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Abstract

As the life sciences have become more data intensive, the pressure to incorporate the requi-

site training into life-science education and training programs has increased. To facilitate cur-

riculum development, various sets of (bio)informatics competencies have been articulated;

however, these have proved difficult to implement in practice. Addressing this issue, we

have created a curriculum-design and -evaluation tool to support the development of specific

Knowledge, Skills and Abilities (KSAs) that reflect the scientific method and promote both

bioinformatics practice and the achievement of competencies. Twelve KSAs were extracted

via formal analysis, and stages along a developmental trajectory, from uninitiated student to

independent practitioner, were identified. Demonstration of each KSA by a performer at

each stage was initially described (Performance Level Descriptors, PLDs), evaluated, and

revised at an international workshop. This work was subsequently extended and further

refined to yield the Mastery Rubric for Bioinformatics (MR-Bi). The MR-Bi was validated by

demonstrating alignment between the KSAs and competencies, and its consistency with

principles of adult learning. The MR-Bi tool provides a formal framework to support curricu-

lum building, training, and self-directed learning. It prioritizes the development of indepen-

dence and scientific reasoning, and is structured to allow individuals (regardless of career

stage, disciplinary background, or skill level) to locate themselves within the framework. The

KSAs and their PLDs promote scientific problem formulation and problem solving, lending

the MR-Bi durability and flexibility. With its explicit developmental trajectory, the tool can be

used by developing or practicing scientists to direct their (and their team’s) acquisition of

new, or to deepen existing, bioinformatics KSAs. The MR-Bi is a tool that can contribute to

the cultivation of a next generation of bioinformaticians who are able to design reproducible

and rigorous research, and to critically analyze results from their own, and others’, work.
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Introduction

During the past two decades, many commentators [1]; [2]; [3]; [4]; [5]; [6]; [7]; [8]; [9]; [10]

have drawn attention to the wide gap between the amount of life-science data being generated

and stored, and the level of computational, data-management and analytical skills needed by

researchers to be able to process the data and use them to make new discoveries. Bioinformat-

ics, the discipline that evolved to harness computational approaches to manage and analyze

life-science data, is inherently multi-disciplinary, and those trained in it therefore need to

achieve an integrated understanding of both factual and procedural aspects of its diverse com-

ponent fields. Education and training programs require purposeful integration of discipline-

specific knowledge, perspectives, and habits of mind that can be radically different. This is true

whether the instruction is intended to support the use of tools, techniques and methods, or to

help develop the next generation of bioinformaticians, and thus can be difficult to achieve, par-

ticularly in limited time-frames [11]; [12].

Several international surveys have been conducted to better understand the specific chal-

lenges for bioinformatics training (e.g., [13]; [14]; [12]; [15]). While all agree on the necessity

of integrating computational skills and analytical thinking into life-science educational pro-

grams, they nevertheless acknowledge that the difficulties of achieving this in a systematic and

formal way remain. To try to address these issues, various groups around the world began

developing curriculum guidelines, defining core (bio)informatics competencies necessary to

underpin life-science and biomedical degree programs (e.g., [16]; [17]; [18]; [19]; [20]; [21]).

Competencies represent what individuals can do when they bring their Knowledge, Skills and

Abilities (KSAs) together appropriately [22], and at the right level(s), for the right application,

to achieve a given task. Competencies are thus multi-dimensional, highly complex, task-spe-

cific, behaviors.

Using competencies to guide curriculum development has proved problematic (e.g., [23];

[24]; [25]; [26]; [27]). In consequence, the Accreditation Council for Graduate Medical Educa-

tion in the United States has shifted their definition of “competencies-based medical educa-

tion” towards a specifically developmental approach that specifies and implements

“milestones” [28]; [29]. This is a shift of focus for curriculum design (whether recognized or

not) from the end-state of education (i.e., acquired competencies) to how learners need to
change–to develop–en route to achieving those desired end-states. In other words, curriculum

design also needs to include “the route” or developmental trajectory [30]. This has been

acknowledged in diverse contexts: for medical education, Holmboe et al. (2016) [28] discuss

the need to structure “teaching and learning experiences. . .[in order] to facilitate an explicitly

defined progression of ability in stages”; for bioinformatics, Welch et al. (2016) [20] call for

community-based efforts to “[i]dentify different levels or phases of competency” and “provide

guidance on the evidence required to assess whether someone has acquired each competency.”

In other words, both the steps along the way and the way are requisite to a curriculum that sup-

ports the achievement of milestones and competencies (see [31]).

In developing curricula that both promote acquisition, integration, and retention of skills

and incorporate developmental considerations, part of the challenge is the time-frame avail-

able for instruction: formal education can follow structured, long-term programs, but training
is generally delivered within limited time-frames [11]; [12]. In such circumstances, the time

available to align instruction with learners’ levels of complexity of thinking (and experience) is

limited; other considerations, including the prior experience and preparation of the learners,

are also factors. Nevertheless, it is possible to address developmental considerations for both

short- and long-form learning experiences [32] by appeal to Bloom’s Taxonomy of the Cogni-

tive Domain [33], which specifies a six-level hierarchy of cognitive skills or functioning:

Mastery Rubric for Bioinformatics for education and training

PLOS ONE | https://doi.org/10.1371/journal.pone.0225256 November 26, 2019 2 / 29

Funding: The author(s) received no specific

funding for this work, however, we gratefully

acknowledge the Georgetown University

Department of Neurology, the GOBLET Foundation,

and ELIXIR Italy for defraying the publication costs

of this article.

Competing interests: Rochelle Tractenberg has

read the journal’s policy and has the following

competing interest: She is a section editor for

PLOS ONE; this does not alter our adherence to

PLOS ONE policies on sharing data and materials.

The other authors have declared that no competing

interests exist.

https://doi.org/10.1371/journal.pone.0225256


1. Remember/Reiterate—performance is based on recognition of a seen example(s);

2. Understand/Summarize—performance summarizes information already known/given;

3. Apply/Illustrate—performance extrapolates from seen examples to new ones by applying

rules;

4. Analyze/Predict—performance requires analysis and prediction, using rules;

5. Create/ Synthesize–performance yields something innovative and novel, creating, describ-

ing and justifying something new from existing things/ideas;

6. Evaluate/Compare/Judge [34]—performance involves applying guidelines, not rules, and

can involve subtle differences arising from comparison or evaluation of abstract, theoretical

or otherwise not-rule-based decisions, ideas or materials. (This representation, with “evalu-

ate/judge” at the pinnacle, is from the original Bloom taxonomy, while the 2001 revision

characterized “create/synthesize” as the most cognitively complex ([34]; see [30], for discus-

sion of how the original formulation suits the higher/graduate/post graduate context)).

The hierarchy in Bloom’s taxonomy is developmental [30]; this highlights a problem for

some of the proposed competencies for practicing scientists (e.g., [17]; [19]). Specifically, most

of the articulated competencies require very high-level Bloom’s, and nearly all require the use

of several Bloom’s cognitive processes seamlessly, sometimes iteratively. Without a specific

built-in developmental trajectory that can lead a learner from lower- to higher-level Bloom’s

(and thence to the integration of the multiple cognitive processes on the spectrum of activities

that bio-/medical informatics practice requires), the competencies may simply be too cogni-

tively complex to serve as achievable end-states.

The Mastery Rubric: A curriculum-development and -evaluation tool

Given the challenges, it is perhaps not surprising that efforts to incorporate competencies into

teaching and training have been problematic. Motivated by these issues, we have created a new

curriculum-development and -evaluation tool: the Mastery Rubric for Bioinformatics

(MR-Bi). Rubrics are typically used to provide a flexible but rigorous structure for evaluating

student work [35]; a Mastery Rubric is similar but describes the entire curriculum rather than

individual assignments [30]. Creating a Mastery Rubric requires three key steps: 1) identifying

the KSAs that a curriculum should deliver, or that are the targets of learning; 2) identifying rec-

ognizable stages for the KSAs in a clear developmental trajectory that learners and instructors

can identify, and that instructors can target in their teaching and assessment; and 3) observable

Performance Level Descriptors (PLDs; [36]) on each KSA at each stage, describing evaluable

changes in performance from less to more expert. Within a Mastery Rubric, PLDs clarify what

instructors need to teach and assess at each stage, and articulate to students what they need to

demonstrate, in order for the KSAs to be characterized as ‘achieved’ for that stage. To date, the

Mastery Rubric construct has been used to design and evaluate graduate and postgraduate/

professional curricula in clinical research, ethical reasoning, evidence-based medicine, and sta-

tistical literacy (see [30]).

Like competencies, KSAs can be highly complex; by contrast, however, KSAs are general–

i.e., the same KSA can be deployed differently to support different task-specific competencies.

Hence, this paper focuses on KSA-based teaching and learning, to promote the likelihood of

learners’ adaptability to future new competencies. We emphasize fostering the development of

KSAs within a structured framework that explicitly supports continuing growth and achieve-

ment. Specifically, we present the MR-Bi, a tool created to support the articulation and
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demonstration of actionable teaching and learning goals. The focus of this paper is on how the

tool was developed; its uses and applications are the topics of our ongoing work.

Methods

Construction of the MR-Bi followed formal methods. The KSAs were derived via cognitive

task analysis [37]; the stages were derived using Bloom’s taxonomy and the European guild

structure ([38]; p.182), which maps how individuals can expect/be expected to grow and

develop; and the PLDs evolved through a formal standard-setting procedure [39], considering

key aspects of the kind of critical thinking necessary in a given discipline. This application of

standard-setting methodology (for a review, see [40]) focused on qualitatively, rather than

quantitatively, characterizing the performance (“body of work”) of the minimally competent

performer of each KSA at each stage. The interested reader is encouraged to review the work-

flow presented in the Supplemental Materials (Figure A in S1 File). This comprises a detailed

description of the integration of theory, the cognitive task analysis, and the drafting of the

KSAs using Bloom’s taxonomy and the Messick criteria, with examples.

Face and content validity of the MR-Bi were also determined systematically. A degrees of

freedom analysis [41]; [42] was used to formally explore the alignment of the KSAs with exist-

ing biomedical informatics and bioinformatics competencies ([17], [19]). Alignment of the

MR-Bi with principles of andragogy ([43]) was also investigated. These alignment efforts serve

to demonstrate whether and how the MR-Bi is consistent both with the goal of supporting

achievement of competencies, and with andragogical objectives. The KSAs must be teachable

to adults, and the PLDs must describe observable behaviors, if the MR-Bi is to be an effective

and valid tool for instructors and learners.

KSA derivation via cognitive task analysis

A cognitive task analysis generated KSAs following the procedure described in the Supplemen-

tal Materials (Table A, Figure A, Text A in S1 File). KSAs that characterize the scientific

method, reflecting what is requisite in scientific work (derived from [44] and [45], and adapted

by [46]), were assumed to be essential to bioinformatics education and training [47]. These

KSAs were refined with respect to community-derived competencies. The Welch et al. [19]

competencies focus on the development of the bioinformatics workforce, while those of Kuli-

kowski et al. [17] focus explicitly on curriculum development for doctoral training in health
and medical informatics. Despite considerable overlap between them, we reviewed both sets to

ensure that our cognitive task analysis, and the resulting KSAs, were comprehensive.

Identification of stages

In a Mastery Rubric, KSAs are described across a developmental continuum of increasing

complexity. The specific developmental stages, derived from the European guild structure, are

Novice, Beginner, Apprentice and Journeyman ([30]; [48]; see also [49] for a recent similar

strategy). In the MR-Bi, these stages use Bloom’s taxonomy explicitly to characterize the inter-

actions of the individual with scientific knowledge (and its falsifiability). Generally, someone

who deals with facts (remembering them, but not questioning them or creating novel situa-

tions in which to discover them) is a Novice. A Beginner has a growing understanding of the

experimental origins of facts they memorized as a Novice. The individual who can participate

in experiments that are designed for them, making predictions according to rules they have

learned, but not interpreting or evaluating, is an Apprentice. Although they are not explicit

about this, undergraduate life-science programs generally support the transitions from Novice

Mastery Rubric for Bioinformatics for education and training
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to Apprentice. These stages characterize the preparatory phases of anyone new to bioinformat-

ics, irrespective of age or prior experience/training.

The guild structure characterizes the independent practitioner as a Journeyman: postgradu-

ate education, or equivalent work experience, supports the transformation from Apprentice

(learning the craft) to Journeyman (practitioner). Journeyman-level individuals are prepared

for independent practice in the field, although newly independent practitioners generally still

require some level of mentorship (e.g., in a post-doctoral context); such individuals are desig-

nated J1 Journeyman. The scientist whose doctoral program, or background and experience,

has prepared him/her for fully independent scientific work is the J2 Journeyman. Crucially, an

individual with a PhD (or equivalent) in biology, computer science or other scientific field

may be a novice in bioinformatics: e.g., someone who deals with facts about programming or

data resources, but who is unable to apply them to novel situations to discover new biological

knowledge (which would require the higher-order cognitive functioning characteristic of the

J1 Journeyman or J2 Journeyman performer). These “high level” descriptions guided the PLD-

drafting process.

The developmental trajectory in a Mastery Rubric is evidence-based, not time-based: the

performance of a KSA at any stage should lead to concrete and observable output or work

products that can be assessed for their consistency with the PLDs by objective evaluators.

Claims of achievement cannot be based on age, time-since-degree, job title, time-in-position,

or other time-based indicators.

Standard setting for PLDs of each KSA at each stage

We followed the Body of Work approach [50] to writing the PLDs, refining descriptions of

how a “minimally competent” individual [51] would carry out the KSAs at each stage to dem-

onstrate that they were capable of performing them at that level. This standard-setting exercise

(which commenced at a 2-day international workshop in Stockholm in September 2017) was

intended to describe performance at the “conceptual boundary between acceptable and unac-

ceptable levels of achievement” ([52], p. 433). Participants were bioinformatics experts work-

ing in the National Bioinformatics Infrastructure Sweden (https://nbis.se/). All had

documented expertise within the field, ranging from programming to applied bioinformatics

with a biological and/or medical focus; all were also highly engaged in training activities within

the life science community across Sweden. Prior to the workshop, a white paper on the Mas-

tery Rubric with draft KSAs and PLDs, and the Kulikowski et al. and Welch et al. competencies

were sent for viewing and preparation. These and the background and methods outlined here

were reviewed during the first half of day 1.

The workshop aimed to accomplish two facets of the PLDs: range finding and pin-pointing
([50]. P. 202–203). Range-finding involved writing relatively broad descriptions of perfor-

mance for each KSA at each developmental stage. To orient the participants, pin-pointing ini-

tially involved whole-group evaluation and revision of the PLDs across all stages for just three

of the KSAs. Afterwards, participants were divided into three small, facilitated groups (n = 4

per group); each undertook pin-pointing of the draft PLDs for four KSAs during the remain-

der of the two days. Participants iteratively evaluated the KSAs and PLDs to ensure that they

and the stages they represent made sense, and that the PLDs were plausible, consistent within
each stage and not redundant across KSAs. A particular focus was on performance levels that

characterize the independent bioinformatician; specifically, to determine whether the Journey-

man level for each KSA was realistically achieved at one point (J1 Journeyman), or whether a

second stage of development was required (J2 Journeyman) to achieve “full” independence.

Thus, all PLD drafting and review/revisions were systematic and formal, following Egan et al.
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(2012 [36], pp 91–92) and Kinston & Tiemann (2012 [50], pp 202–203), grounded both on

expectations for earlier achievement and performance, and on how an individual could be

expected to function once any given stage had been achieved.

Integrating KSAs, stages, and standards into the MR-Bi

The tasks performed by subject experts during the Stockholm workshop resulted in a com-

pleted first draft of the MR-Bi. Afterwards, final refinements (further pin-pointing and range-

finding) were made during weekly online meetings (2017–2019). Here, our effort was directed

at revising the PLDs to build consistently across stages within a KSA, and to describe perfor-

mance within stages across KSAs. The intention was that the PLDs should support conclusions

about “what is needed” as evidence that a person has achieved a given stage for any KSA. To

this end, the PLDs were aligned with Bloom’s taxonomy, and written to reflect the core aspects

of assessment validity outlined by Messick (1994 [53]):

1. What is/are the KSAs that learners should possess at the end of the curriculum?

2. What actions/behaviors by the learners will reveal these KSAs?

3. What tasks will elicit these specific actions or behaviors?

Application of the Messick criteria ensured that the PLDs would represent concrete and

observable behaviors that can develop over time and with practice. In particular, we focused

on Messick questions 2 and 3 so that the MR-Bi would describe specific actions/behaviors

learners or instructors could recognize as demonstrating that the KSA had been acquired to

minimally qualify for a given stage. Overall, the creation of the MR-Bi followed methods

intended to yield a psychometrically valid tool (e.g., [54]).

Results

KSA derivation via cognitive task analysis

There are eight KSAs that characterize the scientific method (define a problem based on a criti-

cal review of existing knowledge; hypothesis generation; experimental design; identify data

that are relevant to the problem; identify and use appropriate analytical methods; interpreta-

tion of results/output; draw and contextualize conclusions; communication). These were cus-

tomized and enriched based on consideration of the 45 competencies articulated by

Kulikowski et al. (2012) [17] and Welch et al. (2014) [19], and ultimately, 11 distinct KSAs

were derived.

Both sets of competencies include at least one about ethical practice or its constituents, but

neither was sufficiently concrete to support a separate KSA. The PLD-writing process therefore

began with the intention of integrating features of ethical science (e.g., promoting reproduc-

ibility, emphasizing rigorous science and a positivist scientific approach, and specifying atten-

tion to transparency) wherever these are relevant. However, it became clear that respectful

practice, and awareness of the features of ethical conduct and misconduct, were missing.

These considerations led to the identification of a 12th KSA, “ethical practice” (and the range-

finding and pinpointing exercises were carried out again–see Supplemental Materials,

Figure A in S1 File):

1. Prerequisite knowledge—biology

2. Prerequisite knowledge—computational methods

3. Interdisciplinary integration

Mastery Rubric for Bioinformatics for education and training

PLOS ONE | https://doi.org/10.1371/journal.pone.0225256 November 26, 2019 6 / 29

https://doi.org/10.1371/journal.pone.0225256


4. Define a problem based on a critical review of existing knowledge

5. Hypothesis generation

6. Experimental design

7. Identify data that are relevant to the problem

8. Identify and use appropriate analytical methods

9. Interpretation of results/output

10. Draw and contextualize conclusions

11. Communication

12. Ethical Practice

The KSAs are easily recognizable as key features of bioinformatics practice. They are not

intended to be restrictively factual (i.e., literally just knowledge), nor are they content-specific,

because content is apt to change quickly and often: this makes the Mastery Rubric both durable

and flexible with respect to discipline, obviating the need to develop a different Mastery Rubric

for every sub-discipline. Hence, only two types of Prerequisite knowledge were identified: in

biology and computational methods. A distinct KSA for Interdisciplinary integration was identi-

fied as a separate need, because developing the ability to integrate across those domains, and

understanding the potential need for inclusion of other domains (biomedicine, statistics, engi-

neering, etc.), are essential in bioinformatics.

Defining a problem based on a critical review of existing knowledge underpins the application

of critical evaluation skills and judgment, based on what is already known, to determine what

is not yet known. This KSA supports the definition of a bioinformatician as a scientist who uses

computational resources to address fundamental questions in biology [55]; [56]–i.e., it is

intended to promote the bioinformatician’s ability to solve biological problems. It also derives

implicitly from the competencies, and explicitly from the Wild & Pfannkuch (1999) [44]

model of scientific reasoning (and highlighted in [46]). Hypothesis generation also emerged

from the cognitive task analysis by appeal to theoretical and empirical scientific-reasoning

models.

Experimental design, a crucial aspect of the scientific method, was included as a separate

KSA in order to cover formal statistics, hypothesis testing, methodological considerations and

pilot/sensitivity testing; this allowed the Prerequisite knowledge KSAs for biology and computa-
tional methods to focus on the background knowledge, and basic skills and abilities, that are

foundational in each area, and the role of experiments and troubleshooting in each.

Given some level of overlap between them, consideration was given to whether KSAs

needed to be separate. For example, we discussed whether statistical and engineering methods

required their own KSA. The decision to include aspects of statistical inference and experi-

mental design in each of the Prerequisite knowledge KSAs was based on a (perhaps aspira-

tional) objective to define these basic features as “prerequisite”. This formulation left the more

complex and interdisciplinary characteristics of experimental design to its own KSA. Engi-

neering was deemed to be an optional domain, not essential to the specific KSAs required for

solving biological problems.

Identify data that are relevant to the problem and Identify and use appropriate analytical
methods were deemed sufficiently distinct to warrant separate KSAs. Similarly, Communica-
tion was included separately to emphasize the importance of being able to transparently write

about and present scientific work, even though there are requirements for communication in

Mastery Rubric for Bioinformatics for education and training
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several other KSAs, including Interpretation of results/output and Draw and contextualize
conclusions. Finally, we recognized Ethical practice as a separate KSA, in spite of the inclusion

of key attributes of ethical science in all of the PLDs relating to transparency, rigor, and

reproducibility.

Identification of stages

Given these KSAs, and Bloom’s taxonomy, stages on the developmental trajectory were articu-

lated as follows:

Novice (e.g., early undergraduate/new to bioinformatics), Bloom’s 1: remember, under-

stand. Novices can engage with well-defined problems, with known solutions.

Beginner (e.g., late undergraduate, early Master’s), Bloom’s 2–3: understand and apply.

Beginners may use, but not choose, tools; they can engage with well-defined problems and
apply what they are told to apply; the answers may not be known, and the Beginner would stop

once this was apparent.

Apprentice (e.g., Master’s, early doctoral student), Bloom’s 3–4, early 5: choose and
apply techniques to problems that have been defined (either jointly or by others). The Appren-

tice can analyze and interpret appropriate data, identify basic limitations, conceptualize a need

for next steps, and contextualize results with extant literature.

Early Journeyman (J1) (e.g., late doctoral student or just after graduation), Bloom’s 5,

early 6: begin to evaluate (review) and synthesize novel life-science knowledge, and to develop

abilities to integrate bioinformatics into research practice, with some mentorship. The J1 Jour-

neyman can contribute to problem formulation, shows earliest establishment of independent

expertise in the specific life-science area, and can confidently integrate current bioinformatics

technology into that area.

Late/advanced Journeyman (J2) (e.g., doctorate holder), Bloom’s 5, late 6: expertly eval-

uate (review) and synthesize novel life-science knowledge, and integrate bioinformatics into

research practice. The J2 Journeyman is independent and expert in a specific life-science

area, and can select, apply and develop new methods. The J2 Journeyman formulates prob-

lems, considers the relevance of “what works” within this area to other life-science domains,

so as to be an adaptable and creative scientific innovator without having to reinvent every

wheel.

As already noted, PLD reviewers were instructed to determine whether two different devel-

opmental stages should be described for the independent bioinformatician on each of the

KSAs. All KSAs were judged to require the two Journeyman levels.

Synthesizing KSAs, stages, and PLDs into the MR-Bi

As described earlier, 12 KSAs were defined, and PLDs were drafted and iteratively refined for

each of the stages on the developmental trajectory. Refinements included, for example, ensur-

ing that neither KSAs nor PLDs included specific tools, programs, or tasks (e.g., BLAST,

Hadoop, creating GitHub repositories), because these may change over time but the KSAs will

change less quickly, if at all. The results are shown in the MR-Bi in Table 1.

In addition to the KSAs and PLDs, considerations for “evidence of performance” were

incorporated into the MR-Bi (Table 1). As noted, the Mastery Rubric is a true rubric in the

sense that learners can demonstrate their achievement of any given level on any KSA using a

wide variety of evidence. The development of independence as a learner, and as a practitioner,

requires a level of self-assessment that is not often considered in higher education and

training.
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Table 1. Mastery Rubric for Bioinformatics (MR-Bi).

Performance Level: Novice Beginner Apprentice J1 Journeyman J2 Journeyman

General description of

bioinformatics

practitioner

Reads, generally understands, but

does not question, life science

research (results). Beginning to

recognize that “facts” are actually

just the best-currently-supported

theory. Limited engagement with

uncertainty associated with

“facts”; developing understanding

of experimental design paradigms

in biology, & own specific area of

study.

Consolidates reading &

understanding, beginning to learn

how to analyze given biology

problems (with software). Growing

recognition that “facts” are typically

the best-currently-supported

theory. Engaging consistently with

uncertainty associated with “facts”;

deepening understanding of

experimental design paradigms in

biology, & own specific area of

study.

Reads & understands; reliably identifies

methods (software & programming) for

given problems. Chooses & executes

correct analysis, not necessarily able to

identify several methods that could be

equally viable, depending on given

research objectives. Qualified as a

fluent, but not as an independent,

scientist who uses bioinformatics as a

tool, but does not yet synthesize

techonolgy with biology to generate

new research problems.

Qualified as an independent

scientist who uses bioinformatics

methodologies as part of routine

practice. Poses novel scientific

questions, & identifies data &

technology to align appropriate

statistical/analytical methods to

desired scientific objectives.

Experienced reviewer of relevant

technical features of available

bioinformatics methods. Newly-

independent expert in integrating

bioinformatics technology/

techniques into novel research

problems in their area of expertise.

Independent scientist who

expertly integrates bioinformatics

& more traditional methodologies,

as needed, to achieve desired

objectives & contribute to the

body of knowledge. Expert

reviewer of relevant technical

features of available

bioinformatics options.

Considerations for

evidence of performance

at this level

Bloom’s 1, early 2: remember,

understand. Problems the Novice

can engage with are well-defined,

with solutions already known.

Work does not generally reflect

self-assessment.

Bloom’s 2–3: understand & apply,

but only what they are told to

apply. Problems the Beginner can

engage with are well-defined. Work

reflects some self-assessment, when

directed to do so.

Bloom’s 3–4, early 5: choose & apply

techniques to problems that have been

defined (either jointly or by others).

Can analyze & interpret appropriate

data, identify basic limitations &

conceptualize a need for next steps/

contextualization of results with extant

literature. Seeks guidance to improve

self-assessment of own work.

Bloom’s 5, early 6: evaluate

(review) & synthesize novel life-

science knowledge while

developing abilities to integrate

bioinformatics into research

practice. Shows independent

expertise in a specific life-science

area, & confidently integrates

current bioinformatics technology

into that area. Beginning to

critically evaluate experimental

paradigms & their results, without

knowing/ requiring that there be

“one right answer”. Consistently

self-assesses own work.

Bloom’s 6: prepared for

independent scientific work.

Expert in design & critical

evaluation of experimental

paradigms & their results. Self-

assesses in own work, &

encourages others to develop this

skill.

Ethical practice Exhibits respect for community

standards/rules for public

behavior & personal interaction.

Learning how to recognize, &

manifest respect for, intellectual

property, professional

accountability, & scientific

contributions.

Learning to recognize

“misconduct” in the scientific sense.

Learning to avoid, & respond to,

misconduct; & the importance of

neither condoning nor promoting

it.

Learning the principles of ethical

professional & scientific conduct. Seeks

guidance to strengthen applications of

these principles in own practice.

Learning how to respond to unethical

practice.

Practices bioinformatics in an

ethical way, & does not promote or

tolerate any type of professional or

scientific misconduct. Seeks

guidance in how/when to take

appropriate action when aware of

unethical practices by others.

Practices, & encourages all others

to practice, bioinformatics in an

ethical way. Does not promote or

tolerate any type of professional or

scientific misconduct. Takes

appropriate action when aware of

unethical practices by others.

Prerequisite knowledge–

biology (includes

statistical inference &

experimental design

considerations)

Basic knowledge of biology; little-

to-no awareness of the uncertainty

inherent in experimental designs

common in the life sciences.

Thinking about the life sciences is

based on uncritical acceptance of

information as “factual”or “true“.

Advanced knowledge of biology, &

basic knowledge of key

bioinformatics methods. Very

simple statistics/programs are run

to answer pre-defined scientific

questions. Learning to understand

the uncertainty inherent in the

scientific method, questions

assumptions in the data & their

relevance for given scientific

problems (which arise from others).

Thinking about life sciences integrates

both experimental & bioinformatics/

technological sources for data &

knowledge. Understands the

uncertainty inherent in the scientific

method, questions assumptions in the

data & their relevance for given

scientific problems (which typically

arise from others, or with others).

Experimental design & statistical

inference are recognized & exploited

with guidance, to answer given

scientific problems. Can recognize

inconsistencies in biological data/

experiments that are identified by

others, but cannot troubleshoot

experimental methods independently.

Recognizes the importance of, & is

able to critically evaluate, the

relevant literature, & understands

historical background of the

relevant biological system(s).

Sufficient knowledge of a biological

system(s) to be able to draw

functional conclusions from

analytical results. Collaborates with

experts to inform the next stages in

the experimental design process

(validating results, follow-up

analyses, etc.).

Makes predictions to inform next

stages of experimental design

process. Evaluates relevant

experimental methods that can be

applied in any problem. Can

generalize to other biological

systems; independently solves

biological problems that are

innovative & move the field

forward.

Prerequisite knowledge–

computational methods

(includes statistical

inference & experimental

design considerations)

Basic knowledge of computational

methods; little-to-no awareness of

the relevance of computational

methods for life sciences. No

awareness of experimental designs

or how these can be used or

implemented in computational

applications Thinking about tools,

computers, software, &

programming is strictly uni-

dimensional: i.e., extrapolation

&/or abstraction of knowledge

about computational methods to

other systems, programs, or

problems, are not possible. Can

run software or execute code they

are given (as appropriate) with

precise instructions; cannot write

a script or debug/troubleshoot.

Computers, software, tools, &

programming are understood to be

options for scientific work.

Learning how to write & test code,

run software, or use tools, as

appropriate. Is developing

awareness of the variety of

bioinformatics tools, designs, &

resources, but is not able to choose

or apply the most appropriate of

these for any given question; when

choices are made, tools are used

uncritically. Developing awareness

that computational tools require

input parameters, but uses the

default settings. Learning to read,

understand, troubleshoot, & make

minor modifications to existing

code/scripts. Does not synthesize

results or outputs.

Learning to test software &

programming approaches to different

types of problem. Experimental design

& statistical inference using computing

& algorithms are recognized & applied,

with guidance, to answer given

scientific problems. Learning “best

practices”for programming, if

programming is part of the task. Can

write basic code in a given language or

run appropriate software, using

judgement, but not inventing or

innovating. Cannot troubleshoot

complex computational methods–will

ask for guidance. Exploring alternatives

to default input parameters across

computational tools. Can apply

knowledge of tools to interpret their

results & output. Seeks guidance in

synthesis of results or outputs.

Recognizes the importance of, is

able to critically evaluate, &

understands historical background

of the relevant data, databases,

algorithms, tools, data analysis/

statistical methods &

computational resources. Can

utilise these & justify trade-offs

across methodologies (e.g., which

statistical test to apply & what

computational methods to use).

Collaboratively synthesizes &

critically questions analysis results

& output from tools. Recognises the

iterative nature of experiments

(e.g., bench, data analysis, back to

bench). Can write code/use tools to

accomplish these, but collaborates

with domain experts for identifying

& articulating biological problems

that are innovative & move the field

forward.

Develops robust, well-

documented, optimized,

reproducible code &/or uses tools

to address biological problems;

moves away from standard

procedures & innovates to

accommodate new data types,

tools, & techniques as needed.

Can generalize to new coding

languages or software/tools/

resources.
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Table 1. (Continued)

Performance Level: Novice Beginner Apprentice J1 Journeyman J2 Journeyman

Integrate

interdisciplinarity

Does not recognize life sciences as

requiring integration of both

experimental & computational/

modeling approaches. Perceives

disciplines as separate; integration

only occurs when/as directed.

Information, ideas & tools that are

inter-disciplinary are used without

question.

Beginning to think about life

sciences as requiring integration of

both experimental &

computational/modeling

approaches. Recognizes that

interdisciplinarity is needed, but

does not know how (or when) to do

it, & requires direction. Learning

the integrating process; learning

strengths & weaknesses of

biological & computational

methods, but not sufficient to

question assumptions from these &

other disciplines.

Understands that life sciences integrate

both experimental & computational/

modeling approaches; seeks guidance

about how & when to integrate.

Developing an understanding of the

strengths & weaknesses of biological &

computational methods, beginning to

question fundamental assumptions

from these & other disciplines for any

given scientific problem (which

typically arises from others, or in

conjunction with others).

Collaboratively integrates across

relevant disciplines to address, &

solve, innovative biological

problems. Tests multiple avenues to

triangluate solutions, with minimal

guidance. Recognizes the roles of

interdisciplinary teams in the

research process, & the importance

of integrating interdisciplinarity

early on. Works effectively on

interdisciplinary teams with

minimal guidance.

Formulates innovative biological

problems that require

interdisciplinary solutions.

Integrates methods & results to

derive & contextualize solutions to

biological problems. Consistently

tests multiple avenues to

triangluate solutions, while

exploiting relevant findings from

other disciplines. Actively builds

interdisciplinary teams, as needed.

Define a problem based

on a critical review of

existing knowledge

Can recognize a problem that is

explicitly articulated or concretely

given, but cannot derive one.

Unaware of the depth & breadth

of “the knowledge base”that is or

could be relevant for the

formulation of a problem. Does

not recognize design features or

other evidence as the basis of/

support for problem articulation.

Does not recognize uncertainty or

how this affects the formulation of

solveable problems.

Developing awareness of the depth

& breadth of “the knowledge

base”that is or could be relevant for

the formulation of a problem.

Cannot differentiate gaps in own

knowledge from gaps in “the

knowledge base”. Developing the

ability to recognize that uncertainty

may have arisen in the formulation

of solutions to problems.

Beginning to use, with guidance, the

appropriate knowledge base to address

a given problem. Recognizes the need to

consider a wider scope of knowledge

for alternative solutions to a problem

common across contexts or domains. In

guided critical reviews, learning to

recognize that design features &

evidence base are important to drawing

conclusions. Recognizes the role of

uncertainty in research, & that

reproducibility & potential bias should

be considered for every result.

Can explore & critically review the

relevant knowledge base, &

collaboratively articulate a problem

based on that review. Reviews

include assessment of relevance

from (potentially) ancillary

domains, bias, reproducibility, &

rigor; recognizes when appropriate

& inappropriate methodology is

used. Recognizes when incomplete

review is provided (by themselves

or by others). Can discern

reproducible from non-

reproducible results; can identify

major sources of bias throughout

the knowledge base.

Independently defines &

articulates a theoretical or

methodological problems based

on a critical review of the relevant

knowledge base(s). Knows the

hallmarks of questionable research

hypotheses & misalignment of

testing/statistics with poorly

articulated research problems;

consistently finds & identifies

sources of bias. Articulates when

appropriate & inappropriate

methodology is used/reported.

Critical review & problem

articulation integrate diverse

disciplinary perspectives when

appropriate/adaptable.

Hypothesis generation When directed, follows

instructions to test hypotheses;

does not generate them & may not

recognize them without

explication. Uses the default

settings of software & other tools,

rather than a hypothesis, to guide

any analysis. Does not question

methods to be used, or

assumptions of methods that are

used.

When directed, uses the default

settings of software, tools, or the

GUI to test hypotheses in pre-

planned analyses; does not generate

testable hypotheses. Does not

recognize that hypotheses may be

generated & tested within the

intermediate steps of an analysis.

Developing the understanding that

all methods involve assumptions.

With guidance, can: 1. leverage tools,

software, data & other technologies

(GUI/programming) to test hypotheses;

& 2. generate hypotheses based on

either the data or the technology, but

not their combination/synthesis.

Hypothesis generation possible in

highly concrete & fully parameterized

problems; developing the ability to

identify whether a given hypothesis

-including one of their own—is testable.

Learning to recognize that experimental

design & design of software/

programming solutions include

hypothesis generation to some extent.

Developing the abilities to identify, &

plan to address, assumptions that

different hypotheses necessitate.

Collaboratively integrates

hypothesis generation into the

consideration of literature, data &

analysis options. Seeks appropriate

guidance in the synthesis of data &

technology to generate novel,

testable hypotheses. Considers the

process of hypothesis generation &

testing to be iterative when this is

appropriate. Hypothesis generation

is done with consideration of

reproducibility & potential for bias,

& takes into account the most

clearly relevant literature;

recognizes that less-obviously

relevant literature may also be

informative for hypothesis

generation.

Independently generates testable

hypotheses that are scientifically

innovative as well as feasible

(possible for economic reasons,

time, impact, etc.). In own &

others’ work, recognizes that, &

articulates how, hypothesis

generation from planned &

unplanned analyses differ in their

evidentiary weight & their need

for independent replication. Fully

explores all relevant knowledge

base(s) to support rigor &

reproducibility, & to avoid bias, in

the generation of hypotheses.

Experimental Design Can recognize concrete features of

experiments only if they are

described/given, and they match

basic design elements (e.g.,

dependent, independent

variables). Cannot design data

collection or experiments.

Unaware of covariates or their

importance in analysis or

interpretation. Does not recognize

the importance of design, data

collection, data quality, storage/

access, analysis, & interpretation

to promote rigor &

reproducibility in experimental

design.

Can identify salient features of

experiments that are described/

given if they match previously

encountered design elements, but

cannot derive them if they are not

present. Recognizes covariates if

mentioned, but does not require

formal consideration (or

justification) or evaluation of

covariates. Does not recognize that

one experiment alone cannot

adequately address meaningful

biological research problems.

Understands that experimental

design involves the identification,

gathering, storing, analyzing,

interpreting, & integrating of data

& results.

Can match the correct data collection

design to the instruments & outcomes

of interest. May include/exclude

covariates, or other design features,

“because that is what is done”, without

being able to justify their roles in the

hypotheses to be tested. Developing the

understanding that weak experimental

design yields weak data & weak results.

Needs assistance in conceptualizing

covariates & their potential roles in the

planned analyses. Beginning to

recognize that, & can explain why, just

one study is usually insufficient to

answer a given research problems/solve

biological problems adequately. Follows

templates for the identification,

gathering, storing, analyzing,

interpreting & integrating of data.

Learning to consider reproducibility &

rigor in experimental design, & to

question templates that do/do not

include these concepts.

Recognizing that explicit attention

to experimental design will result in

more informative data; designs

experiments in consultation with

experts in content & statistics.

These experiments may include

power calculation considerations, if

relevant; modeling requirements;

measurement/sampling error &

missing data. Collaboratively

designs experiments that address

the need for reproducibility &

sensitivity analysis. Learning to

conceptualize pilot studies &

sensitivity analyses. Learning to

adapt problems so that hypotheses

can be generated & made testable

via experiments.

Independently designs

appropriate & reproducible

experiments & other data-

collection projects, using

methodologies that are aligned

with the testing of specific

hypotheses. Consistently identifies

& justifies choices of instruments

& outcomes (& covariates if

relevant). Collaborates with

experts as needed on appropriate

use of advanced methods,

including accommodating

measurement & sampling error,

attrition (if needed) & modeling

requirements; can adapt complex

problems so that hypotheses can

be generated & made testable via

experiments. Understands & can

exploit the strengths & weaknesses

of experimental design, data &

modeling approaches with respect

to the biological problem under

consideration. Uses pilot studies &

sensitivity analyses appropriately.
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Table 1. (Continued)

Performance Level: Novice Beginner Apprentice J1 Journeyman J2 Journeyman

Identify data that are

relevant to the problem

Uses data, as directed. Does not

find relevant data; cannot describe

what makes data or a given data

resource “relevant”to a given

problem.

Correctly uses data that are

provided or can follow a script/

“recipe”to obtain (access, manage)

relevant data to which they are

guided. Cannot determine whether

a given data-set or type is relevant

for a given problem, but is

developing an awareness that not all

data are equally relevant, or equally

well suited, to all research

problems. Developing awareness of

the features of data/data resources

that constitute “relevance“, & that

these features must be assessed

before choosing data to use.

Can initiate a search for data & will ask

if uncertain about the relevance for any

given problem. Learning how to

identify, & evaluate strengths &

weaknesses of, data resources, to

determine whether a given data-set or

-type is relevant for a given problem; &,

with guidance, how to leverage these to

address given research problems.

Learning how reproducibility can be

affected by the choice (& features) of

data.

Collaboratively identifies relevant

data resources. Understands the

relative strengths & weaknesses of

data-sets & -types for addressing

their specific problem. Learning to

address & formulate scientific

problems (based on recognized

gaps in the knowledge base)

utilizing relevant data resources. In

own & others’ work, recognizes

that, & articulates how, choices for

data (collection or use) require

assumptions & justification, & must

yield reproducible results.

Identifies data that are directly

relevant to a problem of own or

others’ devising. Consistently

identifies, & evaluates strengths &

weaknesses of, a variety of data

resources that can address a

problem or help to formulate it

more clearly; recognizes if the

necessary data do not yet exist.

Justifies the relevance of any given

data-set to a problem in terms of

their individual strengths &

weaknesses. Articulates

hypotheses, & designs

experiments, that leverage

strengths in the data; includes

triangulating data or results to

address weaknesses in the data.

Identifies whether data

appropriate to the specific

scientific question were used

when reviewing proposals,

protocols, manuscripts, &/or

other documentation describing

data, & research results.

Identify & use appropriate

analytical methods

Uses methods that are provided &

in a given order (i.e., a pipeline; &

treats workflows� as if they are

pipelines). Does not identify

relevant methods; cannot describe

what makes a method “relevant”to

a given problem.

Unaware that methods & software

have default settings. Does not

question propriety, assumptions,

or order of methods that are

employed; focus is on the

superficial attributes of given

methods & protocols.

Uses given methods, as directed, &

learning about the concepts of

pipelines & workflows� ; still uses

workflows as if they are pipelines,

but beginning to attend to decision

points. Learning to recognize pros

& cons of methods/software, but

cannot yet effectively compare,

evaluate, or rank them. Becoming

aware of the default settings of

software or methods & their effects

on results; & beginning to explore

& inquire about tailored settings.

Understands that more than one

method/software may be available

to deal with a given problem or data

type, but can’t choose effectively.

Learning about similarities &

differences across methods, & that

choices (particularly of multiple

methodologies for one question)

should leverage independence of

methods to support reproducible

results.

Can identify methods, software, &

pipelines that are relevant for a given

problem; seeks guidance about the best

approach. Learning to evaluate/rank &

justify alternative methods in terms of

general features of their efficiency &

relevance for the given research

problem. Beginning to recognize that a

“pipeline”involves only the choice of

which one(s) to use; while a

“workflow”requires many choices &

decisions. With guidance, seeks to

identify & implement appropriate

workflows to address given research

problems. Learning how reproducibility

can be affected by the choice &

implementation of methods, including

independent replication of essentially

the same method vs. independent

replication using diverse methods.

Collaboratively considers the

knowledge base, & features of the

relevant data & analysis options, in

identifying the most appropriate

approach(es) to tackle a scientific

question. Uses appropriate analytic

methods, pipelines, & workflows,

recognizing, & taking advantage of

the fact, that these may represent

distinct approaches to the same

problem. Knows when & how to

control false discovery rates to

promote reproducible results across

methods. In own & others’ work,

recognizes that, & articulates how,

choices for methods, pipelines, &

workflows require assumptions &

justification, & must yield

reproducible results.

Recognizes if/when the necessary

methods, pipelines, & workflows

to tackle a scientific question do

not yet exist. Consistently controls

false discovery rates to promote

reproducible results. Identifies

whether appropriate analytical

methods were used when

reviewing proposals, protocols,

manuscripts, &/or other

documentation describing

methods, pipelines, workflows, &

research results.

Interpretation of results/

output

Treats the output of a program as

the final/complete result–with no

interpretation required—& is

unaware of the concepts of

validation & cross-validation or

their importance for

interpretation of results/output.

Uses the p-value to indicate

“truth”in statistical analysis. Over-

interpretation is typical.

Unaware of the importance of

false discovery rate controls. Does

not seek coherence in/recognize

incoherence of their results with

the analysis plan or pipeline; is

unable to align methods, results, &

interpretation.

Interpretation of results depends on

p-values, but understanding of p-

values is incomplete. Learning to

recognize that interpretation of

output critically depends on

methods used & the pipeline in

which the results are obtained.

Developing awareness of false

discovery rate controls.

Learning that the interpretation of

their immediate results could be an

interim step in an overall problem-

solving context.

Seeks guidance to interpret results/

output, including considerations of

alignment of methods & results.

Understands that the p-value represents

evidence about the null hypothesis, not

the study hypothesis, but does not

consistently avoid reification.

Recognizes that, but does not always act

as if, very small p-values are not “highly

significant results”. Can apply false

discovery rate controls, but does so only

when reminded/ required. Recognizes

when the interpretation of their

immediate results is an interim step in

an overall problem-solving context.

Can discern, based on immediate

results, methods & hypotheses,

whether more experiments &/or

data processing are required for

robust result interpretation;

collaboratively uses the appropriate

knowledge base & data resources to

interpret results; resists reification

& is committed to good-faith

efforts to falsify hypotheses.

Consistently & appropriately uses

false discovery rate controls.

Interprets own & others’ results

critically & with respect to the

analysis plan; seeks/promotes

alignment of methods, results, &

interpretation. Prioritizes

interpretable & reproducible

results above any other outcome

(e.g., publication or completion of

tasks/project), & insists on false

discovery rate controls & other

sensitivity analyses in all work.

Avoids problems that can arise in

the interpretation of results,

including bias, reification, & other

failures of positivism. Is able to

evaluate the quality &

appropriateness of procedures,

statistical analyses, & models

when reviewing papers & projects/

proposals, based on the writers’–&

own—interpretation of results.
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Validity evidence

The first step in validating the MR-Bi was to investigate the alignment of the KSAs with the

competencies. While the competencies informed the refinement of the KSAs (see Supplemen-

tal Materials, Figure A in S1 File), our emphasis was nevertheless on the scientific method. To

support the claim that the MR-Bi is valid for the domain, the final KSAs should support the

competencies such that, if a curriculum develops the KSAs in learners to a sufficient level, then

performance of the relevant KSA(s) should lead to the demonstration of target competencies.

This alignment is presented in Table 2, and assumes that each competency would be assessed

as “present”/“absent”: i.e., that all of its constituent parts are required for a person to be

declared “competent” for that item. To perform the alignment, we took the highest Bloom’s

Table 1. (Continued)

Performance Level: Novice Beginner Apprentice J1 Journeyman J2 Journeyman

Draw & contextualize

conclusions

Does not draw appropriate

conclusions from given results;

without direction, will not even

contextualize conclusions with the

protocol that was followed. Not

aware of the difference between

conclusions about the null

hypothesis & those about the

research hypothesis. Conclusions

may over- or under-state results &

be driven by p-values or other

superficial cues. Does not

recognize the importance of

identifying & acknowledging

methodological limitations, or

their implications, for

conclusions. Does not or cannot

apply rules of logic to scientific

arguments, & commits logical

fallacies when drawing

conclusions.

Learning fundamentals of how

appropriate conclusions are drawn

from results, but may not be able to

draw those conclusions from given

results themselves. Learning to

differentiate between conclusions

about the null hypothesis & those

about the research hypothesis.

Learning why p-value-driven

conclusions, & the lack of false

discovery rate controls, are not

conducive to reproducible work.

Conclusions are generally aligned

with given results, but when

multiple methods are used, does

not recognize the dependencies

among methods that appear to

reinforce, but actually replicate,

results. Conclusions are neither

fully contextualized with the rest of

a document (write-up, paper, etc)

or study/ experiments/paradigm

(contextualization for coherence),

nor with the literature (critical
contextualization).

With guidance, can draw conclusions in

own work that are coherent with the

research hypothesis/hypotheses &

across the entire manuscript/writeup

(as appropriate). Learning to critically

contextualize results; is able to draw the

most obvious conclusions, but struggles

to see patterns, or draw more subtle

conclusions. Learning that

“full”contextualization of conclusions

requires consideration of limitations

deriving from methods & their

applications, & their effects on results &

conclusions. Learning to recognize how

independence of multiple methods

applied to similar data/problems

supports reproducible conclusions.

Can extract scientific meaning

from data analysis & knows the

difference between statistical &

biological significance. In their own

& others’ work, seeks competing,

plausible alternative conclusions.

Can judge the scientific importance

of their results, & draws

conclusions accordingly. Can draw

conclusions & contextualize results

with respect to an entire

manuscript/writeup in a given

project or study, or with literature

(as appropriate). Can detect when

conclusions are not aligned with

other aspects of the work (e.g.,

introduction/ background,

methods &/or results, or other

experiments in the project). Gives

careful consideration to limitations

deriving from the method & its

application in a specific study. Sees

patterns, & perceives more subtle

conclusions than earlier-stage

scientists, & collaborates to fully

articulate & motivate them. Writes

the Discussion & Conclusions

sections, including limitations, of

own articles, with collaboration.

Expertly contextualizes results &

conclusions with prior literature,

across experiments or studies, &

within any given document (e.g.,

manuscript, writeup, etc.). Strives

to fully contextualize conclusions

in own work, & also requires this

in others’ work. Draws &

contextualizes more subtle

conclusions than at earlier stages.

Can conceptualize new

experiments based on the lack of

robust &/or defensible

conclusions in others’ work.

Carefully considers consistency of

conclusions with the other parts of

own or others’ work.

Communication Does not communicate scientific

information clearly or

consistently; is unaware of

community standards for

scientific communication.

Generally relies on lay summaries

to support own communication;

does not recognize that using

original literature strengthens

scientific communication. Does

not differentiate appropriate &

inappropriate scientific

communication, nor understand

the ethical implications of each.

Learning both to recognize the

value of clear communication, &

about the role of communication in

sharing & publishing research, data,

code, data management, tools &

resources. Developing an awareness

of community standards for

scientific communication, & that

these include documenting code,

annotating data, & adding

appropriate metadata. Does not

adapt communication to fit the

receiver. Learning to differentiate

appropriate & inappropriate

scientific communication, but does

not yet understand that

transparency in all communication

represents ethical practice, even
when the desired results have not

been achieved.

Understands the roles of sharing &

publishing research, data, code, data

management, tools & resources in

scientific communication. Seeks

guidance so that own communication is

coherent, accurate, & consistent with

community standards (e.g., following

FAIR‡ principles; ensuring socially

responsible science). Learning to

document code, annotate data, & add

appropriate metadata–& the

importance of these (as appropriate

given their research/context) for

sharing & integration. Learning the

importance of adapting communication

to fit the receiver, seeking opportunities

to practice this. Learning that

transparency in all communication

represents ethical practice, even when

the desired results have not been

achieved.

Consistently & proficiently uses

technical language to correctly

describe what was done, why, &

how. Sufficient consideration given

to limitations, with explicit

contextualization of results

consistently included in the

communication of results & their

interpretation. Can adapt

communication to fit the receiver;

recognizes that sometimes

communication must be consistent

with community standards beyond

their own discipline. Appropriately

documents/annotates all data, code,

tools, & resources for sharing,

integration, & re-use. Understands

that transparency in all

communication represents ethical

practice.

Is an expert communicator &

reviewer of scientific

communication; adheres to &

promotes disciplinary standards

for communication.

Communicates in a manner that is

consistent with standards across

communities beyond their own

discipline, as appropriate. Ensures

communication is appropriate for

a target audience, expertly

adapting to fit the receiver(s).

Communication is transparent, &

appropriate to support

reproducibility–& thereby, ethical

practice—in every context.

�Framework of the workflow supports decisions; workflow is not necessarily linear and can be multidirectional and iterative; any point can be re-iterated, or new starts

from within the workflow can be made. A pipeline is unidirectional, not iterative within its structure (it is ballistic: once initiated, it runs), and has no decision points.

Pipelines can exist within workflows, but workflows do not exist in pipelines.
‡ FAIR: Findable, Accessible, Interoperable, and Reusable.

https://doi.org/10.1371/journal.pone.0225256.t001
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Table 2. Alignment of KSAs with competencies for bioinformatics and biomedical informatics.

KSAs

COMPETENCIES:

where Bloom’s cognitive

taxonomy is clearly

invoked, these are

identified in italics

Prerequisite

Knowledge-

bio

Prerequisite

Knowledge

-comp

Interdisc

Integr

Define a

problem

Hypothesis

generation

Experi-

mental

Design

Identify

data

Identify

and use

methods

Interpret

results/

output

Draw and

context-

ualize

con-

clusions

Commun-

icate

Bioinformatics (Welch et al., 2014)

1. Ability to apply
knowledge of computing,

biology, statistics &

mathematics appropriate

to the discipline

x x x x

2. Knowledge of general

biology, in-depth

knowledge of at least one

area of biology, &

understanding of

biological data-

generation technologies

x

3. Ability to analyze a

problem, & identify &
define the computing

requirements appropriate

to its solution

‡ x ‡ ‡ ‡

4. Ability to apply
mathematical

foundations, algorithmic

principles & computer

science theory to the

modeling & design of

computer-based systems

in a way that

demonstrates

comprehension of the

trade-offs involved in

design choices

x x x x

5. Ability to design,

implement & evaluate a

computer-based system,

process, component or

program to meet desired

needs in scientific

environments

x x x x

6. Ability to apply design

& development principles

in the construction of

software systems of

varying complexity

x x

7. Ability to use current

techniques, skills & tools

necessary for

computational biology

practice

x x x x x x x x x x x

8. Ability to function

effectively on teams to

accomplish a common

goal

x x

(Continued)
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Table 2. (Continued)

KSAs

COMPETENCIES:

where Bloom’s cognitive

taxonomy is clearly

invoked, these are

identified in italics

Prerequisite

Knowledge-

bio

Prerequisite

Knowledge

-comp

Interdisc

Integr

Define a

problem

Hypothesis

generation

Experi-

mental

Design

Identify

data

Identify

and use

methods

Interpret

results/

output

Draw and

context-

ualize

con-

clusions

Commun-

icate

9. Understanding of

professional, ethical,

legal, security & social

issues & responsibilities
��

� §

10. Ability to

communicate effectively

with a range of audiences

x x

11. Ability to analyze the

local & global impact of

bioinformatics &

genomics on individuals,

organizations & society

x§ x§ x§ x§ x§ x§ x§ x§ x§ x§ x

12. Recognition of the

need for, & ability to

engage in, CPD

�

13. Detailed

understanding of the

scientific discovery

process & of the role of

bioinformatics in it

x x x x x x x x x x x

14. Ability to apply
statistical research

methods in the contexts

of molecular biology,

genomics, medical &

population genetics

research

1

Core competencies for doctoral health/medical informatics (Kulikowski et al. 2012; emphasis added)

Fundamental scientific skills

Acquire professional

perspective: understand
& analyze the history &

values of the discipline, &

its relationship to other

fields, while

demonstrating an ability

to read, interpret &
critique the core literature

x x x x x x

Analyze problems:

analyze, understand,

abstract & model a

specific biomedical

problem in terms of data,

information & knowledge

components

x x x x x x

Produce solutions: use

the problem analysis to

identify & understand the

space of possible

solutions & generate
designs that capture

essential aspects of

solutions & their

components

x x x x

(Continued)
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Table 2. (Continued)

KSAs

COMPETENCIES:

where Bloom’s cognitive

taxonomy is clearly

invoked, these are

identified in italics

Prerequisite

Knowledge-

bio

Prerequisite

Knowledge

-comp

Interdisc

Integr

Define a

problem

Hypothesis

generation

Experi-

mental

Design

Identify

data

Identify

and use

methods

Interpret

results/

output

Draw and

context-

ualize

con-

clusions

Commun-

icate

Articulate the rationale:

defend the specific

solution & its advantage

over competing options

x x x x x x

Implement, evaluate &
refine: carry out the

solution (including

obtaining necessary

resources & managing

projects), evaluate it, &

iteratively improve it

x x x x x x x x x x

Innovate: create new

theories, typologies,

frameworks, representa-

tions, methods &

processes to address

biomedical informatics

problems

x x x x x x x x x x x

Work collaboratively:

team effectively with

partners within & across

disciplines

x x

Educate, disseminate &

discuss: communicate

effectively to students &

other audiences in

multiple disciplines in

persuasive written & oral

form

x x

Scope and breadth of the discipline

Prerequisite knowledge &

skills: students must be
familiar with biological,

biomedical & population-

health concepts &

problems, including

common research

problems

x

Fundamental knowledge:

understand the
fundamentals of the field

in the context of the

effective use of

biomedical data,

information & knowledge

x x x

– Biology: molecule,

sequence, protein,

structure, function, cell,

tissue, organ, organism,

phenotype, populations.

x x x

(Continued)
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Table 2. (Continued)

KSAs

COMPETENCIES:

where Bloom’s cognitive

taxonomy is clearly

invoked, these are

identified in italics

Prerequisite

Knowledge-

bio

Prerequisite

Knowledge

-comp

Interdisc

Integr

Define a

problem

Hypothesis

generation

Experi-

mental

Design

Identify

data

Identify

and use

methods

Interpret

results/

output

Draw and

context-

ualize

con-

clusions

Commun-

icate

– Translational and

clinical research:

genotype, phenotype,

pathways, mechanisms,

sample, protocol, study,

subject, evidence,

evaluation.

x x x x x

– Healthcare: screening,

diagnosis (diagnoses, test

results), prognosis,

treatment (medications,

procedures), prevention,

billing, healthcare teams,

quality assurance, safety,

error reduction,

comparative

effectiveness, medical

records, personalized

medicine, health

economics, information

security and privacy.

x x x x x x

– Personal health: patient,

consumer, provider,

families, health

promotion, personal

health records.

x x x

– Population health:

detection, prevention,

screening, education,

stratification, spatio-

temporal patterns,

ecologies of health,

wellness.

x x x

Procedural knowledge and skills

For substantive problems

related to scientific

inquiry, problem solving

& decision-making,

apply, analyze, evaluate &
create solutions based on

biomedical informatics

approaches

x x x x x x x x x x

Understand & analyze
complex biomedical

informatics problems in

terms of data,

information & knowledge

x x x x x x

Apply, analyze, evaluate
& create biomedical

informatics methods that

solve substantive

problems within & across

biomedical domains

x x x x x x x x x x x

(Continued)
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Table 2. (Continued)

KSAs

COMPETENCIES:

where Bloom’s cognitive

taxonomy is clearly

invoked, these are

identified in italics

Prerequisite

Knowledge-

bio

Prerequisite

Knowledge

-comp

Interdisc

Integr

Define a

problem

Hypothesis

generation

Experi-

mental

Design

Identify

data

Identify

and use

methods

Interpret

results/

output

Draw and

context-

ualize

con-

clusions

Commun-

icate

Relate such knowledge &

methods to other

problems within & across

levels of the biomedical

spectrum

x x x x x x x x

Theory and methodology

Theories: understand &
apply syntactic, semantic,

cognitive, social &

pragmatic theories as

they are used in

biomedical informatics

x x

Typology: understand &
analyze the types &

nature of biomedical

data, information &

knowledge

x x x x x

Frameworks: understand
& apply the common

conceptual frameworks

used in biomedical

informatics (e.g.,

including belief networks,

programming approach,

representational scheme

or architectural design)

x x

Knowledge

representation:

understand & apply
representations & models

that are applicable to

biomedical data,

information & knowledge

(knowledge

representation is a

method of encoding

concepts & relationships

within a domain using

definitions that are

computable

x x x x

Methods & processes:

understand & apply
existing methods &

processes used in

different contexts of

biomedical informatics

x

Technological approach

Prerequisite knowledge &

skills: assumes familiarity
with data structures,

algorithms,

programming,

mathematics, statistics

x

(Continued)
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Table 2. (Continued)

KSAs

COMPETENCIES:

where Bloom’s cognitive

taxonomy is clearly

invoked, these are

identified in italics

Prerequisite

Knowledge-

bio

Prerequisite

Knowledge

-comp

Interdisc

Integr

Define a

problem

Hypothesis

generation

Experi-

mental

Design

Identify

data

Identify

and use

methods

Interpret

results/

output

Draw and

context-

ualize

con-

clusions

Commun-

icate

Fundamental knowledge:

understand & apply
technological approaches

in the context of

biomedical problems: For

example:

x x x x x x x

– Imaging and signal

analysis.

x x x x x x x

– Information

documentation, storage,

and retrieval.

x x x x x x x

– Machine learning,

including data mining.

x x x x x x x x x

– Networking, security,

databases.

x x x x x x x x

– Natural language

processing, semantic

technologies.

x x x x x x x x

– Representation of

logical and probabilistic

knowledge and

reasoning.

x x x x x x x x

– Simulation and

modeling.

x x x x x x x x x x

– Software engineering. x x x x x x x x x x

Procedural knowledge &

skills: for substantive

problems, understand &
apply methods of inquiry

& criteria for selecting &

utilizing algorithms,

techniques & methods

x x x x x x x

Describe what is known

about the application of

the fundamentals within

biomedicine

x x x

Identify the relevant
existing approaches for a
specific biomedical
problem

x x x x

Apply, adapt & validate
an existing approach to a
specific biomedical
problem

x x x x x x x

Human and social context �§

Human and social

context: draws upon the

social and behavioral

sciences to inform the

design and evaluation of

technical solutions,

policies, and the

evolution of economic,

ethical, social,

educational, and

organizational systems.

x� x�

(Continued)

Mastery Rubric for Bioinformatics for education and training

PLOS ONE | https://doi.org/10.1371/journal.pone.0225256 November 26, 2019 18 / 29

https://doi.org/10.1371/journal.pone.0225256


Table 2. (Continued)

KSAs

COMPETENCIES:

where Bloom’s cognitive

taxonomy is clearly

invoked, these are

identified in italics

Prerequisite

Knowledge-

bio

Prerequisite

Knowledge

-comp

Interdisc

Integr

Define a

problem

Hypothesis

generation

Experi-

mental

Design

Identify

data

Identify

and use

methods

Interpret

results/

output

Draw and

context-

ualize

con-

clusions

Commun-

icate

Prerequisite knowledge

and skills: Familiarity

with fundamentals of

social, organizational,

cognitive, and decision

sciences.

x

Fundamental

knowledge: Understand

and apply knowledge in

the following areas:

– Social, behavioral,

communication, and

organizational sciences:

for example, computer

supported cooperative

work, social networks,

change management,

human factors

engineering, cognitive

task analysis, project

management.

x x

– Ethical, legal, social

issues: for example,

human subjects, HIPAA,

informed consent,

secondary use of data,

confidentiality, privacy.

x x

– Economic, social and

organizational context of

biomedical research,

pharmaceutical and

biotechnology industries,

medical instrumentation,

healthcare, and public

health.

x� x�

Procedural knowledge and skills (human and social context)

– Apply, analyze,

evaluate, and create
systems approaches to the

solution of substantive

problems in biomedical

informatics.

x x x x x x x x x x x

– Analyze complex

biomedical informatics

problems in terms of

people, organizations,

and socio-technical

systems.

x x

– Understand the

challenges and

limitations of

technological solutions.

x x x x

(Continued)
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level of complexity described in the competency as the minimum required to successfully

exhibit that competency.

The essential features of Table 2 for purposes of validating the MR-Bi are:

1. almost every competency is supported by at least one KSA; and

2. each KSA supports the achievement of at least one competency.

Table 2. (Continued)

KSAs

COMPETENCIES:

where Bloom’s cognitive

taxonomy is clearly

invoked, these are

identified in italics

Prerequisite

Knowledge-

bio

Prerequisite

Knowledge

-comp

Interdisc

Integr

Define a

problem

Hypothesis

generation

Experi-

mental

Design

Identify

data

Identify

and use

methods

Interpret

results/

output

Draw and

context-

ualize

con-

clusions

Commun-

icate

– Design and implement
systems approaches to

biomedical informatics

applications and

interventions.

x x x x x

– Evaluate the impact of

biomedical informatics

applications and

interventions in terms of

people, organizations,

and socio- technical

systems.

x x x x

– Relate solutions to

other problems within

and across levels of the

biomedical spectrum.

x x x x x x x

x = the indicated KSA must be applied at some level (of Bloom’s taxonomy) in order to accomplish the competency.
‡ It is unclear whether “computing requirements” in Bioinformatics competency # 3 refers to simple computer hardware and software, or also includes methods,

techniques and other–more challenging to identify & utilize–aspects of the requirements “appropriate to its solution”. If this competency refers to an individual’s

minimal assessment of “appropriate”, and if the problem for which computing is required has already been defined, then just one KSA (prerequisite knowledge,

computing) is required. If the competency refers to an individual’s evaluation of competing solutions, particularly if the problem for which the computing is required

has not been defined a priori, then multiple KSAs are required. Neither the 2014 nor 2018 statements of the Bioinformaticscompetencies supports a distinction between

these options.
§ Recognizing a need for a separate KSA in the MR-Bi that captures “ethical practice” was partly driven by Bioinformatics competency #9, but competency #9 is

insufficiently specific to fully align KSAs. The possession of an understanding of ethical obligations, for example, do not translate to ethical practice, so even that KSA

cannot be aligned with this competency. Similarly, Bioinformatics competency #11 suggests that "analysis" is sufficient to demonstrate the competency but this is

incorrect. The ability to carry out this analysis also does not translate to ethical practice.

� no actionable verbs relating to the learner are included in the articulation of this competency or competency domain, so no KSAs could be justifiably aligned with this

competency. More specifically, because there is no indication of what a learner needs to do to demonstrate this competency/competency domain (Bioinformatics

competencies #9 & #12; medical informatics competency "human and social context" competencies), it cannot be taught or assessed in any systematic way. While the

competencies are important, they are insufficiently specific to confidently align with any particular KSAs.

�� This competency is insufficiently specific for determination of whether any KSAs are needed to achieve it. Because there is no indication of what a learner needs to do

to demonstrate this competency/competency domain, it cannot be taught or assessed in any systematic way.
1 This competency could be demonstrated at either the “apply” (low Bloom’s level/few KSAs required), or at a considerably higher level. The level required to select,

use, and interpret “statistical research methods”, which as stated, is what doctoral level statisticians are trained to deploy (high Bloom’s level/all KSAs required). The

low-Bloom’s level interpretation would not be contextualized in any of the specific research domains �by the performer�, while the higher level performer might actually

specialize in just one of the contexts (e.g., biology or computation). Therefore, this competency is insufficiently specific for determination of which KSAs are needed to

achieve it.

https://doi.org/10.1371/journal.pone.0225256.t002
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Table 2 suggests that the KSAs can support both sets of competencies, providing convergent

as well as content validity. However, the table shows that several of the competencies were

insufficiently articulated for alignment with any KSA. Two items (labeled with a � in Table 2)

could not be aligned because they lacked actionable verbs: Recognition of the need for and an
ability to engage in continuing professional development [19] and Human and social context
[17]. Without actionable verbs, competencies cannot be taught or assessed in any systematic

way. Three other items (labeled �� in Table 2) had potentially actionable verbs, but were insuf-

ficiently specified to align with any KSA: An understanding of professional, ethical, legal, secu-
rity and social issues and responsibilities [19]; Evaluate the impact of biomedical informatics
applications and interventions in terms of people, organizations and socio-technical systems; and

Analyze complex biomedical informatics problems in terms of people, organizations and socio-
technical systems [17]. In these cases, what constitutes the sufficient demonstration of the com-

petencies is not discernable. By contrast, the PLDs in the MR-Bi contain actionable verbs

describing the learner performing each KSA across stages, providing guidance to the learner

about evidence that can demonstrate their achievements, and to the instructor about how to

elicit such evidence.

Alignment of the MR-Bi with the principles of andragogy

The second aspect of validation was to consider alignment of the MR-Bi with principles of

andragogy [43]. This alignment is explored in Table 3. The results in Table 3 are derived from

the design features of any Mastery Rubric but are also based on curriculum development, eval-

uation, or revision experiences in other Mastery Rubric development projects (i.e., [30]; [48];

[57], respectively).

The Mastery Rubric construct itself was created to facilitate the development of higher edu-

cation curricula; the MR-Bi is thereby similarly aligned with these core principles.

Discussion

Rubrics are familiar tools–often, scoring tables–to help instructors to evaluate the quality of,

and hence to grade, individual pieces of student work in a consistent way. They typically con-

tain quality descriptors for various evaluative criteria at specific levels of achievement [35].

When shared, so that instructors can use them for marking, and students can use them to

plan/monitor/evaluate their own work, they have a positive impact on learning outcomes (e.g.,

[58]; [59]; [60]).

The Mastery Rubric builds on this concept, but with a focus on entire curricula or training

programs rather than on discrete pieces of work. As such, a Mastery Rubric provides an orga-
nising framework in which KSAs are clearly articulated, and their performance levels described

and staged in such a way that they can be achieved progressively. Specifically, the framework

has three components: i) a set of domain-relevant, and transferable, KSAs; ii) a defined set of

developmental stages denoting progression along a path of increasing cognitive complexity,

towards independence (if that is desired); and iii) descriptions of the range of expected perfor-

mance levels of those KSAs. The interplay between these ‘dimensions’ affords the Mastery

Rubric significant flexibility. In particular, it recognizes that individuals may be at different

levels in different KSAs, and hence may have different speeds of traversal through them—thus,

importantly, the measure of progression is not time, as in traditional educational systems [61]

but rather, demonstrable acquisition of specific KSAs. This allows individuals (students, tech-

nicians or PIs) who wish to acquire bioinformatics skills to locate themselves within the matrix

regardless of their current skill level or disciplinary background: for example, a person may be

an Early Journeyman (J1) in biology (i.e., has earned a doctorate), yet be a Novice in
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bioinformatics; or a person may be an Apprentice-level computer scientist or ‘engineer’ yet a

bioinformatics Beginner. For all learners, the MR-Bi not only identifies where they are, but it

also makes the route from their current level of performance on any given KSA to a higher

level explicit, without the need to articulate bespoke personal traits for individuals from every

conceivable scientific background.

A strength of the MR-Bi is that it was developed and refined specifically to support deci-

sions that are made by instructors and learners, and to promote and optimize educational out-

comes. In this way, the MR-Bi can bring validity—a formal construct relating to the decisions

that are supported by any test, score, or performance [62]; [63]—to bioinformatics curriculum

or training program development. Although it does not focus on subject-specific content, the

MR-Bi should lead to curricula that produce similarly-performing graduates (or course com-

pleters) across institutions; that is, a curriculum or training program that uses the MR-Bi can

Table 3. How the principles of andragogy would be met with a Mastery Rubric like the MR-Bi. Table adapted

from [57], Table 4, with permission.

Principle of andragogy Met with a Mastery Rubric?

1 Adults are self-directed and internally motivated, and
so can—and need to—take responsibility for choices
that further learning objectives.

The Mastery Rubric is shared. The KSAs direct the

learner to relevant learning targets, while the PLDs show

the levels at which their achievement should be

demonstrated. The developmental trajectory enables

learners to make strategic decisions throughout a

curriculum, within academic courses, or in training

programs, facilitating their ongoing growth.

2 Adults bring prior knowledge and experience to
learning–and seek to connect new information with
prior learning.

The Mastery Rubric allows learners to recognize and

demonstrate where they are (how they perform) in their

development, and to motivate their acquisition of, and

organize, new knowledge. This enables them to leverage

their prior knowledge and experience, supporting self-

direction along the articulated trajectory.

3 Adults are goal oriented, and require explicit,
recognizable, and achievable learning goals.

The goals of learning are expressed in all three

dimensions (KSAs, developmental stages, PLDs) of a

Mastery Rubric. PLDs present concrete and recognizable

targets that learners can see how to achieve. Courses and

series of courses can be selected by learners (and aligned

with PLDs by instructors) to ensure accomplishment of

curriculum or course goals.

4 Adult learners need to know why they are learning
what is presented.

The KSAs make explicit what learners need to learn to

support both current and future practice. The trajectory

offers justification for ongoing learning, while the PLDs

describe readiness for the next learning goal. Together,

these provide learners with a rationale for commitment

and engagement throughout a curriculum.

5 Adult learners benefit from practical, authentic
assessments and practice experience.

The Mastery Rubric supports instruction and

curriculum design that emphasize authenticity and

transferability of new knowledge (e.g., to new contexts)

through: 1) KSAs that are relevant; 2) trajectories that

support evolution through recognizable and practical

stages; and 3) PLDs that represent the development of

observable behaviors. Together, these three dimensions

facilitate learners’ selection of curricula, programs, or

courses that support both current and future practice in

the domain.

6 Adults are motivated to learn but need to be treated as
partners in the learning enterprise, not as vessels to be
filled.

The Mastery Rubric is intended to function as a contract
between instructor and learner. Its three dimensions are

intended to provide sufficient context to define and

justify the responsibilities of learners and instructors as

full partners in the learning enterprise.

https://doi.org/10.1371/journal.pone.0225256.t003
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go beyond a transcript of what courses a learner completed, to represent what a learner can do

and the level at which they perform. This is consistent with the European Qualifications

Framework (see https://ec.europa.eu/ploteus/content/how-does-eqf-work), which defines

eight hierarchical levels describing what learners know, understand, and are able to do, aiming

to make it easier to compare national qualifications and render learning transferable (https://

ec.europa.eu/ploteus/content/descriptors-page). The European Qualifications Framework

enables mapping of the disparate characterizations of high school graduates, university gradu-

ates, and doctorate awardees into a single, coherent set of general descriptors. The MR-Bi

makes this type of mapping specifically developmental.

The orientation of the MR-Bi towards a particular definition of bioinformatics education

[55] and, by extension, bioinformatics practice, should be recognized. The context in which

MR-Bi users principally focus is assumed to be the life sciences; more specifically, that their

ultimate learning goals are oriented towards solving biological problems using computational

technology/techniques. Moreover, the developmental trajectories outlined by the PLDs, and

the choice of focal KSAs, support bioinformatics education and training that seek to move

individuals towards independence in their practice of–or contributions to—science. Accordingly,

the KSA-extraction process was heavily influenced by models of the scientific method and sci-

entific reasoning (following [44] and [45]). It is therefore important to emphasize that using

the methods described here, other investigators might generate different KSAs if neither inde-
pendence nor the scientific method are essential to their objectives.

Further, although we considered competencies for both bioinformatics and medical/health

informatics, the PLDs for the MR-Bi were devised by bioinformaticians–for bioinformaticians.

If the goal were to derive a Mastery Rubric specific for medical/health informatics, and scien-

tific independence was similarly important, then the same process of PLD development

described here could be used; the resulting Mastery Rubric would have virtually the same

KSAs, but with Prerequisite knowledge—biology, replaced by Prerequisite knowledge–medical
informatics/health informatics/health systems (as appropriate). The PLDs in that Mastery

Rubric would then be tailored to describe achievement and development of the health infor-

matics practitioner.

It is also worth noting that the high-level stage descriptions (top of Table 1), which

informed the PLD-drafting process, broadly track the typical development of an undergradu-

ate who progresses to graduate school. It could be argued that these definitions are too rigid.

After all, individuals differ in their motivation, and in their capacities and attitudes towards

learning and growth; thus, in the ‘real world’, an undergraduate class may include students

with behaviours and attitudes characteristic of Novice and Beginner levels of cognitive com-

plexity (or, exceptionally, Apprentice level). Hence, if challenged with advanced training meth-

ods (e.g., introducing novel research projects into undergraduate biology curricula), some

students in the class will be receptive to being pushed beyond their intellectual ‘comfort zones’,

while many will resist, being more comfortable with lectures and “canned” exercises with

known results (e.g., [64]). Nevertheless, the broad descriptions in Table 1 were ultimately

those that resonated with our own practical experiences of bioinformatics education and train-

ing at all stages, and for pragmatic purposes the mapping was therefore necessarily general,

like any true rubric.

It should be stressed that creating any kind of ‘framework’ to support the development of

competencies involves numerous stakeholders and is hugely time-consuming, not least

because marrying multiple stakeholder views is hard. For example, the current version of the

European e-Competence Framework for Information and Computing Technology skills

(http://www.ecompetences.eu) has taken more than 8 years to develop; similarly, the bioinfor-

matics competencies have been evolving over at least the last 6 years–inevitably, few aspects
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escape dissent when stakeholders from very different backgrounds, with disparate student

populations and different educational goals attempt to achieve consensus [65]. Likewise, for-

mulation of the current version of the MR-Bi has taken more than 2 years, and further refine-

ments are likely to be required with future additional stakeholder input.

Amongst the many challenges for initiatives developing competency frameworks is the lack

of a standard vocabulary. In consequence, while the MR-Bi describes knowledge, skills and

abilities, the European e-Competence Framework refers to knowledge, skills and attitudes, and

the BioExcel competency framework to knowledge, skills and behaviours [66]. We use abilities
because they are observable and connote more purposeful engagement than do attitudes or

behaviours, and this is the terminology used in discussions of validity in education/educational

assessment (e.g., see [53]).

Mastery Rubrics have strengths that can be leveraged by institutions, instructors, and scien-

tists. They support curriculum development in any education program, making concrete and

explicit the roles–and contributions–of learner and instructor. Since it was developed as a tool

for curriculum development, it may be difficult to conceptualize how the MR-Bi can be used to

support the development of short training programs or courses. Nevertheless, even in the

absence of a formal curriculum, for stand-alone and/or linked courses, the Mastery Rubric can

help i) instructors to focus on prerequisite knowledge and learning objectives that are time-

delimited; and, ii) learners to identify targeted training opportunities and thence to track their

personal/professional development with the PLDs and KSAs.

For example, a possible application of the MR-Bi could be the classification (or develop-

ment) of teaching/training materials and courses according to which KSAs they support,

where learners should start (at which stage of each KSA) in order to benefit optimally from

the training, and to which stage a given training opportunity proposes to bring them.

Another important application of this tool could be the revision of existing courses and mate-

rials so that they explicitly support learning/demonstration of targeted KSAs at a given level.

The integration of MR-Bi features into teaching materials would both provide guidance to

the self-directed learner, and support the standardization of teaching and learning goals

across instructional materials, and across formal and informal bioinformatics training pro-

grams worldwide. The MR-Bi is therefore a timely contribution to current global conversa-

tions and initiatives (including ELIXIR’s Training e-Support System [67], [68], which is

championing the uptake of Bioschemas.org specifications for sharing training materials [69];

the training portal of the Global Organization for Learning, Education, and Training [70];

the Educational Resource Discovery Index [71]; and The Carpentries [72]) about standardiz-

ing and sharing training resources, and best practices for personalizing and customizing

learning experiences.

Conclusions

In recent years, concern about the growing computational skills gap amongst life scientists has

prompted the articulation of core bioinformatics competencies, aiming to facilitate develop-

ment of curricula able to deliver appropriate skills to learners. However, implementing compe-

tencies in curricula has proved problematic: this is partly because there are still disparate views

on what it means to be a trained bioinformatician, and partly also because competencies are

actually complex, multi-dimensional educational end-points, making it difficult to achieve a

common understanding of how to deliver requisite training in practice (e.g., [65]; [56]). These

problems have led some researchers to suggest refinements to bioinformatics competencies,

including the identification of phases of competency, and the provision of guidance on the evi-

dence required to assess whether a given competency has been acquired [20]; others have

Mastery Rubric for Bioinformatics for education and training

PLOS ONE | https://doi.org/10.1371/journal.pone.0225256 November 26, 2019 24 / 29

https://doi.org/10.1371/journal.pone.0225256


already revised their competency-based framework to include learning trajectories, charting

the progression of individuals’ abilities through defined stages via milestones [28].

Cognisant of these issues, we have devised a Mastery Rubric—a formal framework that

supports the development of specific KSAs, and provides a structured trajectory for achieving

bioinformatics competencies. Importantly, it prioritizes the development of independent sci-

entific reasoning and practice; it can therefore contribute to the cultivation of a next genera-

tion of bioinformaticians who are able to design rigorous, reproducible research, and critically

analyze their and others’ work. The framework is inherently robust to new research or technol-

ogy, because it is broadly content agnostic. It can be used to strengthen teaching and learning,

and to guide both curriculum building and evaluation, and self-directed learning; any scientist,

irrespective of prior experience or disciplinary background, can therefore use it to document

their accomplishments and plan further professional development. Moreover, the MR-Bi can

be used to support short training courses by helping instructors to focus on prerequisite

knowledge and on learning objectives that are time-delimited. Specifics on how to accomplish

these are the topics of our ongoing work.
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