96e-16(28,29)), which we 
identified as important in the quantitative trait loci (QTL) analysis 
described below. Chr6:32145470-32146232 DMR was also suggestively 
associated with having a history of clinical depression prior to PD onset 
after multiple-testing correction (p = 2.7e-4, FWER = 0.09). This is a 
762 base pair region with 28 CpGs in the AGPAT1 gene of the major 
histone compatibility (MHC) class III region, which per NCBI is involved 
in phospholipid metabolism and metabolism gene pathways. Differen-
tial expression of the AGPAT1 protein has previously been linked to 
major depression (Scifo et al., 2018). 

As the PD patient population used here is unique in that they all live 
in a highly agricultural region on California with high levels of pesticide 
use, we also conducted a sensitivity analysis controlling for pesticide 
exposure which we have previously linked to methylation levels (Paul 
et al., 2018a; Furlong et al., 2020). The results were very similar with a 
correlation coefficient between model predicted betas at R = 0.9 (p <
2.2e-16; Supplemental Fig. 5). CpG associations for different sensitivity 
models can be found in Supplemental Table 1. 

2.3. Gene set enrichment analysis 

Using gene set enrichment analysis designed for methylation arrays 
(methylGSEA R package), we next assessed enrichment of KEGG, Reac-
tome, and Panther pathways based on CpG associations with a history of 
clinical depression among the PD patients. Several pathways were 
enriched and are shown Table 3. These included multiple pathways 
related to immune function, KEGG pathways: Cytokine-cytokine recep-
tor interaction (enrichment p = 8.5e-5), Osteoclast differentiation 
(enrichment p = 7.0e-4), Leukocyte transendothelial migration (p =
0.003); Reactome pathways: Immunoregulatory interactions between a 

Lymphoid and a non-Lymphoid cell (p = 3.8e-4), Neutrophil degranu-
lation (p = 1.7e-3), Interleukin-4 and Interleukin-13 signaling (p =
0.003); Panther pathways: FAS signaling pathway (p = 0.003), Integrin 
signaling pathway (p = 0.006). As well as pathways related to neural 
function, Reactome pathways: G alpha (q) signaling events (enrichment 
p = 0.003); Panther pathways: Axon guidance mediated by Slit/Robo (p 
= 0.002), and Alzheimer disease-presenilin pathway (p = 0.02). 

2.4. Blood-brain CpG level correlation 

Given the neurologic pathogenesis of PD and depression as well as 
the enrichment of neural function pathways, we next assessed the cor-
relation of methylation levels in blood and brain for the depression 
EWAS CpGs using the Iowa Methylation Array Graphing Experiment for 
Comparison of Peripheral Tissue and Grey matter (IMAGE-CpG) data (n 
= 37; two studies) (Braun et al., 2019). Limiting this analysis to the 35 
CpGs at FDR≤0.05, multiple CpGs showed both relatively high positive 
and negative correlations for methylation in blood and brain (Fig. 2A). 
Due to the small sample size of the two studies included in IMAGE-CpG 
(n = 12 and n = 25), the correlation estimates across CpGs varied 
considerably between the two studies. Nevertheless, cg00412337 
(CLIC5), cg24092282 (intergenic), cg07328796 (intergenic), 
cg09047573 (NME5), and cg13143349 (intergenic) showed consistent 
correlations at R > 0.30. 

2.5. Methylation and expression quantitative trait loci 

Finally, we assessed how the EWAS-associated CpGs were related to 
other omic layers. First, using BIOS and our study data, we determined 
methylation quantitative trait loci (meQTLs, e.g. SNPs which are 
significantly associated with CpG levels). Second, using GTEx, we 
determined whether the meQTLs were also related to transcript abun-
dance measured in both whole blood and brain. BIOS is a public data-
base of meQTLs based on whole blood methylation, determined in 3,841 
samples from five Dutch biobanks (generally age>45 years, including 
one longevity study with n = ~2600 participants >89 years of age) 
(Bonder et al., 2017). GTEx provides characterization of genetic asso-
ciations with gene expression based on 838 individuals [mean age 53.4 
(range 21–70)], 52 tissues, and two cell lines (Aguet et al., 2017; 
Lonsdale et al., 2013). 

We determined that amongst the 35 CpGs at FDR≤0.05, 25 were 
associated with 45 different meQTLs (Supplemental Table 3 and 
Table 4). This indicates that 45 SNPs (i.e. meQTLs) predicted the levels 
of 25 of the depression EWAS CpGs. Using GTEx, we determined 26 of 
these meQTLs were also expression QTLs (eQTLs), as the SNP was also 
associated with blood-based transcript abundance of 53 different gene 
transcripts (Table 4). For instance, methylation levels of cg26297819 in 
the transcription start site (TSS200) of the TEF gene was significantly 
associated with rs202637, a nearby intergenic SNP, based on both BIOS 
and PEG data (SNP-CpG p-value of 7.9e-7). rs202637 was also signifi-
cantly related to the transcript abundance of TEF measured in blood 
(SNP-transcript p-value = 7.98e-28), as well as three other transcripts 
(MEI1, DESI1, and PMM1; Table 4). Interestingly, rs202637 is associated 
with PD (meta-GWAS p < 0.05 (Lill et al., 2012; Nalls et al., 2014)) and 
TEF polymorphisms have been linked with depression and depression in 
PD specifically (Kripke et al., 2009; Hua et al., 2012). 

cg15199181, an intergenic CpG, was associated with four meQTLs, 
most strongly rs823114 (SNP-CpG p-value = 3.27E-310). Not only was 
rs823114 also picked up in the PD meta-GWAS (p = 1.78E-13 (Lill et al., 
2012; Nalls et al., 2014)), but this SNP was also related to blood-based 
transcript levels of four different genes, PM20D1, RAB29, SLC41A1, 
and NUCKS1 based on GTEx. One final notable CpG was cg21769117 in 
the CLIC1 gene transcription start site (TSS1500), which is located in the 
MHC class III region. This CpG was significantly associated with three 
meQTLs, SNPs which were also eQTLs associated with the abundance of 
18 different transcripts from genes in the region, many immune system 
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Table 2 
EWAS top hits: Associating a history of clinical depression to genome-wide methylation levels among PD patients with depression relative to PD patients without 
depression.  

CpG chr UCSC RefGene 
Name 

P-value FDR β 95% CI Relation to 
Island 

UCSC RefGene Group DMR Enhancer DHS 

cg18774195 chr3 SLC7A14 2.07E- 
08 

0.007 0.020 0.03, 0.01 S_Shore 5′UTR; 1stExon    

cg26297819 chr22 TEF 1.14E- 
07 

0.012 0.021 0.03, 0.01 OpenSea TSS200  TRUE  

cg09047573 chr5 NME5 1.18E- 
07 

0.012 0.033 0.05, 0.02 OpenSea 5′UTR   TRUE 

cg16646909 chr19 ZNF790 1.36E- 
07 

0.012 0.009 0.01, 0.01 Island TSS1500 DMR  TRUE 

cg01949993 chr1 LAMC2 1.71E- 
07 

0.012 0.026 0.04, 0.02 OpenSea TSS200   TRUE 

cg21769117 chr6 CLIC1 2.12E- 
07 

0.012 0.021 0.03, 0.01 N_Shelf TSS1500    

cg20476159 chr18 CTDP1 2.71E- 
07 

0.014 0.022 0.03, 0.01 N_Shelf Body    

cg13209762 chr1  4.17E- 
07 

0.016 0.020 0.03, 0.01 OpenSea   TRUE  

cg24092282 chr14  4.27E- 
07 

0.016 0.032 0.04, 0.02 Island   TRUE  

cg06040872 chr17 CCL18 4.75E- 
07 

0.016 − 0.022 − 0.01, 
− 0.03 

OpenSea Body    

cg09901574 chr16  5.18E- 
07 

0.016 − 0.006 0.00, − 0.01 N_Shelf     

cg09554876 chr1 BEND5; AGBL4 5.61E- 
07 

0.016 − 0.012 − 0.01, 
− 0.02 

OpenSea Body    

cg23426156 chr8  6.13E- 
07 

0.017 − 0.028 − 0.02, 
− 0.04 

OpenSea   TRUE  

cg21811896 chr1 MEGF6 6.81E- 
07 

0.017 − 0.012 − 0.01, 
− 0.02 

OpenSea Body    

cg22668767 chr5  7.32E- 
07 

0.017 0.031 0.04, 0.02 S_Shore  RDMR   

cg15199181 chr1  7.92E- 
07 

0.017 0.024 0.03, 0.01 OpenSea   TRUE  

cg06586775 chr20 SPAG4 8.01E- 
07 

0.017 0.006 0.01, 0.00 Island Body    

cg05124308 chr1 TMEM200B 1.24E- 
06 

0.024 0.010 0.01, 0.01 Island TSS200    

cg05868564 chr11  1.38E- 
06 

0.026 0.021 0.03, 0.01 OpenSea   TRUE  

cg22801913 chr11 C11orf49 1.65E- 
06 

0.029 0.010 0.01, 0.01 OpenSea Body  TRUE  

cg24389488 chr17 WNT3 1.74E- 
06 

0.029 0.015 0.02, 0.01 Island Body    

cg21276379 chr2 EPAS1 2.01E- 
06 

0.032 0.011 0.02, 0.01 Island TSS1500    

cg07328796 chr2  2.14E- 
06 

0.033 − 0.020 − 0.01, 
− 0.03 

OpenSea   TRUE  

cg18696495 chr13 CLYBL 2.57E- 
06 

0.038 − 0.021 − 0.01, 
− 0.03 

OpenSea Body  TRUE  

cg04239375 chr9 NIPSNAP3B 2.67E- 
06 

0.038 0.008 0.01, 0.00 Island Body    

cg08273640 chr4 TBC1D14 2.91E- 
06 

0.039 0.024 0.03, 0.01 N_Shore TSS1500   TRUE 

cg19657351 chr6 GCNT2 3.01E- 
06 

0.039 0.015 0.02, 0.01 OpenSea TSS200  TRUE  

cg00412337 chr6 CLIC5 3.07E- 
06 

0.039 0.019 0.03, 0.01 N_Shore Body  TRUE  

cg11124080 chr10 EMX2OS 3.63E- 
06 

0.044 0.010 0.01, 0.01 Island Body   TRUE 

cg01816936 chr12 PITPNM2 4.05E- 
06 

0.045 0.024 0.03, 0.01 OpenSea Body    

cg07893584 chr9 PTPRD 4.13E- 
06 

0.045 0.013 0.02, 0.01 Island 5′UTR; 1stExon; 
TSS200 

DMR   

cg11042505 chr2  4.35E- 
06 

0.045 − 0.018 − 0.01, 
− 0.03 

OpenSea   TRUE  

cg13143349 chr5  4.44E- 
06 

0.045 0.009 0.01, 0.01 Island  DMR   

cg08463297 chr17  4.50E- 
06 

0.045 0.025 0.04, 0.01 OpenSea   TRUE  

cg25290938 chr10 ARHGAP22 4.51E- 
06 

0.045 0.014 0.02, 0.01 Island TSS200  TRUE TRUE  
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related, including HLA genes and complement system protein genes. 
cg21769117 and its associated SNP and transcript network are mapped 
onto the chromosome in Fig. 2B. Supplemental Fig. 6 shows all genes in 
the dense chromosomal region where cg21769117 and the me/eQTLs 
are located. This figure demonstrates that the me/eQTLs were not 
associated with transcript abundance of every gene in the region sur-
rounding cg21769117, but instead selectively associated with the 18 
specific transcripts. 

To synthesize the network of associated CpG, SNP, and transcripts, 
we further took the entire set of implicated genes (79 genes with an 
associated CpG from the EWAS, SNP via meQTL, or transcript associated 

with the me/eQTLs in blood) and performed gene set overrepresentation 
analysis to test for overrepresentation of biologic processes. The over-
represented (FDR<0.05) gene ontology (GO) biologic processes are 
shown in Supplemental Table 4 and Fig. 2C. Given the large number of 
transcripts from the MHC class III region associated with the three me/ 
eQTLs linked to cg21769117, immune system processes were strongly 
overrepresented, most significantly: interferon-gamma-mediated 
signaling pathway (enrichment ratio = 18.8, FDR = 4.4e-03); T cell 
receptor signaling pathway (enrichment ratio = 13.2, FDR = 4.4e-03); 
antigen receptor-mediated signaling pathway (enrichment ratio = 10.9, 
FDR = 0.01). Many of the associated biologic processes are related 

Table 3 
GSEA of CpG associations from history of diagnosed depression (yes/no) EWAS among PD Patients.   

ID Description Size p-value padj 

KEGG PATHWAYS 4060 Cytokine-cytokine receptor interaction 265 0.0001 0.004 
4380 Osteoclast differentiation 128 0.0007 0.015 
5146 Amoebiasis 106 0.0020 0.029 
4670 Leukocyte transendothelial migration 116 0.0033 0.036 
4514 Cell adhesion molecules 133 0.0057 0.050 
4510 Focal adhesion 200 0.0128 0.094 

REACTOME PATHWAYS R-HSA-1500931 Cell-Cell communication 116 2.38E-05 0.003 
R-HSA-198933 Immunoregulatory interactions between a Lymphoid and a non-Lymphoid cell 113 3.83E-05 0.003 
R-HSA-1474244 Extracellular matrix organization 277 8.07E-04 0.047 
R-HSA-6798695 Neutrophil degranulation 433 1.68E-03 0.074 
R-HSA-416476 G alpha (q) signalling events 200 0.0025 0.089 
R-HSA-6785807 Interleukin-4 and Interleukin-13 signaling 101 0.0030 0.089 
R-HSA-202733 Cell surface interactions at the vascular wall 127 0.0041 0.093 
R-HSA-194138 Signaling by VEGF 103 0.0045 0.093 
R-HSA-449147 Signaling by Interleukins 422 0.0048 0.093 

PANTHER PATHWAYS P00008 Axon guidance mediated by Slit/Robo 25 0.0022 0.115 
P00041 Metabotropic glutamate receptor group I pathway 25 0.0061 0.115 
P00020 FAS signaling pathway 34 0.0031 0.115 
P00034 Integrin signalling pathway 190 0.0059 0.115 
P00004 Alzheimer disease-presenilin pathway 124 0.0193 0.289  

Fig. 2. (A) Correlation between blood and brain methylation levels for depression EWAS CpGs. Mean correlation (absolute value to allow both positive and negative 
correlations to be meaningful) = 0.16, SD = 0.13. (B) Mapping cg21769117 (annotated as “CpG”) to its three associated me/eQTLs and the transcripts associated 
with the eQTLs based on GTEx expression in whole blood. (C) Gene Ontology (GO Biologic Processes) Gene Set Overrepresentation using all implicated genes from 
EWAS and QTL mapping (CpGs, SNPs, and transcripts). All biologic processes with an FDR<0.05 are shown. (D) Network view of overrepresented gene ontology 
terms (GO Biologic Processes) based on all implicated genes (CpGs, SNPs, and blood-based transcripts) versus the genome gene set. 
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Table 4 
History of clinical depression EWAS CpGs and Functional Genetics. QTL analysis, methylation QTLs (meQTL) SNPs → CpGs (Dutch Biobank) and SNPs →expression (GTEx). Expression based on transcripts in whole blood 
from GTEx.  

CpG EWAS 
p-value 

CpG Gene CpG 
Chr 

CpG Group Type SNP SNP- 
CpG P- 
valueƚ 

SNP 
Chr 

SNP Chr. 
Position 

SNP Gene Type SNP- 
transcript P- 
value (GTEx) 

SNP to TSS 
Distance 

Transcript 
Gene 

HGNC Namea 

cg18774195 2.07E- 
08 

SLC7A14 3 5′UTR; 
1stExon 

NA 

cg26297819 1.14E- 
07 

TEF 22 TSS200 cis- 
meQTL 

rs202637 ƚ 7.93E- 
07 

22 41853928  eQTL 2.11E-46 − 241575 MEI1 meiotic double-stranded 
break formation protein 1 

eQTL 7.98E-28 90591 TEF TEF transcription factor, PAR 
bZIP family member 

eQTL 3.21E-19 − 163172 DESI1 desumoylating isopeptidase 1 
eQTL 4.66E-19 − 131966 PMM1 phosphomannomutase 1 

cg09047573 1.18E- 
07 

NME5 5 5′UTR cis- 
meQTL 

rs7734861 3.31E- 
13 

5 137507979 BRD8 eQTL 1.89E-80 − 438677 CTNNA1 catenin alpha 1 

cg16646909 1.36E- 
07 

ZNF790 19 TSS1500 cis- 
meQTL 

rs2445878 5.23E- 
34 

19 37318357 ZNF790 eQTL 6.03E-04 159353  ENSG00000276071 

1.36E- 
07 

cis- 
meQTL 

rs1227799 1.66E- 
16 

19 37289551 ZNF790-AS1 NA 

cg01949993 1.71E- 
07 

LAMC2 1 TSS200 cis- 
meQTL 

rs6678888 9.05E- 
70 

1 183155700 LAMC2 eQTL 8.51E-34 163105 LAMC1 laminin subunit gamma 1 

cis- 
meQTL 

rs76831965 1.92E- 
08 

1 183119724  eQTL 6.72E-03 − 321626 SMG7-AS1 SMG7 antisense RNA 1 

cis- 
meQTL 

rs875792 1.29E- 
05 

1 183185784 LAMC2 NA 

cg21769117 2.12E- 
07 

CLIC1 6 TSS1500 trans- 
meQTL 

rs548987 3.25E- 
08 

6 25869371 SLC17A3 eQTL 8.42E-119 − 496016 BTN3A2 butyrophilin subfamily 3 
member A2 

eQTL 2.01E-11 − 93659 TRIM38 tripartite motif containing 38 
eQTL 1.86E-09 − 123519  ENSG00000272462 

cis- 
meQTL 

rs1794282 6.21E- 
06 

6 32666526  eQTL 5.74E-161 30366 HLA-DQB1 major histocompatibility 
complex, class II, DQ beta 1 

eQTL 2.35E-111 168462 HLA-DRB5 major histocompatibility 
complex, class II, DR beta 5 

eQTL 7.37E-66 − 155412 PSMB9 proteasome subunit beta 9 
eQTL 3.50E-56 70570 HLA-DQA1 major histocompatibility 

complex, class II, DQ alpha 1 
eQTL 3.74E-51 38394 HLA-DQB1- 

AS1 
HLA-DQB1 antisense RNA 1 

eQTL 1.17E-48 739638 SKIV2L Ski2 like RNA helicase 
eQTL 1.29E-30 716725 C4A complement C4A (Rodgers 

blood group) 
eQTL 2.57E-29 683987 C4B complement C4B (Chido 

blood group) 
eQTL 1.15E-28 108901 HLA-DRB1 major histocompatibility 

complex, class II, DR beta 1 
eQTL 3.87E-18 693060 CYP21A1P cytochrome P450 family 21 

subfamily A member 1, 
pseudogene 

eQTL 1.30E-15 660484 CYP21A2 cytochrome P450 family 21 
subfamily A member 2 

eQTL 2.34E-04 − 270345 HLA-DMA major histocompatibility 
complex, class II, DM alpha 

eQTL 7.34E-04 800964 C2 complement C2 
eQTL 7.63E-03 958986 CLIC1 chloride intracellular channel 

1 
eQTL 3.34E-02 835843 NEU1 neuraminidase 1 

cis- 
meQTL 

rs1613056 1.05E- 
05 

6 32668946  eQTL 5.74E-161 32786 HLA-DQB1 major histocompatibility 
complex, class II, DQ beta 1 

eQTL 3.76E-147 − 62365 HLA-DQB2 

(continued on next page) 
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Table 4 (continued ) 

CpG EWAS 
p-value 

CpG Gene CpG 
Chr 

CpG Group Type SNP SNP- 
CpG P- 
valueƚ 

SNP 
Chr 

SNP Chr. 
Position 

SNP Gene Type SNP- 
transcript P- 
value (GTEx) 

SNP to TSS 
Distance 

Transcript 
Gene 

HGNC Namea 

major histocompatibility 
complex, class II, DQ beta 2 

eQTL 2.35E-111 170882 HLA-DRB5 major histocompatibility 
complex, class II, DR beta 5 

eQTL 7.37E-66 − 152992 PSMB9 proteasome subunit beta 9 
eQTL 3.50E-56 72990 HLA-DQA1 major histocompatibility 

complex, class II, DQ alpha 1 
eQTL 3.74E-51 40814 HLA-DQB1- 

AS1 
HLA-DQB1 antisense RNA 1 

eQTL 1.17E-48 742058 SKIV2L Ski2 like RNA helicase 
eQTL 1.29E-30 719145 C4A complement C4A (Rodgers 

blood group) 
eQTL 2.57E-29 686407 C4B complement C4B (Chido 

blood group) 
eQTL 1.15E-28 111321 HLA-DRB1 major histocompatibility 

complex, class II, DR beta 1 
eQTL 3.87E-18 695480 CYP21A1P cytochrome P450 family 21 

subfamily A member 1, 
pseudogene 

eQTL 1.30E-15 662904 CYP21A2 cytochrome P450 family 21 
subfamily A member 2 

eQTL 2.34E-04 − 267925 HLA-DMA major histocompatibility 
complex, class II, DM alpha 

cg20476159 2.71E- 
07 

CTDP1 18 Body cis- 
meQTL 

rs111832832 3.64E- 
15 

18 77454511 CTDP1 eQTL 5.20E-102 14710 CTDP1 CTD phosphatase subunit 1 

cis- 
meQTL 

rs11660714 9.33E- 
05 

18 77494911 CTDP1 eQTL 5.20E-102 55110 CTDP1 CTD phosphatase subunit 1 

cis- 
meQTL 

rs7238206 3.27e- 
310 

18 77444285 CTDP1 eQTL 5.20E-102 4484 CTDP1 CTD phosphatase subunit 1 

cis- 
meQTL 

eQTL 4.43E-29 4927  ENSG00000274828 

cg13209762 4.17E- 
07  

1  cis- 
meQTL 

rs2000239 2.31E- 
53 

1 53883126 SLC25A3P1 NA 

cg24092282 4.27E- 
07  

14  cis- 
meQTL 

rs1137724 1.00E- 
08 

14 54408633  NA 

cg06040872 4.75E- 
07 

CCL18 17 Body NA 

cg09901574 5.18E- 
07  

16  NA 

cg09554876 5.61E- 
07 

BEND5; 
AGBL4 

1 Body; Body NA 

cg23426156 6.13E- 
07  

8  NA 

cg21811896 6.81E- 
07 

MEGF6 1 Body NA 

cg22668767 7.32E- 
07  

5  cis- 
meQTL 

rs334881 4.71E- 
66 

5 54520702 MCIDAS NA 

cis- 
meQTL 

rs76925544 4.83E- 
05 

5 54767838 PLPP1 NA 

(continued on next page) 
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Table 4 (continued ) 

CpG EWAS 
p-value 

CpG Gene CpG 
Chr 

CpG Group Type SNP SNP- 
CpG P- 
valueƚ 

SNP 
Chr 

SNP Chr. 
Position 

SNP Gene Type SNP- 
transcript P- 
value (GTEx) 

SNP to TSS 
Distance 

Transcript 
Gene 

HGNC Namea 

cg15199181 7.92E- 
07  

1  cis- 
meQTL 

rs823114 ƚƚ 3.27e- 
310 

1 205719532  eQTL 1.50E-79 − 99728 PM20D1 peptidase M20 domain 
containing 1 

eQTL 2.38E-35 − 25056 RAB29 RAB29, member RAS 
oncogene family 

eQTL 3.79E-13 − 63344 SLC41A1 solute carrier family 41 
member 1 

eQTL 3.48E-07 128 NUCKS1 nuclear casein kinase and 
cyclin dependent kinase 
substrate 1 

cis- 
meQTL 

rs73080333 1.96E- 
44 

1 205717676 NUCKS1 eQTL 1.50E-79 − 101584 PM20D1 peptidase M20 domain 
containing 1 

eQTL 2.38E-35 − 26912 RAB29 RAB29, member RAS 
oncogene family 

cis- 
meQTL 

rs1772145 ƚ 1.22E- 
08 

1 205695695 NUCKS1 eQTL 1.50E-79 − 123565 PM20D1 peptidase M20 domain 
containing 1 

cis- 
meQTL 

rs16856462 8.27E- 
07 

1 205887981 SLC26A9 NA 

cg06586775 8.01E- 
07 

SPAG4 20 Body cis- 
meQTL 

rs2425151 3.24E- 
38 

20 34394541 PHF20 eQTL 1.36E-190 141860 CPNE1 copine 1 
eQTL 1.20E-52 261872  ENSG00000224497 
eQTL 1.31E-16 394478 UQCC1 ubiquinol-cytochrome c 

reductase complex assembly 
factor 1 

cg05124308 1.24E- 
06 

TMEM200B 1 TSS200 cis- 
meQTL 

rs12097553 ƚ 4.70E- 
05 

1 29571222 PTPRU eQTL 3.46E-05 357619 EPB41 erythrocyte membrane 
protein band 4.1 

cg05868564 1.38E- 
06  

11  NA 

cg22801913 1.65E- 
06 

C11orf49 11 Body cis- 
meQTL 

rs3740694 1.22E- 
11 

11 47182926 C11orf49 eQTL 1.62E-22 − 191327 MYBPC3 myosin binding protein C, 
cardiac 

cis- 
meQTL 

rs326224 3.26E- 
06 

11 47255598 DDB2 eQTL 5.88E-26 − 14859 ACP2 acid phosphatase 2, lysosomal 

cg24389488 1.74E- 
06 

WNT3 17 Body NA 

cg21276379 2.01E- 
06 

EPAS1 2 TSS1500 cis- 
meQTL 

rs13428739 9.18E- 
99 

2 46523934 EPAS1 NA 

cis- 
meQTL 

rs12617123 4.76E- 
07 

2 46504962  NA 

cg07328796 2.14E- 
06  

2  cis- 
meQTL 

rs11888416 1.41E- 
05 

2 227335605  NA 

cg18696495 2.57E- 
06 

CLYBL 13 Body cis- 
meQTL 

rs2761154 6.58E- 
43 

13 100443424 CLYBL NA 

cis- 
meQTL 

rs8000435 1.25E- 
16 

13 100310215 CLYBL eQTL 1.87E-08 51292 CLYBL citrate lyase beta like 

cis- 
meQTL 

rs12323058 2.61E- 
05 

13 100360104 CLYBL NA 

cg04239375 2.67E- 
06 

NIPSNAP3B 9 Body cis- 
meQTL 

rs62565987 5.62E- 
104 

9 107525011  eQTL 9.20E-19 15042 NIPSNAP3A nipsnap homolog 3A 

cis- 
meQTL 

rs4149341 2.21E- 
22 

9 107544285 ABCA1 eQTL 9.20E-19 34316 NIPSNAP3A nipsnap homolog 3A 

cis- 
meQTL 

rs7027419 2.72E- 
05 

9 107485577 LOC107987105 eQTL 9.20E-19 − 24392 NIPSNAP3A nipsnap homolog 3A 

cg08273640 2.91E- 
06 

TBC1D14 4 TSS1500 cis- 
meQTL 

rs7682697 8.47E- 
27 

4 6906099  NA 

cis- 
meQTL 

rs4689053 1.10E- 
06 

4 6909777  NA 

cis- 
meQTL 

rs10020189 3.54E- 
06 

4 6907052  NA 

(continued on next page) 
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Table 4 (continued ) 

CpG EWAS 
p-value 

CpG Gene CpG 
Chr 

CpG Group Type SNP SNP- 
CpG P- 
valueƚ 

SNP 
Chr 

SNP Chr. 
Position 

SNP Gene Type SNP- 
transcript P- 
value (GTEx) 

SNP to TSS 
Distance 

Transcript 
Gene 

HGNC Namea 

cg19657351 3.01E- 
06 

GCNT2 6 TSS200 cis- 
meQTL 

rs9393357 9.26E- 
18 

6 10521054 GCNT2 eQTL 1.02E-29 28598 GCNT2 glucosaminyl (N-acetyl) 
transferase 2 (I blood group) 

cg00412337 3.07E- 
06 

CLIC5 6 Body NA 

cg11124080 3.63E- 
06 

EMX2OS 10 Body trans- 
meQTL 

rs9266629 2.30E- 
07 

6 31346822  eQTL 6.54E-119 − 16450  ENSG00000272221 
eQTL 1.74E-55 106940 HLA-C major histocompatibility 

complex, class I, C 
eQTL 7.73E-46 201146  ENSG00000204528 
eQTL 7.73E-28 181008  ENSG00000272501 
eQTL 3.70E-11 − 213940 NCR3 natural cytotoxicity triggering 

receptor 3 
eQTL 1.73E-09 − 811141 PBX2 PBX homeobox 2 

cg01816936 4.05E- 
06 

PITPNM2 12 Body cis- 
meQTL 

rs641760 1.46E- 
07 

12 123518866 PITPNM2 eQTL 1.33E-42 − 238015 CDK2AP1 cyclin dependent kinase 2 
associated protein 1 

eQTL 5.63E-11 − 349454 KMT5A lysine methyltransferase 5A 
eQTL 1.04E-07 52669 ARL6IP4 ADP ribosylation factor like 

GTPase 6 interacting protein 4 
eQTL 1.59E-04 52749 ABCB9 ATP binding cassette 

subfamily B member 9 
cg07893584 4.13E- 

06 
PTPRD 9 5′UTR; 

1stExon; 
TSS200 

cis- 
meQTL 

rs5013501 2.83E- 
05 

9 10665525  NA 

cg11042505 4.35E- 
06  

2  NA 

cg13143349 4.44E- 
06  

5  cis- 
meQTL 

rs11959614 3.25E- 
08 

5 1930990  NA 

cg13143349 4.44E- 
06  

5  cis- 
meQTL 

rs56287698 2.84E- 
05 

5 1958907 ENSG00000248994 NA 

cg08463297 4.50E- 
06  

17  NA 

cg25290938 4.51E- 
06 

ARHGAP22 10 TSS200 cis- 
meQTL 

rs17010948 5.48E- 
79 

10 49812917 ARHGAP22 NA 

cis- 
meQTL 

rs10857612 ƚ 2.90E- 
12 

10 49824141 ARHGAP22 eQTL 5.86E-28 − 40169 ARHGAP22 Rho GTPase activating protein 
22 

NA: Not a applicable (CpG not associated to meQTL, or meQTL is not associated with transcript adundance and not also an eQTL. 
PDGene (meta-GWAS): ƚ meta p < 0.05; ƚƚ meta p = 1.78E-13. 

a Ensembl_id when HGNC unavailable. 
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processes, shown in a graph of enriched GO terms that displays the 
connections between the GO terms (Fig. 2D). 

Interestingly, of 45 me/eQTLs that were associated with abundance 
of 53 different transcripts in blood, 14 were also associated with the 
abundance of 22 different transcripts in one of three brain regions of 
interest: the substantia nigra, putamen basal ganglia, and frontal cortex 
(Table 5). Notably, fewer transcripts in the MHC class III region were 
related to the eQTLs (8 in the brain versus 18 in blood). There was also 
differential abundance of three transcripts, CYP21A1P, RAB29, and 
CPNE1, in the substantia nigra specifically related to three eQTLs. The 
PD GWAS SNP rs823114, which was associated with cg15199181, was 
also linked to expression of RAB29 in all three regions (substantia nigra, 
putamen basal ganglia, and frontal cortex) and PM20D1 in the frontal 
cortex. 

3. Discussion 

Depression is highly prevalent in Parkinson’s disease (PD) (Kasten 
et al., 2010). Yet, the etiology of this important non-motor feature, while 
likely multifactorial, is not well understood (Simuni and Sethi, 2008). To 
assess biologic disruptions associated with depression in PD, we used a 
population-based study of patients early in disease course and employed 
blood-based methylation to relate leukocyte composition and 
genome-wide white blood cell methylation levels to two indicators of 
depression: having a history of clinical depression and current depres-
sive symptoms. Although the two depression measures were moderately 
correlated (R = 0.32), indicating some patients had both a history of 
clinical depression and current depressive symptoms, each indicator was 
associated with different methylation patterns. Nevertheless, both 
implicated immune system function involvement. 

We first characterized PD patient immune cell profiles via immu-
nomethylomics and methylation profiling (Kelsey and Wiencke, 2018). 
Levels of several leukocyte indicators suggested more immune activa-
tion in patients with current depressive symptoms than in either PD 
patients or controls without current depressive symptoms. This was 
perhaps most comprehensively shown by the neutrophil-to-lymphocyte 
ratio (NLR). The NLR, which is simply a ratio of lymphocyte to 
neutrophil counts, here measured with epigenetic surrogates as leuko-
cyte markers, is often assessed as a measure of systemic inflammation 
and immune activation (Song et al., 2021). It reflects the balance be-
tween inflammation (acute or chronic), as measured by neutrophil 
levels, and adaptive immunity, measured by lymphocyte levels (Song 
et al., 2021). Interestingly, even our controls were showing an average 
NLR of 2.1, which is just below the “grey zone” of 2.3–3.0 that indicates 
immune activation and perhaps early signs of pathologic states 
(Zahorec, 2021). This likely reflects our aged study population, as age 
strongly predicts decreased immune function, increased immune acti-
vation, and a higher NLR(44,45). Yet, the PD patients experiencing 
current depressive symptoms showed a markedly higher NLR on average 
(3.4) than either controls (2.1) or PD patients without depressive 
symptoms (2.8). Furthermore, the patients with current depressive 
symptoms also showed more accelerated epigenetic immune system 
aging, which is an indicator of biologic aging and inflamm-aging. We 
have previously linked other immune system aging markers to PD as 
well (Paul et al., 2021). However, the current study demonstrates even 
more pronounced increases for PD patients experiencing current 
depressive symptoms. Interestingly, PD patients with a history of clinical 
depression prior to PD diagnosis had immune cell profiles similar to PD 
patients without a history of clinical depression. This result seems to 
indicate that the differences in leukocyte composition of the blood are 
related to current depressive symptoms and health states rather than 
reflecting a lasting pathology of clinical depression without current 
symptoms. 

Although current depressive symptoms were necessary to see acti-
vated immune cell composition profiles, PD patients with a history of 
clinical depression showed differences in CpG levels across the genome 

that were unrelated to blood cell composition. We identified 35 specific 
CpGs associated at an FDR<0.05 and 569 at a relaxed significance 
threshold for discovery (FDR<0.10). Several of the CpGs are note-
worthy, including cg23426156, cg11042505, and cg21769117. Two, 
cg23426156 and cg11042505, have been linked to the important 
neuropsychiatric disorder schizophrenia in three different study pop-
ulations (Hannon et al., 2016, 2021). While cg23426156 is intergenic, it 
is in the transcription factor binding site for several factors (i.e., CEBPB, 
STAT3, JunD, GR, RFX5_(N-494), Rad21, p300_(N-15), SMC3_(ab9263), 
Pol2-4H8, c-Fos). The CpG cg21769117 on the other hand is in the 
transcription start site region of the gene CLIC1. CLIC1 and the chloride 
intracellular channel 1 (CLIC1) protein have been compellingly linked to 
neurodegeneration. For instance, during chronic inflammatory states in 
the central nervous system, CLIC1 increasingly accumulates in periph-
eral blood mononuclear cells, as shown in Alzheimer’s patients (Carlini 
et al., 2020). Proteomics analysis of plasma from PD patients and con-
trols also found higher levels of CLIC1 in PD patients (Dong et al., 2019). 
CLIC1 has also been implicated in microglia-mediated β-amyloid peptide 
neurotoxicity (Skaper et al., 2013) and IL-1β biology (Domi-
ngo-Fernández et al., 2017), connecting the gene and its protein with 
inflammatory neurodegenerative processes. Our pathway and enrich-
ment analyses further implicated several immune function pathways 
with a history of clinical depression among the patients, including 
among KEGG pathways, cytokine-cytokine receptor interaction and 
leukocyte transendothelial migration, according to Reactome pathways, 
immunoregulatory interactions between a lymphoid and a 
non-lymphoid cell, interleukin-4 and interleukin-13 signaling, and 
neutrophil degranulation, and from Panther pathways, FAS (death re-
ceptor signaling on cytotoxic T cells and NK cells) and Integrin (principal 
cell adhesion receptors that mediate leukocyte migration and activation) 
signaling pathways. 

To assess how these CpGs identified as associated with a history of 
depression in PD may be related to other biologic layers, we further 
linked CpGs to quantitative trait loci and determined whether meQTLs 
were eQTLs based on GTEx. We found that 45 single nucleotide poly-
morphisms (SNPs) were associated with 25 of the 35 CpGs associated at 
FDR<0.05. Furthermore, many of these methylation QTLs were also 
eQTLs such that the SNP variant was related to both methylation levels 
of one of the EWAS CpGs and expression-based abundance of different 
transcripts measured in both blood and brain regions. This is expected, 
as many if not most cis-eQTLs occur at the same genomic location as a 
cis-meQTL(50). One of the best described functions of methylation is 
regulating gene expression (Moore et al., 2013) and our QTL analysis 
seems to support this, closely linking genetic variation, methylation, and 
expression. For instance, one of the top hits, cg26297819, is in the 
transcription start site region of TEF. One meQTL was associated with 
the CpG, rs202637. Not only has this SNP previously been associated 
with PD in a meta-GWAS (p < 0.05 (Lill et al., 2012; Nalls et al., 2014)), 
but TEF variants have been associated with depression in PD as well 
(Kripke et al., 2009; Hua et al., 2012). The meQTL was also strongly 
related to transcript abundance of not only TEF measured in blood, but 
also CSDC2, POLR3H, and MEI1 in brain, transcripts which have been 
linked to depression in a large meta-GWAS(51). 

The differentially methylated region (DMR) and QTL analysis also 
converged on two regions of relevance for our outcome. First, having a 
clinical history of depression among the PD patients was related to a 
DMR in chromosome 1, in a genetic region near PM20D1, SLC41A1, 
RAB29, and NUCKS1. The most significant individual CpG related to 
depression in the region we identified was cg15199181 (FDR = 0.02). 
This CpG was associated with three meQTLs, most significantly 
rs823114. This SNP, in the NUCKS1 gene, was strongly associated with 
PD in the meta-GWAS (meta p-value = 1.78E-13 (Lill et al., 2012; Nalls 
et al., 2014)). Furthermore, this meQTL is also an eQTL associated with 
expression levels of PM20D1, RAB29, SLC41A1, and NUCKS1 in blood, 
RAB29 in the basal ganglia, frontal cortex, and substantia nigra, and 
PM20D1 in the frontal cortex, i.e., brain areas of interest related to 
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Table 5 
History of clinical depression EWAS CpGs and Functional Genetics. QTL analysis, methylation QTLs (cis-meQTL) SNPs → CpGs (Dutch Biobank) and SNPs →expression (GTEx). Expression based on transcripts in samples 
from three brain regions (putamen basal ganglia, frontal cortex, and substantia nigra) from GTEx.  

CpG EWAS 
p- 
value 

CpG 
Gene 

CpG 
Chr 

meQTL 
Type 

SNP SNP- 
CpG 
meQTL 
p-value 

Dir. 
of 
SNP- 
CpG 
beta 

SNP Gene SNP 
Chr 

SNP to 
TSS 
Distance 

Dir. of SNP- 
expression 
beta 

Putamen 
Basal 
Ganglia 
eQTL P- 
value 

Frontal 
Cortex 
eQTL P- 
value 

Substantia 
Nigra eQTL 
P-value 

Symbol Name 

cg26297819 1.14E- 
07 

TEF 22 cis rs202637 ƚ 7.93E- 
07 

+ 22 − 102839 – 3.84E-09 2.96E- 
18  

CSDC2 cold shock domain 
containing C2 

− 86682 – 2.04E-08 5.87E- 
11  

POLR3H RNA polymerase III 
subunit H 

− 241575 –  3.80E- 
06  

MEI1 meiotic double- 
stranded break 
formation protein 1 

cg16646909 1.36E- 
07 

ZNF790 19 cis rs2445878 5.23E- 
34 

– ZNF790 19 254385 + 1.15E-23 3.65E- 
16  

ZNF529- 
AS1 

ZNF529 antisense RNA 
1 

cis rs1227799 1.66E- 
16 

+ ZNF790-AS1 19 − 453263 + 1.80E-40 2.77E- 
44  

LINC01535 long intergenic non- 
protein coding RNA 
1535 

− 708332 + 5.26E-03   ZNF793- 
AS1 

ZNF529 antisense RNA 
1 

cg01949993 1.71E- 
07 

LAMC2 1 cis rs6678888 9.05E- 
70 

– LAMC2 1 327 + 3.94E-09 4.71E- 
10  

LAMC2 laminin subunit 
gamma 2 

cg21769117 2.12E- 
07 

CLIC1 6 trans rs548987 3.25E- 
08 

– SLC17A3 6 − 496016 –  3.17E- 
19  

BTN3A2 butyrophilin subfamily 
3 member A2 

− 123519 + 9.07E-09    ENSG00000272462.2 
cis rs1794282 6.21E- 

06 
–  6 30366 –  1.50E- 

20  
HLA-DQB1 major 

histocompatibility 
complex, class II, DQ 
beta 1 

716725 – 8.58E-06 1.16E- 
09  

C4A complement C4A 
(Rodgers blood group) 

693060 – 3.76E-07 5.39E- 
08  

CYP21A1P cytochrome P450 
family 21 subfamily A 
member 1, pseudogene 

520395 –  4.67E- 
05  

RNF5 ring finger protein 5 

958801 – 4.98E-03 6.19E- 
03  

MSH5 mutS homolog 5 

cis rs1613056 1.05E- 
05 

–  6 32786 – 3.52E-28 1.50E- 
20  

HLA-DQB1 major 
histocompatibility 
complex, class II, DQ 
beta 1 

719145 – 8.58E-06 1.16E- 
09  

C4A complement C4A 
(Rodgers blood group) 

695480 – 3.76E-07 5.39E- 
08 

4.20E-05 CYP21A1P cytochrome P450 
family 21 subfamily A 
member 1, pseudogene 

662904 + 5.30E-05 1.49E- 
02  

CYP21A2 cytochrome P450 
family 21 subfamily A 
member 2 

cg22668767 7.32E- 
07  

5 cis rs334881 4.71E- 
66 

– MCIDAS 5 − 8806 – 8.13E-20 3.59E- 
12  

CCNO cyclin O 

PLPP1 − 2441 – 2.99E-03   MCIDAS multiciliate 
differentiation and 
DNA synthesis 

(continued on next page) 
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dopamine signaling. Several of these factors have been linked to PD 
experimentally. For instance, Rab29 has been shown to activate the 
Parkinson’s-associated LRRK2 kinase (Bonet-Ponce and Cookson, 2019; 
Purlyte et al., 2018). This association supports the notion that PD genetic 
risk loci may also influence symptom profiles among patients, which we 
have previously reported (Paul et al., 2018b) and also observe here with 
the PD GWAS SNP rs823114 influencing the methylation levels of 
cg15199181. Importantly, our findings suggest that part of the genetic 
risk may be conferred through an influence on mechanisms involving 
methylation and expression levels. 

A history of clinical depression in PD was also related to a second 
DMR in chromosome 6 in the MHC class III region, near cg21769117, 
the CpG in the CLIC1 gene. The CpG was associated with four meQTLs 
that are also eQTLs associated with expression levels of 18 different 
transcripts in blood and 9 different transcripts in the brain (basal 
ganglia, frontal cortex, or substantia nigra). These transcripts include 
CLIC1, many other immune related proteins (HLAs, complement pro-
teins), and notably CYP21A1P expression in the substantia nigra, which 
we determined based on our eQTL analysis with GTEx. cg00412337 in 
the nearby CLIC5 gene was also positively associated with depression. 
While these results are interesting, the complexity of the MHC class III 
region with hundreds of genes, requires additional evidence before 
drawing conclusions about its effects on depression in PD. 

When we considered the complete gene set from all implicated CpGs, 
QTLs, and blood-based transcripts, all enriched biologic processes were 
related to immune function (e.g., interferon-gamma-mediated signaling 
pathway, antigen processing and presentation pathways, and immune 
response-activating pathways). Many of the 21 transcripts expressed in 
the brain regions were also related to lymphocyte mediated immunity 
and adaptive immune response, along with biosynthesis of mineralo-
corticoids and glucocorticoids via CYP21A2 and its pseudogene 
CYP21A1P. Glucocorticoids are immunoregulatory hormones generally 
synthesized in the adrenal cortex, where most CYP21A2/CYP21A1P 
expression occurs (Ahmed et al., 2019). However, glucocorticoid syn-
thesis has been observed in the brain (Ahmed et al., 2019), seemingly 
allowing local regulation of immunologic response, and the GTEx 
analysis indicates both CYP21A2 and CYP21A1P are expressed in the 
basal ganglia, frontal cortex, and substantia nigra, with some variation 
in expression determined by eQTLs of interest. Furthermore, CYP21A1P 
is a transcribed pseudogene, or ancestral copy of the protein-coding gene 
that are thought to have lost the functional product of their parental 
gene due to accumulation of mutations (Milligan and Lipovich, 2015). 
While not all pseudogenes are transcribed, for those that are, they can 
provide a key mechanism for regulating the parental gene’s expression 
(Milligan and Lipovich, 2015; Li et al., 2013). Overall, this differentially 
methylated region associated with clinical depression in PD seems to 
have genetic contributors (meQTLs/eQTLs) related to expression of 
important immune genes both peripherally and centrally. 

Ultimately, our analysis demonstrates the dynamic and interdepen-
dent nature of biologic systems. Our EWAS linked distinct CpGs to 
depression among PD patients, functional genomics and QTL mapping 
broadened the scope of our investigation and strongly implicated the 
immune system in neurodegeneration and depression in PD. In the 
future, multi-omics measurements from the same study participants may 
allow us to link these QTLs and methylation levels to measured tran-
scripts specifically in PD patients. This analysis also suggests that blood 
is an important tissue that provides clues into mechanisms that 
contribute to depression and neurodegenerative disease. Our analysis 
strongly implicated immune system function as being disrupted among 
PD patients with a history of clinical depression as suggested by differ-
ential leukocyte methylation. 

Overall, the current study maps methylation signals associated with 
depression among Parkinson’s disease. The findings provide evidence of 
immune system involvement in depression among Parkinson’s patients, 
both for those experiencing current depressive symptoms and those with 
a history of clinical depression. The first expressed in leukocyte Ta
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composition and the second in methylation level differences in specific 
immune system related chromosomal areas. These may be both a 
consequence of disease pathogenesis and a contributor to its progres-
sion. Future research should investigate whether such signals are spe-
cific to PD or also related to depression in other neurodegenerative 
disorders, such as Alzheimer’s. 

PD is a highly heterogenous disorder with patients experiencing 
different symptom profiles, often including depression. Comprehen-
sively mapping biologic pathways and perturbations associated with 
distinct symptoms may shed light onto PD’s complex clinical heteroge-
neity and etiology. 

4. Methods 

4.1. Study population 

This study was based on participants of the Parkinson’s disease, 
Environment, and Genes (PEG) study (Narayan et al., 2013), a 
population-based PD study from three counties in California’s Central 
Valley (Kern, Fresno, and Tulare). PEG was designed as a case-control 
study to investigate PD etiology (2001–2007 & 2010–2016; n = 849 
PD patients early in disease; n = 1021 population-based controls). 
Further information on the patient population has been published 
(Duarte Folle et al., 2019). Informed consent was obtained from all 
subjects and the study was approved by the UCLA institutional review 
board. For this analysis, data were restricted to 465 PD patients and 227 
controls of European ancestry with methylation data. All patients in the 
study were examined by movement disorder specialists (lead by J.B.) at 
least once and confirmed as having probable idiopathic PD based on 
published criteria (Hughes et al., 1992a, 1992b). Demographic charac-
teristics for PD patients with and without methylation data were similar, 
including average age 70.4 (SD = 11.7) vs 70.5 (SD = 9.8) and 62% vs 
65% male. We assessed two indicators of depression, first, having a 
history of clinical depression. This indicator was based on self-reported 
physician diagnosis during interviews conducted by trained study staff. 
Second, we assessed current depressive symptoms at the time of blood 
draw, measured by a self-administered 15-item geriatric depression 
scale (GDS). 

4.2. Methylation and QTL analysis 

For methylation, DNA was extracted from peripheral whole blood at 
the baseline visit for all study participants. We profiled and processed 
DNA samples using the Illumina Infinium 450k platform (486k CpGs) 
with standard settings. We used k nearest neighbors for imputation from 
the Impute R package, the background normalization method from the 
Genome Studio software to process DNA methylation β values, and 
corrected for type I/type II probe bias with BMIQ using the champ. norm 
function in the ChAMP R package (Morris et al., 2014). For analysis we 
removed x-reactive CpGs (29,233 CpGs), CpGs that had a SNP in the 
probe (probe_rs), CpG interrogation site (CpG_rs), or the single nucleo-
tide extension (SBE_rs) (104,206 CpGs), and CpGs that were in the X or Y 
chromosome (11,648 CpGs). Analysis was therefore based on 352,325 
CpGs. More detail has been published (Chuang et al., 2017; Paul et al., 
2021) and the data are available on Gene Expression Omnibus (GEO), 
accession numbers GSE72774 and GSE72776. 

We estimated whole blood cell composition from the DNAm using 
the Houseman estimation method to estimate the proportion of CD8+ T 
cells, CD4+ T cells, natural killer, B cells, monocytes, neutrophils, and 
eosinophils (Houseman et al., 2012, 2014). The neutrophil to lympho-
cyte ratio was calculated by taking the ratio of neutrophils to lympho-
cytes (CD8+ T, CD4+ T, natural killer, and B cells). We also estimated 
DNAm epigenetic immune age acceleration using extrinsic epigenetic 
age acceleration (EEAA). EEAA is a measure of biologic aging in immune 
cells that is based on the Hannum clock (Hannum et al., 2013), but 
dependent on white blood cell concentrations (Horvath and Levine, 

2015). 
To establish meQTLs associated with the EWAS CpGs, we used two 

sources, first, the BIOS public database of meQTLs, which is based on 
whole blood methylation from 3,841 samples from five Dutch biobanks 
(Bonder et al., 2017). Second, we used meQTLs established in our PEG 
PD study population. SNP data in PEG were derived from genome-wide 
association data generated using the Global Screening Array (Illumina, 
Inc.) and subjected to standard quality control and genotype imputation 
by Minimac3(64). For details on the genotyping and post-genotyping 
procedures applied to the PEG dataset see ref (Hong et al., 2020). To 
establish the meQTLs, we limited to the 17 EWAS CpGs (Table 2) and ran 
pair-wise linear regression models (i.e., every CpG ~ SNP pair) among 
those of European ancestry, controlling for age, sex, and AIMs fractional 
ancestry. CpG ~ SNP pairs with an FDR<0.05 were considered meQTLs. 
Two additional meQTLs were determined from this analysis. The ma-
jority of meQTLs were detected in both study populations (Supplemental 
Table 3). 

To establish if the meQTL was also an eQTL, we used GTEx v8, which 
provides characterization of genetic associations and gene expression 
and splicing in 838 individuals, 52 tissues, two cell lines (whole-genome 
sequence and RNA-sequence from approximately 960 deceased adult 
donors; 85% European Ancestry, 66% male, mean age 53.4 (21–70), 
mean BMI 27.3 (both men and women)) (Aguet et al., 2017; Lonsdale 
et al., 2013). As expression is tissue-dependent, we determined eQTLs 
based on whole-blood and three brain regions of importance in PD: 
substantia nigra, putamen basal ganglia, and frontal cortex. 

4.3. Statistical analysis 

Mean differences in cell composition markers between groups (PD 
patients with depression versus PD patients without depression and 
controls without depression) were compared with a Wilcoxon test. Using 
logistic regression models controlling for covariates listed below, we 
confirmed the mean comparisons, i.e., associations remained after 
confounder adjustment. For the epigenome-wide association analysis 
(differentially methylation positions, DMP), we used the meffil R pack-
age to test for association between the binary depression indicators and 
each CpG site using linear regression models fit with limma (Ritchie 
et al., 2015). To control for potential confounding, we included the 
following covariates: age at blood draw, sex, smoking, number of years 
with PD at blood draw, AIMs-based Caucasian fractional ancestry, an 
indicator for PEG study wave, and blood cell composition (CD4T and 
neutrophil proportions). We also included an indicator for pesticide 
exposure in sensitivity analysis. With the EWAS DMP associations, we 
next performed gene set enrichment analysis using the methylGSA R 
package, which accounts for the number of CpGs per gene included the 
Illumina 450k array. We assessed enrichment of KEGG pathways, 
Reactome pathways, and Panther pathways. Multiple testing for both 
the DMP EWAS and GSEA was adjusted for with a false discovery rate 
(FDR). To assess differentially methylated regions (DMR), we used the 
ChAMP R package, applying bumphunter and 1000 bootstraps to esti-
mate regions for which the methylation genomic profile deviates be-
tween groups. The DMR function detects differentially methylation 
regions between two populations (i.e., patients with and without 
depression), and returns the DMRs and estimated p-values. Multiple 
testing was adjusted for with a family-wise error rate (FWER). Finally, 
for gene set enrichment based on all genes implicated by the EWAS and 
QTL analysis, we used WebGestalt (WEB-based Gene Set Analysis 
Toolkit), implemented via R. We assessed over-representation of the 
gene set for gene ontology terms and network topology-based analysis. 

Ethics approval and consent to participate 

The PEG study was approved by the UCLA Institutional Review 
Board (IRB# 11–001530) and informed consent was obtained from all 
individuals. Our research conformed to the Declaration of Helsinki. 
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