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ABSTRACT  During aerobic respiration, cells produce energy through oxidative 

phosphorylation, which includes a specialized group of multi-subunit com-

plexes in the inner mitochondrial membrane known as the electron transport 

chain. However, this canonical pathway is branched into single polypeptide 

alternative routes in some fungi, plants, protists and bacteria. They confer 

metabolic plasticity, allowing cells to adapt to different environmental condi-

tions and stresses. Type II NAD(P)H dehydrogenases (also called alternative 

NAD(P)H dehydrogenases) are non-proton pumping enzymes that bypass 

complex I. Recent evidence points to the involvement of fungal alternative 

NAD(P)H dehydrogenases in the process of programmed cell death, in addi-

tion to their action as overflow systems upon oxidative stress. Consistent with 

this, alternative NAD(P)H dehydrogenases are phylogenetically related to cell 

death - promoting proteins of the apoptosis-inducing factor (AIF)-family. 
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INTRODUCTION 

Mitochondria  (from the Greek mitos and chondros, mean-

ing “thread” and “granule”, respectively) are the dynamos 

of the eukaryotic cell due to their major role in energy pro-

duction under aerobic conditions. They are double mem-

brane organelles: the protein-rich core of the organelle is 

known as the matrix, whereas the inner and outer mito-

chondrial membranes (IMM and OMM, respectively) de-

limitate the intermembrane space. The inner membrane 

forms a series of invaginations designated as cristae. Mito-

chondria take up pyruvate formed during the first stage of 

carbon metabolism (glycolysis) and fatty acids, and convert 

them into energy [1]. The respiratory chain in the IMM is 

composed of the multi-subunit enzymatic complexes 

(complex I, II, III and IV), together with ubiquinone (coen-

zyme Q) and cytochrome c (Fig. 1). These complexes pos-

sess a number of protein-associated prosthetic groups – 

flavin mononucleotide (FMN), flavin adenine dinucleotide 

(FAD), iron-sulfur clusters (FeS), iron and copper ions and 

heme – that transport electrons. Ubiquinone and cyto-

chrome c transfer electrons between complexes. The elec-

trochemical gradient that triggers the rotation of the ATP 

synthase (complex V), which leads to the formation of ATP 

from the phosphorylation of ADP [2, 3], is generated by the 

proton-pumping activity of (i) complex I (NADH:ubiquinone 

oxidoreductase), which uses NADH as a source of elec-

trons, transferring them to ubiquinone via FMN and a se-

ries of iron-sulfur clusters, (ii) complex III (ubiquinol cyto-

chrome c reductase), which transfers electrons from the 

reduced ubiquinone or ubiquinol to cytochrome c, and (iii) 

complex IV (cytochrome c oxidase), which catalyses elec-

tron transfer to molecular oxygen and reduces it to water. 

Complex II (succinate dehydrogenase) transfers electrons 

from succinate to ubiquinone, providing an alternative 

electron entry point into the respiratory chain without 

proton pumping. Apart from the generation of energy, 

mitochondria are involved in several other cellular pro-

cesses, like the biogenesis of iron-sulphur clusters, Ca
2+

 

storage, intermediary metabolism, coenzyme biosynthesis 

and cell death [1]. 

 

BRANCHED RESPIRATORY SYSTEMS IN FUNGI 

In some fungi, plants, protists and bacteria, the electron 

transport chain is branched into single polypeptide alterna-
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tive systems with no proton translocation activity that by-

pass the canonical pathway. The cyanide-resistant alterna-

tive oxidase (AOX) constitutes a well-established bypass of  

complexes III and IV, whereas type II NAD(P)H dehydro-

genases (or alternative NAD(P)H dehydrogenases) bypass 

complex I [4, 5]. Alternative NAD(P)H dehydrogenases are 

particularly important not only because they oxidize 

NAD(P)H and reduce quinones but also because they serve 

as entry points for electrons into the respiratory chain [6, 

7]. Their importance is firmly demonstrated in Saccharo-

myces cerevisiae, where complex I is absent [8] and type II 

NAD(P)H dehydrogenases are the only existing NAD(P)H 

oxidases [9, 10]. These enzymes are flavoproteins resistant 

to classical complex I inhibitors, such as rotenone or pieri-

cidin A, and there is no selective and reliable drug to block 

them so far, although inhibition is feasible with diphe-

nyleneiodonium [11, 12, 13]. Alternative NAD(P)H dehy-

drogenases usually, but not always, contain FAD as the sole 

prosthetic group [4, 5, 7]. Recently, an in silico approach 

identified putative alternative NAD(P)H dehydrogenases in 

a few metazoan organisms, but a functional verification is 

still missing [14]. 

In addition to complex I, our group characterized four 

alternative rotenone-insensitive NAD(P)H dehydrogenases 

in Neurospora crassa (Fig. 1 and Table 1) [6, 7]. They are 

associated with the inner mitochondrial membrane, but 

while one of them, NDI-1 [15], is localized at the matrix 

side of the membrane, the other three, NDE-1 [16, 17], 

NDE-2 [18] and NDE-3 [19], are facing the intermembrane 

space. Interestingly, NDE-3 was also found in the cytosol 

[19]. 

Plants contain even more type II NAD(P)H dehydrogen-

ases than fungi. Seven of these enzymes have been identi-

fied in Arabidopsis thaliana: three external (NDB1, NDB2 

and NDB4), three internal (NDA1, NDA2 and NDC1) and 

one uncharacterized (NDB3) [20-22]. Motifs in the N’-

terminal portion of the proteins appear to determine mito-

chondrial import and their localization to either side of the 

inner membrane [23]. Interestingly, dual targeting to mito-

chondria and chloroplasts or peroxisomes was claimed in 

some cases, although its functional relevance is unknown 

[24]. 

Alternative NAD(P)H dehydrogenases may be organized 

in supramolecular entities, similarly to the respiratory 

chain supercomplexes. There is evidence showing that in 

yeast these enzymes form a complex with a glycerol-3-

phosphate dehydrogenase, two L-lactate-dehydrogenases, 

a few enzymes from the tricarboxylic acid cycle, two prob-

able flavoproteins and an acetaldehyde dehydrogenase 

[25]. In addition, the Yarrowia lipolytica alternative exter-

nal NADH dehydrogenase and complex IV are associated, 

particularly in high energy-requiring, logarithmic-growth 

phase cells [26, 27]. Current literature suggests that the 

formation of supercomplexes, that include NAD(P)H dehy-

drogenases, might be related with electron channelling 

[25, 27]. In N. crassa, there is no evidence for the for-

 
 

 

FIGURE 1: Representation of the mitochondrial respiratory chain, alternative NAD(P)H dehydrogenases, alternative oxidase systems and 

AIF-family proteins of N. crassa. M: mitochondrial matrix; IMM: mitochondrial inner membrane; IMS: intermembrane space; OMM: mito-

chondrial outer membrane; C: cytosol; UQ: ubiquinone; Cyt c: cytochrome c. 
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TABLE 1. Main features of N. crassa alternative NAD(P)H dehydrogenases. 

Protein Topology Substrate specificity Ca
2+

 pH Reference(s) 

NDE-1 External Cytosolic NADPH Ca
2+

-dependent Physiological pH [16, 17] 

NDE-2 External Cytosolic NADH and NADPH - 
NADH throughout the pH 

range and NADPH at acidic pH 
[18] 

NDE-3 External Cytosolic NADH and NADPH - NA [19] 

NDI-1 Internal Matrix NADH Ca
2+

-stimulated? 
a
 NA [15, 18] 

a
 Ca

2+
 stimulates the oxidation of cytosolic NADH in a Δnde-1Δnde-2 double mutant, but not in the triple mutant Δnde-1Δnde-2Δndi-1, 

indicating that NDI-1 may be stimulated by Ca
2+

 [18]. NA: not assessed. 

mation of supercomplexes containing alternative NAD(P)H 

dehydrogenases [28], but observations point to some kind 

of interaction between NDE-2 and complex I [18]. N. crassa 

NDE-1 stands out because of its unique NADPH selectivity 

and regulation by pH and Ca
2+

 [17], the latter feature likely 

related to the presence of a conserved Ca
2+

-binding do-

main [16]. In plants, the external NDB1 oxidizes NADPH in a 

Ca
2+

-dependent manner while NDB2 is a NADH dehydro-

genase stimulated by Ca
2+

 [22, 29]. 

The physiological role of alternative NAD(P)H dehydro-

genases is still somehow controversial, although it is fairly 

well established that they confer metabolic plasticity allow-

ing cells to adapt to different environmental and stress 

conditions. They may act as overflow systems keeping cy-

tosolic and mitochondrial reducing equivalents (NADH, 

NADPH) at physiological levels, thus avoiding potential 

tricarboxylic cycle repression by elevated NADH levels and 

excessive levels of reactive oxygen species (ROS) [4, 5, 7, 

30]. Heterologous expression of Ndi1 from yeast was 

shown to reduce mammalian complex I-mediated ROS 

generation [31]. In contrast, S. cerevisiae alternative NADH 

dehydrogenases have been proposed as potential sources 

of superoxide radicals by other studies [32-34]. 

In N. crassa, expression of alternative NAD(P)H dehy-

drogenases genes greatly depends on the growth phase 

[15, 18, 19, 35]. It is not possible to obtain viable double 

mutants between NDE-2 and complex I mutants that lack a 

functional enzyme, suggesting that NDE-2 and complex I 

interact in a yet unidentified pathway [18]. 

Humans do not possess alternative NAD(P)H dehydro-

genases, but enzymes from other organisms have potential 

to be used in gene-based therapies. Heterologous expres-

sion of the yeast Ndi1 restores respiration in complex I-

deficient human cells [36] and was also shown to be pro-

tective in in vivo models of Parkinson’s disease [37, 38], 

Leber's hereditary optic neuropathy [39] and breast cancer 

[40]. 

Because mammals lack alternative NAD(P)H dehydro-

genases, these enzymes are good candidate targets for 

human therapy in cases of fungal infection. The crystal 

structure of yeast Ndi1 has been recently solved and will 

allow a better understanding of the regulatory mechanisms 

of type II NAD(P)H dehydrogenases and likely lead to an 

evaluation of their potential as therapeutical agents or 

targets [41, 42]. 

 

ALTERNATIVE NAD(P)H DEHYDROGENASES AS 

MEDIATORS OF PROGRAMMED CELL DEATH 

Several reports point to a role of fungal alternative 

NAD(P)H dehydrogenases in cell death. In S. cerevisiae, 

overexpression of the internal Ndi1 (proposed as the yeast 

homologue of the human apoptosis-inducing factor-

homologous mitochondrion-associated inducer of death or 

AMID), but not of the external Nde1, leads to ROS-

mediated apoptosis-like cell death, particularly in glucose-

rich media. The authors showed that the disruption of both 

of these NADH dehydrogenases results in lower ROS pro-

duction and increased chronological life span accompanied 

by reduced fitness [34].  

More recently, yeast Ndi1 was also shown to be in-

volved in cell death induced by different stimuli like hydro-

gen peroxide, acetic acid and manganese ions, inde-

pendently of its oxidoreductase activity [43]. During the 

execution of manganese ion-induced cell death, a N’-

terminal portion of Ndi1 is cleaved and the protein translo-

cates to the cytoplasm. However, in sharp contrast, it was 

reported that overexpression of yeast Ndi1 in human cell 

lines prevents rotenone- and paraquat-induced cell death 

[44, 45].  

Thus, the specific role of alternative NAD(P)H dehydro-

genases in the protection or enhancement of ROS produc-

tion is still uncertain [27, 31, 32, 45-48]. Although specula-

tive, it is possible that the discrepant findings observed in 

human and yeast cells overexpressing Ndi1 result from the 

fact that on the one hand, human cells do not possess 

these enzymes, and one the other hand, yeast cells harbor 

additional NAD(P)H dehydrogenases. In both cases, this 

suggests that alternative NAD(P)H dehydrogenases may 

interact with each other or respond to overexpression or 

downregulation of other members of the family. In fact, 

compensatory mechanisms of gene expression have been 

demonstrated in N. crassa strains lacking one or more 

NAD(P)H dehydrogenases (see below). 

In N. crassa, a double mutant devoid of NDE-1 and 

NDE-2 displays lower ROS accumulation, increased catalase 

activity and resistance to paraquat [46]. Particularly, NDE-2 
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appears to be engaged in mitochondrial ROS generation. In 

A. nidulans, the expression of genes encoding NAD(P)H 

dehydrogenases are induced upon exposure to different 

cell death stimuli, especially farnesol [49]. Moreover, while 

the overexpression of NdiA augments the resistance to 

farnesol, the deletion of NdeA results in hypersensitivity to 

the drug. The latter is likely due to increased accumulation 

of ROS in the presence of farnesol [49]. In N. crassa, dis-

ruption of nde-1 leads to increased susceptibility to stauro-

sporine, associated with higher ROS accumulation and al-

tered intracellular Ca
2+

 dynamics (Gonçalves AP, Cordeiro 

JM, Monteiro J, Lucchi C, Correia-de-Sá P, Videira A, un-

published data). In addition, a yeast NDE1 deletion strain is 

more resistant to artemisinin and dimeric naphthoqui-

nones [50, 51]. Despite the aforementioned controversy 

around the role of NAD(P)H dehydrogenases during cell 

death, a current view is that these enzymes seem to be 

activated in different model organisms in conditions of 

highly reducing cellular environment, diverging electron 

transfer from the canonical respiratory chain pathway and 

thus avoiding system overflow and deleterious ROS pro-

duction [27, 47]. 

Notably, alternative NAD(P)H dehydrogenases are pro-

tein homologues of apoptosis-inducing factor (AIF)-family 

members, namely the well established cell death execu-

tioners AIF and AMID (Fig. 1). AIF-family members have 

been described as oxidoreductases [52, 53], but disruption 

of AIF or AMID does not affect complex I activity, nor does 

the supramolecular organization of the respiratory chain in 

N. crassa [35]. In this fungus, AIF was found both in mito-

chondrial and cytosolic extracts [35], while, for compari-

son, two AIFs localized in the mitochondria and in the cy-

toplasm, respectively, have been reported in Podospora 

anserina [54]. In N. crassa, AMID was found exclusively in 

the cytosol whereas a third member of this family, AMID-2, 

was found both in the mitochondria and in the cytosol but 

was only observed when AMID was absent, suggesting 

overlapping functions [35]. A genome-wide association 

study on a wild population of N. crassa showed a genetic 

interaction between amid-2 and czt-1, a transcription fac-

tor that controls cell death and drug resistance [55]. 

In N. crassa, analysis of gene expression profiles of 

these families of genes in simple or multiple deletion 

strains for alternative NAD(P)H dehydrogenases showed 

the occurrence of compensatory mechanisms [19, 35, 46]. 

For instance, ndi-1 is upregulated in a Δnde-1Δnde-2 and in 

a Δnde-2 strain, amid and amid-2 are upregulated in a tri-

ple Δndi-1Δnde-1Δnde-2 mutant, nde-1 is upregulated in 

Δnde-3 cells and nde-2 is upregulated in Δndi-1, Δnde-1 and 

Δnde-3 single mutants. The functional meaning of this 

compensation in gene expression is currently unknown, 

but there is evidence in yeast that mitochondrial dysfunc-

tion leads to an alteration in gene expression through ret-

rograde signaling in order to reduce the impact of this dys-

function on cellular fitness [56]. Interestingly, a phyloge-

netic analysis showed that N. crassa NDE-3 clusters with 

AIF-like proteins rather than with the other NAD(P)H dehy-

drogenases [35], further suggesting a close relationship 

between these proteins. 

Accumulating evidence clearly relates alternative 

NAD(P)H dehydrogenases to intracellular cell death routes. 

However, further studies are needed to better understand 

the mechanisms underlying their involvement in the cellu-

lar responses to cell death stimuli. 
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