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ABSTRACT: One of the areas in which bioorthogonal
chemistrychemistry performed inside a cell or organism
has become of pivotal importance is in the study of host−
pathogen interactions. The incorporation of bioorthogonal
groups into the cell wall or proteome of intracellular pathogens
has allowed study within the endolysosomal system. However,
for the approach to be successful, the incorporated
bioorthogonal groups must be stable to chemical conditions
found within these organelles, which are some of the harshest
found in metazoans: the groups are exposed to oxidizing
species, acidic conditions, and reactive thiols. Here we present an assay that allows the assessment of the stability of
bioorthogonal groups within host cell phagosomes. Using a flow cytometry-based assay, we have quantified the relative label
stability inside dendritic cell phagosomes of strained and unstrained alkynes. We show that groups that were shown to be stable
in other systems were degraded by as much as 79% after maturation of the phagosome.

Bioorthogonal chemistry is the execution of a selective
chemical reaction within the complex composition of a

biological system.1 It is often used for ligation purposes,
whereby a small abiotic chemical functionality is first
introduced into a biomolecule (or class of biomolecules)
through metabolic engineering.2 This chemical group is
subsequently modified with a large detectable/retrievable
group to realize its detection. Bioorthogonal ligation
approaches have been used extensively, for example, to study
the in cellula3,4 and in vivo5 dynamics of glycans, lipids,6 nucleic
acids,7,8 prokaryotic9 and eukaryotic proteomes,10 and
peptidoglycan.11 The latter was used to label intracellular
pathogens inside a phagocytic host cell to visualize this
interaction.12 The fact that bioorthogonal groups can be
incorporated within amino acid side chains has even allowed us
to visualize these pathogens as they are being degraded by the
lysosomal hydrolases in macrophages and dendritic cells
(DCs).13−16 However, to provide unbiased results, their
stability to intracellular conditions is essential to preventing
label loss during the biological time course.
The antigen presenting cells (APCs) used in the above

studies expose their phagosomal content to some of harshest
chemistries found in the body (Figure 1A).17,18 When an APC
phagocytoses a bacterium, the activity of the NADPH oxidase-2
complex (NOX2) will first result in the intraphagosomal
generation of superoxide radicals (O2

−·) to concentrations of
25−100 μM19 (in the absence of myelin peroxidase). This will
rapidly be converted to hydrogen peroxide (<30 μM)19 but also
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Figure 1. Outline of the stability assays and FACS analysis. (A)
Alkyne-modified fluorescent latex beads were incubated either in vitro
or fed to APCs and the reduction in the number of reactive alkynes
assessed either of the naked beads or of the cells containing the beads.
X depicts alkynes rendered unreactive. (B) Degradation in cells was
quantified by counting the number of cells in which all bioorthogonal
groups were degraded. The reason for this is that it allows objective
gating for positive and negative cells. Bead fluorescence was used as an
internal standard to negate differences in bead uptake between cells.
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NO radicals (<15 μM)20 and hydroxyl radicals (·OH).21

Myeloperoxidase can further convert these species to
hypohalous acids, from the reaction between hydrogen
peroxide and chloride anions.22,23 This oxidative burst in
APCs is followed by acidification of the vesicle down to pH
values as low as 4.8 through the action of the vATPase proton
pump.24 During this process, the phagosome fuses with a
lysosome containing a wide range of highly proteolytic and
reducing enzymes and other hydrolases,25 as well as the
thioreductase GILT.26

This sequence of events renders traditional genetic labeling
approaches of partial use as they will be degraded by the
lysosomal proteases and thus rendered invisible. Even small
molecule fluorophores are precluded due to their sensitivity to
oxidation.27

Copper-catalyzed and strain-promoted Huisgen-type cyclo-
addition reactions (ccHc and spHc respectively) are among the
most widely applied reactions for the study of intraphagosomal
events.11,12,28,29 However, the stability of the reaction partners
in this environment has not previously been characterized, as it
has, for example, been reported that alkynes are sensitive to
thiols and/or radical conditions,30−33 found in these organ-
elles.34 Yet, despite this potential stability risk, most stability
studies of bioorthogonal groups have been performed in either
buffered growth media or cell lysates,33 or the cytosol of intact
target cells.35,36 None of these conditions recapitulate the
chemical harshness of the maturing phagosome.
Here, we describe a method to quantify the bioorthogonal

label stability inside phagosomes. Using an approach based on
fluorescent beads modified with strained and unstrained
alkynes, we have quantified their stability against the
chemistries encountered during phagosomal maturation.
Using this assay, we have found that strained alkynes are
rapidly degraded under these conditions. Terminal alkynes on
the other hand remain stable to the conditions found during
the entire phagosomal maturation pathway. Subsequent in vitro
analysis revealed the reaction between the spHc reagents, and
sodium hypochlorite was a likely culprit for the sequestration of
the bioorthogonal groups.

■ RESULTS AND DISCUSSION
Development of a Bioorthogonal Stability Assay in

Phagocytes. There are three main classes of phagocyte in the
immune system, macrophages, dendritic cells (DCs), and
neutrophils, of which dendritic cells and macrophages are both
important for antigen processing and presentation. They are
also the main reservoir for intracellular pathogenic bacteria and
thus under intense scrutiny to study the host−bacterial
pathogen interactions. DCs and macrophagesas well as
their subsetsdisplay wide heterogeneity regarding their
phagocytic capacity and intracellular chemistries.37,38 In order
to develop an assay that would allow the assessment of the
stability of bioorthogonal groups after phagocytosis independ-
ent of the differences in uptake, we designed an approach where
we would let the phagocytes take up microspheres that not only
were surface modified with the bioorthogonal groups but also
contained intrabead fluorophores not exposed to the
phagosomal environment (Figure 1a), thus showing minimal
bleaching.39 These beads would allow the quantification of
bioorthogonal handles per bead over time inside a phagocyte,
by measuring the change in ratio of fluorescent signal resulting
from a bioorthogonal ligation to that of the internal
fluorophore. This approach would negate not only differences

in uptake between cells but also signal changes resulting from
any potential expulsion of beads through exocytosis37 (Figure
1B). The approach is also facile, as the whole analysis could also
be performed in fixed cells, preventing the need for reisolating
the spheres after the biological time course.
We therefore modified amine-functionalized 0.2 μm

polystyrene FluoSpheres (excitation−emission: 580−605 nm,
5) with various bioorthogonal ligands for the azide−alkyne [3 +
2] cycloaddition (Figure 2) using hydroxysuccinimidyl (1−4)-

mediated amide/carbamate condensation reactions.40 The
acetylenyl and azido groups were chosen for their widespread
application in the copper-catalyzed41 or strain-promoted
Huisgen cycloaddition42 or the Bertozzi-Staudinger ligation.3

The dibenzocyclooctynyl (DBCO, 3) and bicyclo[6.1.0.]-
nonyne (BCN, 4) were chosen due to their rapid reported
reaction rates (2.3 M−1 s−1 and 0.3 M−1 s−1 respectively).43,44

Optimal reaction conditions were found to be shaking the
unmodified beads for 2 days at 20 °C in a 1:5 mixture of
DMSO in PBS, containing a large excess of the succinimidyl
esters 1−4 to yield acetylenyl- (6), azido- (7), dibenzocy-
clooctynyl (8), or bicyclo[6.1.0]nonyne (9)-modified Fluo-
Spheres.
The fluorescence of the beads allowed their assessment by

bead-only flow cytometry: using either a copper-catalyzed or
copper-free [3 + 2] cycloaddition reaction (in the case of 6 and
7) with AF488-azide/alkyne,8,45 followed by flow cytometric
analysis of the FluoSpheres (Figure 3, t = 0) to visualize the
introduced alkynes or fluorescamine to visualize the remaining
unreacted amines (Figure S1).46 Complete disappearance of
the fluorescamine signal was observed for all particles,
indicating complete consumption of the free amine function-
alities in all reactions.

Stability of Bioorthogonal FluoSpheres in Vitro. We
first determined whether this assay could recapitulate previously
reported stability observations of the various above bioorthog-
onal groups (Figure 3, Figures S2−S7).35 All groups were
previously reported to be stable in PBS and cell lysates, but
strained alkynes were reported to react with thiols30,47 and thiyl
radicals.30 Alkynes were shown also to be reactive toward thiyl
radicals in this same study, as well as to hydroxyl radicals.48,49

The bioorthogonal FluoSpheres were first incubated (in
triplicate) in DC2.450 cell lysate (Figure S3) or PBS (Figure
S4) for up to 24 h and subsequently reacted with AF488-azide

Figure 2. Synthesis of bioorthogonal fluorescent polystyrene beads.
Amine-functionalized FluoSpheres 5 (200 nm) were modified with
hydroxysuccinimidyl esters 1−4 to yield bioorthogonal FluoSpheres
6−9.
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(or alkyne in case of azide) using the appropriate bioorthogonal
ligation conditions (Figures 3, S2). The beads were then
injected directly into the flow cytometer for quantification of
both the bead-based and bioorthogonal-based fluorescent
signal. The internal fluorescent dye could readily be used to
discriminate beads from cellular debris of a similar size.

Changes in the median fluorescence of the bioorthogonally
introduced fluorophore allowed quantification of the remaining
signal. None of the bioorthogonal groups showed significant
reduction in lysate (Figures 3B, S2, S3) and PBS (Figures 3C,
S2, S4). An increase in signal over time was even observed,
possibly due to deaggregation of the beads in these media.
When assessing whether the thiol and thiyl reactivity could be
recapitulated, it was indeed found that all groups completely
degraded, as expected in the presence of 250 mM glutathione
(GSH) and the radical initiator 2-hydroxy-4′-(2-hydroxye-
thoxy)-2-methylpropiophenone (25 mM) after 5 or 10 min of
irradiation with UV light (145 μW/cm2) to generate radicals in
situ (Figures S2 and S5). Even without radicals, all
bioorthogonal signals disappeared after incubation with GSH
for 30 min (Figures S2 and S6). Radicals alone resulted in the
exclusive degradation of BCN and DBCO (Figures S2 and S7),
confirming the suitability of this approach at least in vitro.

Stability of Bioorthogonal FluoSpheres in Cells. We
next tested the stability of bioorthogonal FluoSpheres 6−9 in
the endolysosomal environment of phagocytes. We employed
the DC2.4 cell line as our source of DC50 and RAW264.7 cells
as a macrophage cell line,51 as they lie at either end of the
property spectrum of phagocytes: DC2.4s phagocytose in a
controlled manner and use their oxidative burst to attenuate
protease activity, leading to improved antigen presentation,
either by oxidizing cysteine proteases and reducing the
reductive capacity of the phagosome52 or by limiting the
acidification of the phagosome.53,54 RAW264.7s are macro-
phage-like and have a very high phagocytic capacity.55 They are
also capable of producing reactive oxygen species in high
amounts,56 as well as secondary ROS metabolites through the
action of myeloperoxidase (MPO).57

The assay was designed as follows: RAW264.7 cells were first
allowed to take up the bioorthogonal FluoSpheres for 45 min (t
= 0), after which uptake and the initial oxidative burst would be
complete.58 Due to their size, the particles remain within the
confines of the phago-lysosomal system.59 The cells were then
washed and chased for 3 or 24 h to determine to what extent
acidification, thioreductase expression,26 and proteolysis60,61 in
the matured phagosome contributed to bioorthogonal handle
degradation. Cells were then fixed and permeabilized (allowing
free entry of bioorthogonal reagents and neutralization of the
phagosomal compartment), ligated with a complementary
bioorthogonal fluorophore, before quantification of the two
fluorescent signals by flow cytometry (Figure 4, Figures S8 and
S9). Fluorescence in the red channel (FluoSpheres) was plotted
against green fluorescence (AF488 coupled to the bioorthog-
onal groups) after excluding dead cells and debris. Quantifica-
tion gates were set to exclude cells and debris that had not
taken up beads (Figures 1B and 4A, gray area). Bioorthogonal
degradation was quantified (Figure 4A) by looking at the
percentage of cells in which the bioorthogonal fluorescence had
been reduced to the level of unmodified FluoSpheres 5. DC2.4
cells were used as a more dendritic cell-like antigen presenting
cell line.50

The acetylenyl groups on FluoSpheres 6 showed a
remarkable stability in both DC2.4s and RAW264.7 cells
(Figure 4A/B, Figures S8 and S9) with <6% degradation
observed at any time point in either RAW264.7s or DC2.4s.
BCN groups showed the lowest stability, especially to the
intracellular conditions found in RAW264.7 cells: 79% ± 1.8%
of cells had fully degraded all bioorthogonal groups after 24 h.
DBCO groups showed a moderate stability (36% ± 0.8%

Figure 3. Assessment of stability of bioorthogonal groups in cell lysate
or PBS. (A) Plots at t = 0 and t = 24 of an incubation of acetylenyl-
FluoSpheres 5 and BCN-FluoSpheres 9 in cell lysate. The y axis shows
the fluorescence stemming from bioorthogonal ligations; the x axis, the
intrinsic fluorescence of the spheres. (B) Quantification of the median
bioorthogonal fluorescence over time of the modified FluoSpheres 5−
9 in cell lysate and (C) in PBS (see also Figures S2−S4).
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degradation after 24 h). Azide-modified spheres showed very
poor uptake in RAW264.7 cells, preventing the quantification
of their degradation in these cells. In DC2.4 cells, degradation
was, however, minimal (Figure 4A and Figures S8 and S9).
Attempts to further enhance degradation by stimulating the
oxidative burst by adding phorbol-12-myristoyl-13-acetate
(PMA) and yeast-derived zymosan particles to both cell
lines62 did not yield a further increase in degradation (Figures
S10 and S11). In fact, the dual addition of particles and these
stimuli resulted in extensive cell death over the time course of
the experiment, again preventing quantification of the
degradation.

We were intrigued by the degradation shown only for
strained alkynes and not the acetylene and azide groups. We
postulated that this was likely due to radicals present during
phagosomal maturation, as extensive degradation was already
observed at the earliest time point. We hypothesized that the
potential culprits could be superoxide, the superoxide
metabolite H2O2, which can reach on the order of 100 μM if
MPO is inhibited,63 or the species produced by myeloperox-
idase, such as hypochlorous acid. This species is produced by
MPO in the presence of imported chlorine and can reach high
micromolar concentrations in the phagosome.18,64 It is also the
reagent that sparked the development of the addition rules by
Markovnikov in its ability to add across a triple bond.65 One
unresolved issue in this hypothesis is that HOCl production is
well established in neutrophils, but less is known about its
intracellular concentrations in DCs and macrophages, due to
the interplay between MPO and chloride channels in these
cells.64,66−68 Other potential reaction partners could be
hydroxyl radicals produced through Fenton chemistry or thiol
oxidation products produced during the oxidative burst.19

To determine the responsible species, we returned to the in
vitro system to assess whether the reactive species in the
endosome could degrade bioorthogonal handles at the
concentrations found in the phagosome. Compounds 6−9
were incubated with hydrogen peroxide concentrations of 50,
100, or 200 μM at pH 7.4 or 5.0, either in the dark (Figure
S12) or while exposed to UV radiation (145 μW/cm2 for 5 min,
Figure S13). All particles proved stable under these conditions,
suggesting the primary products of oxidative burst are not
responsible for the in-cell degradation. Incubation with the
MPO product sodium hypochlorite at the same concentrations
and again at either pH 7.4 or 5.0 did show the same stability
pattern as observed in both RAW264.7 and DC2.4 cells: 8 and
9 were degraded under these conditions, whereas 5 and 6
remained stable (Figure S14). Surprisingly, the degradation of
BCN and DBCO only occurred at neutral pH and not the
expected acidic pH. A reaction of the bioorthogonal Fluo-
Spheres with GSH (100 μM or 1 mM) in the presence of in-
situ-generated radicals was also performed to assess the
potential role of thiols and thiyl radicals in the degradation of
the beads. Surprisingly, the strained alkynes proved stable to
these conditions, whereas the acetylene and azide were
degraded under acidic incubation with GSH and radicals
(Figure S15). This makes the thiyl-radical species an unlikely
degradation candidate in cellula. The likely mechanism of
degradation is probably a combination of the above factors, or a
set of conditions as yet undescribed.
Using our simple bead-based assay to test the stability of

bioorthogonal handles within the endolysosomal compartments
of dendritic cells, we observed a striking difference in the
disappearance of the reactivity of different bioorthogonal
alkynes in phagocytes. These are obviously not the only class
of bioorthogonal reactions used. Many other bioorthogonal
ligation reactions are available,69 such as the inverse electron-
demand Diels−Alder cycloaddition,70,71 the [4 + 1] photo-
click,72 diazo-based ligation reactions,73 and many more.69

Most of these have been incompletely profiled with regard to
their in cellula stability, and we thus foresee that this simple
assay could also provide insight also into the biostability of
these groups and those yet to be discovered.

Figure 4. Quantification of bioorthogonal group stability. (A)
Percentage of degraded bioorthogonal groups after incubation in
DC2.4 or RAW 264.7 cells, as quantified by illustrated gating strategy
(insert and Figure 1B). Cells that had not taken up beads (gray area)
were excluded from the gated area; cells in which the bioorthogonal
signal had fully degraded to background (gate B) were counted, as
were the cells still positive for bioorthogonal signal (gate A). (B)
Quantification of percentage RAW 264.7 cells containing degraded
beads (B/[A + B]) (see also Figure S9). Indicated values are fractions
of total cell count.
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