
J. R. Soc. Interface (2012) 9, 801–816

doi:10.1098/rsif.2011.0823

Published online 8 February 2012
REVIEW
*Author for c

Received 25 N
Accepted 16 J
Two decades of studying non-covalent
biomolecular assemblies by means of

electrospray ionization mass
spectrometry

Gillian R. Hilton and Justin L. P. Benesch*

Department of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford,
South Parks Road, Oxford OX3 1QZ, UK

Mass spectrometry (MS) is a recognized approach for characterizing proteins and the com-
plexes they assemble into. This application of a long-established physico-chemical tool to
the frontiers of structural biology has stemmed from experiments performed in the early
1990s. While initial studies focused on the elucidation of stoichiometry by means of simple
mass determination, developments in MS technology and methodology now allow researchers
to address questions of shape, inter-subunit connectivity and protein dynamics. Here, we
chart the remarkable rise of MS and its application to biomolecular complexes over the
last two decades.
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1. INTRODUCTION

Since its invention at the beginning of the last century,
mass spectrometry (MS) has been considered an essen-
tial tool for chemists and physicists alike, primarily
being used to analyse small molecules and volatile com-
pounds. At the end of the 1980s, its utility broadened
dramatically, as its application to problems in biology
began in earnest. The first reports on the MS of non-
covalent complexes appeared in the literature in the
early 1990s, with the initial studies focusing on
protein–ligand complexes quickly joined by those in
which protein–protein interactions were maintained
[1]. Since those early days considerable improvements
in instrument technology and experimental method-
ology have dramatically increased the range of protein
assemblies amenable to MS analysis [2]. As a result,
20 years after the initial reports, assemblies as large
as intact viruses; of as many components as ribosomes;
as hydrophobic as membrane protein complexes; as het-
erogeneous as amyloidogenic oligomers; and as dynamic
as molecular chaperones have all been successfully
interrogated [3–7]. MS has therefore evolved to impact
a wide range of applications in structural biology.

In this historical perspective, we chart some of the
milestones in MS development as they pertain to the
study of non-covalent complexes, and the novel
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applications they have enabled (figure 1). While mul-
tiple MS approaches can inform on such assemblies
[4], we focus here on those in which they are examined
intact in the gas phase. We also describe the current
state of the art in MS instrumentation and sample prep-
aration, and direct to the relevant literature. Having
described the past and present of the MS of non-
covalent complexes, we allow ourselves to indulge in
speculation as to what the future of the field might
hold. As such, our intention is that this review serves
as a ‘primer’ for scientists new to the field, providing
an entry point to the literature. This is inevitably a sub-
jective undertaking, and though we have endeavoured to
be as comprehensive as possible, we apologize in advance
for anyomissions and hope the interested reader will soon
fill in the gaps.
2. THE DEVELOPMENT OF MS FOR
STRUCTURAL BIOLOGY

2.1. The initial discoveries

In the early 1990s, a series of seminal studies demon-
strated that bimolecular complexes held together by
non-covalent interactions could be transferred into the
vacuum of the mass spectrometer and analysed. While
the preservation of non-covalent interactions, in the
form of salt and solvent bound to proteins, had been
observed a few years previously, this detection of
This journal is q 2012 The Royal Society
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Figure 1. Some important milestones in the developments in
MS instrumentation for the study of macromolecular assem-
blies (left-hand side), and the subsequent methodologies
they enabled (right-hand side). The first non-covalent com-
plexes were measured by means of MS in 1991, and the
following two decades have seen dramatic progress in both
the technology and its application to problems in structural
biology.
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specific and biologically relevant complexes represented
a major breakthrough [1,8,9].

The earliest of these reports appeared in the
literature in 1991, concerning the receptor–ligand
binding of FK binding protein and macrolides [10];
the enzyme–substrate pairing of lysozyme and a hexa-
saccharide [11]; and the haem-binding of myoglobin
[12]. These studies were soon followed by an array of
other examples in which non-covalent interactions
were maintained in the gas phase including the notable
first measurement of a protein–protein assembly,
the human immunodeficiency virus protease dimer
[13]. These, and other, pioneering studies are described
in a comprehensive review [1] and, together with the
realization that proteins perform their cellular roles
not in isolation but rather in complex with a multitude
of other biomolecules, paved the way for MS in struc-
tural biology [8,9].
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2.2. Optimizing transfer into the gas phase

While these reports clearly showed the promise of MS for
studying protein assemblies, much work remained in the
development of both technology and methodology. Elec-
trospray ionization (ESI) was an essential development
in MS as it allowed the transfer of protein from solution
molecules into gas-phase ions. The above studies all
employed ESI, which in the late 1980s had been shown
to enable the MS analysis of intact protein chains [14].
Such ‘soft’ or ‘gentle’ ionization was in stark contrast
to previous approaches which caused extensive covalent
bond fragmentation, and were effectively limited to mol-
ecular weights on the order of 10 kDa [15].

2.2.1. Electrospray mechanism
ESI is achieved by applying a potential difference
between the inlet of the mass spectrometer and a conduc-
tive capillary containing the analyte solution [16]. This
results in the production of charged droplets at the end
of the capillary which evaporate solvent as they pass
into the vacuum of the mass spectrometer. The droplets
shrink until they reach the Rayleigh limit, the point at
which the surface tension holding them together equals
the Coulombic repulsion between the charges on their
surface, and droplet fission occurs. Successive rounds of
evaporation and fission occur until an analyte ion is
formed via one of two different mechanisms. Analyte
ions formed by the ‘ion evaporation model’ are expelled
directly from the droplets [17], whereas those resulting
from the ‘charged-residue model’ arise as the end product
after droplet fisson and solvent evaporation processes
have reached exhaustion [18]. The current evidence
suggests that folded protein ions are generated according
to the latter [19].

2.2.2. Nanoelectrospray and native MS
The use of ESI was not without its challenges for the
analysis of biomolecules. Experiments required sub-
stantial sample volumes, and typically relied on a
combination of organic solvents, acids and high tempera-
tures to aid the desolvation and droplet fission processes,
and thereby allow reliable ion production [20]. These
conditions are generally not compatible with the preser-
vation of biomolecular complexes in solution, and
therefore limit the scope of conventional ESI in struc-
tural biology [2]. To overcome these difficulties
miniaturized ESI [21–23] sources were designed which,
by virtue of a smaller capillary diameter, lower the flow
rate to nl min21 levels and therefore reduce sample con-
sumption to only a few ml. The reduced flow rate has the
added benefit of producing smaller initial droplet sizes
[24], which both increases sensitivity and salt tolerance
[25], and crucially negates the need for organic co-
solvents and high interface temperatures. In this way,
the examination of proteins in neutral aqueous buffers
in which their structure is preserved has become possible,
in a strategy often termed ‘Native MS’ [9,26] (figure 2a).

2.3. Transmitting and analysing large ions

The application of nano-ESI (nESI) not only enabled
proteins to be analysed in their native form but also
brought new challenges to MS technology. In order
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Figure 2. Four example mass spectra of the same protein complex subjected to different experimental conditions. These
spectra show the complex intact; solution adjusted conditions to reveal the presence of monomers and dimers; denaturing sol-
ution conditions (addition of organic solvent and acid); and finally MS activating conditions showing the gas phase
fragmentation. The protein complex, a small Heat Shock Protein (sHSP) TaHSP16.9, is an oligomeric species comprising
six dimeric building blocks to form a 12 mer (see inset 2(a)). (a) Mass spectrum of TaHSP16.9 under near ‘native’ conditions
applying mild instrument conditions such as low collision voltages and ion guide pressures optimized to allow the transmission
of the ions through the mass spectrometer. The spectrum shows a narrow charge series (30þ to 34þ) corresponding to
202 237 Da, the mass of the intact 12 mer of HSP16.9 (see the inset). The multiple charge states are a direct result of the
distribution of charges on the nESI droplet. (b) Example spectrum showing the effects of solution phase manipulation by
the addition of isopropanol 10% (v/v). The observation of dimer in the spectrum suggests a destabilization of the dimer–
dimer interfaces, the interactions required to construct the intact 12 mer. (c) Denaturing conditions (50% acetonitrile and
0.1% formic acid (v/v), aqueous) reduces the 12 mer to monomeric units with a broad charge state distribution. The larger
the surface area exposed, the more charges can be accommodated, and therefore a narrow distribution of low average
charge suggests a folded protein state whereas an unfolded/disordered protein will have an extended highly charged distri-
bution. (d) Spectrum under activating conditions in which monomers are ejected from the intact 12 mer to form an 11 mer
and subsequently a 10 mer. Expelled monomers can be observed at low m/z. Unless otherwise stated, all spectra were obtained
on a modified Q-ToF instrument (Waters, Manchester), as described previously [27], with a 10 mM monomer concentration of
TaHSP16.9 in 200 mM ammonium acetate pH 6.9.
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that the large biomolecular complexes which could
nowbe ionized (up to�100 MDa [28])might be separated
and measured by the mass spectrometer, significant
technological improvements were required.

Experiments have shown that increasing the pressure
in the early vacuum stages of the instrument dramati-
cally improved the transmission of large ions [29–32].
This is owing to the increased number of collisions
experienced by the analyte ions acting to focus them
onto the appropriate trajectory in the instrument [33].
By dampening the trajectories of the ions, the literature
of which has been discussed in detail [2,34], a dramatic
reduction in the loss of high mass ions is observed. This
discovery brought with it new and exciting opportu-
nities, and before the turn of the century, species over
1 MDa were being successfully transmitted through
the mass spectrometer [29,35–37].

2.3.1. Separation at high m/z
Many of the early studies of non-covalent complexes
used triple-quadrupole mass spectrometers. These
instruments have the advantage of allowing tandem-MS
experiments (§2.4) but are typically limited to amaximum
J. R. Soc. Interface (2012)
acquisition range of approximately 4000 m/z. To over-
come this limitation, mass spectrometers were built
incorporating a quadrupole operating at a lower radio-
frequency, thereby allowing the separation of higher m/z
species [38–40].While this enabled the analysis of proteins
in the 100 kDa range [41,42], the low resolving power
at high m/z represented a considerable disadvantage.

In contrast, time-of-flight (ToF) mass analysers
have a theoretically unlimited mass range and, when
operated with a reflectron [43], can achieve high mass
resolution and sensitivity on a very fast timescale. To
take full advantage of the capabilities of ESI, novel
instrumentation geometry was designed in which the
continuous beam of ions was pulsed orthogonally into
the ToF, allowing the identification of peaks well
above 5000 m/z [44–46]. An early example demonstrat-
ing the utility of combining nESI with ToF was a study
of the enzyme 4OT, where the sensitivity and resolution
afforded by MS settled a conflict in the field as to the pro-
tein’s oligomeric state [47]. This heralded an important
shift in the MS of protein assemblies from being a method
which was considered a technical curiosity to one which
could be used to provide novel structural biology insight.
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While other mass analysers have been used to examine
intact protein complexes [48], the ‘hybrid’ Q-ToF has
been the favoured instrument geometry for about a
decade [32], capitalizing on the m/z-range benefits of
ToF with the selection abilities of a quadrupole (Q)
[49]. The decreased resolution of this first analyser does
not impact on the final spectrum, as this is determined
by the subsequent ToF stage. The great advantage of
this instrument configuration is the ability to perform
tandem-MS on high mass species to help elucidate their
composition [32,34,50].

2.4. Gas phase manipulations

With the technology allowing the transmission of intact
protein assemblies through the mass spectrometer and
their mass measurement with unparalleled accuracy,
attention shifted towards devising means for their gas-
phase disassembly, such that their constituents might
be probed. Multiple activation approaches have been
developed to achieve this, including by impacting a sur-
face [51,52], interactions with electrons [53,54] and
absorption of infrared photons [55].

All of these approaches have their advantages, but
collision-induced dissociation (CID) remains the most
commonly applied approach for activation. CID was
developed in the 1960s and is based on the analyte
ions colliding with inert gas, resulting in activation as
their translational energy is converted into internal
modes by many consecutive collision events [56].

2.4.1. Effects of collisional activation
CID is typically performed in two regions of the mass
spectrometer where the pressure is relatively high: in
the source region, or in a specifically designed collision
cell. Irrespective of the location within the instrument,
this thermal heating incurs the same consequences
on biomolecular assemblies: cleaning, restructuring,
unfolding, dissociating and fragmenting [57].

Under non-denaturing conditions the measured
mass of a large protein complex is higher than that
calculated from the sequence alone, owing to the
adduction of salt and solvent during the ESI process
[58]. The process of activation results in ‘cleaning’ of
the protein by removal of these bound species, and
thereby provides an increase in effective mass accuracy
and resolution in the spectra [59]. Further increases in
internal energy can lead to structural distortions of
the protein assembly, such as the collapse of cavities
within the structure [60].

At elevated activation conditions the individual
protein chains begin to unfold, a process which con-
tinues until a threshold is reached and a subunit is
ejected from the complex [61]. Dissociation occurring
via unfolding leads to the expelled subunit typically
carrying a proportion of the charge disproportionately
high relative to its mass [41,62–64]. This process can
occur repeatedly, with multiple subunits being removed
sequentially from the assembly [65]. At the highest
energies the unfolded monomers can undergo covalent
fragmentation after their expulsion from the complex
[66]. There has been considerable interest in recent
years to manipulate the pathway of dissociation in
J. R. Soc. Interface (2012)
order to obtain more information, including the adjust-
ment of charge states [67,68], or effecting ion activation
through collision with a surface [52,69]. The latter
approach, surface-induced dissociation, shows particu-
lar promise for the analysis of protein assemblies in
potentially allowing the determination of the building
blocks of the oligomers [70].
2.4.2. Deconvoluting heterogeneity with tandem-MS
The ability of gas-phase activation to afford infor-
mation on the components within a protein assembly
is particularly powerful when employed in the form of
tandem-MS (also referred to as MS/MS). In this
approach ions can be selectively subjected to CID,
and the resulting dissociation products measured in a
second analysis stage [71–73]. This approach became
established in the study of protein assemblies after the
development of Q-ToF instruments with a high-m/z
quadrupole [32,34,50].

The high resolution of MS can be exploited to allow
the different components within a mixture to be indivi-
dually interrogated. Furthermore, in cases where the
MS spectrum cannot be unambiguously assigned,
knowledge that dissociation products must be comp-
lementary leads to tandem-MS aiding the assignment
[32]. Another advantage of the nature of gas-phase
dissociation is that the removal of highly charged mono-
mers results in an effective charge reduction of the parent
oligomers [65]. This has been exploited to quantify
the relative distribution of the species comprising poly-
disperse ensembles which cannot be deconvoluted by
MS alone [74] (figure 3).
2.4.3. Examining membrane proteins
Membrane-associated proteins are among the most
challenging of protein systems for structural biology
owing to their solubility requirements. While a
vacuum can be regarded as hydrophobic and therefore
a suitable environment in which to study such pro-
teins [75], transferring them intact into the
mass spectrometer has been a challenge. The first
approach which brought success was to prepare a
protein in a concentration of a detergent sufficient to
solubilize the exposed hydrophobic surfaces, but not
so high as to obscure the signal corresponding to
protein [76].

The observation that detergent micelles could appar-
ently be maintained in the gas phase [77,78] led to the
development of an alternative strategy. In this
approach, the protein assembly is encapsulated within
a micelle to enable its transfer into the gas phase,
whereupon the detergents are subsequently removed
by collisional activation [79,80]. This process has the
potential to be applicable to various membrane protein
systems [81], and recent evidence suggests that it might
even be possible to remove the detergent without
excessive structural rearrangement of the protein [82].
Considering the importance of membrane proteins as
drug targets, perhaps the most exciting aspect of this
application is the ability to detect the presence of
small molecules, and their influence on the structure
and stability of the complex [83].



Review. MS of non-covalent assemblies G. R. Hilton and J. L. P. Benesch 805
2.5. Solution phase manipulations

In the early 1990s, it was noted that solution condi-
tions could affect the ESI mass spectra of proteins.
Reduction of disulphide bonds [84], manipulation of pH
[85], ionic strength [86], temperature [87] or addition of
organic co-solvent [88] causes a change in the folding
state of the protein chain which is reflected in the distri-
bution of charge states. Typically a native globular
protein will populate a narrow distribution of low aver-
age charge, whereas its denatured counterpart will
feature a broad and highly charged distribution because
of the additional sites available for protonation [89]
(figure 2). This behaviour can be exploited to monitor
the unfolding pathway of proteins [90–92].

Such solution-phase destabilization has been extended
to provide a means for studying the composition of
protein assemblies [93]. With careful adjustment, solution
conditions can be found which effect disassembly of
the complex yet stop short of denaturing the constituent
protein chains (figure 2). This allows sub-complexes,
that is oligomeric species smaller than the original assem-
bly, to be generated in solution and measured in the mass
spectrometer. Such equilibrium experiments can therefore
be used to reveal the building blocks of assembly [94] and
the thermodynamics of the subunit interfaces [95,96]. Fur-
thermore, in the case of heteromeric proteins when
multiple sub-complexes can be observed [97], the overlap
can be used to generate an interaction map of the protein
complex [98,99].
2.6. Determining protein quaternary structure
and dynamics

The ability of MS to inform on the oligomeric and
disassembled states of proteins renders it very attrac-
tive for structural biology. The issue of whether such
gas-phase measurements can be directly related to
the native form has however been a controversial topic
[75,100].

2.6.1. Specificity of protein complexes in the gas phase
While it had clearly been demonstrated that specific
protein oligomers could be maintained intact within
the mass spectrometer, early reports raised the possi-
bility of observing false positives in mass spectra
[101,102]. Such non-specific oligomers arise from those
electrospray droplets containing more than one analyte
molecule, and their artefactual association during dro-
plet fission and evaporation [16]. This effect is
concentration-dependent, and therefore the improved
sensitivity of modern mass spectrometers as well as
the smaller initial droplet sizes resulting from nESI
have largely removed the appearance of these unwanted
artefacts when determining protein oligomeric state [2].
For cases where experiments necessitate high protein
concentrations, methods have been developed to decon-
volute the contributions of specific and non-specific
protein oligomers [103–105].

Similarly, false positives can be observed in spectra
of oligonucleotides [106], and in ligand-binding studies
in which the ligand is typically in considerable excess
in solution [107,108]. In both cases a large contributor
J. R. Soc. Interface (2012)
to this effect is the fact that the strength of molecular
interactions change upon transfer into the gas phase.
Those based on electrostatics, dipoles and polarizability
are strengthened owing to the removal of ‘competition’
from water, and conversely hydrophobic associations
are weakened [109]. As such the risk of ‘false negatives’,
in which contacts present in solution are not rep-
resented in the ESI spectra, needs to be considered
[110]. Experiments have, however, shown that van der
Waal’s interactions remaining after dehydration can
effectively act to retain contacts driven by water [111].
As such the extent to, and timescale on, which hydro-
phobic associations can be maintained in the gas
phase remains an active area of study [112]. Typically
large protein assemblies are held together by a large
number of individual contacts, and therefore even
those dominated by hydrophobic effects such as mem-
brane protein oligomers [113] or molecular chaperone :
target complexes [95] can successfully be interrogated
in the gas phase.
2.6.2. Preservation of structure in the gas phase
While protein stoichiometry can be faithfully preserved
in the gas phase, the question arises as to whether sol-
ution-phase structure is similarly maintained. Various
strands of evidence combine to indicate that this is
possible, at least on the timescale of typical MS
measurements [114]. Protein complexes transmitted
through the mass spectrometer and examined ex situ
by electron microscopy retain their global topology
[115], and in the case of viruses and enzymes can
retain infectivity [116] and activity [117], respectively.
Similarly, infrared [118] and fluorescence [119]
measurements of proteins trapped in vacuum have
demonstrated the retention of aspects of solution
structure, evidence backed up by molecular dynamics
studies [120].

Perhaps the most compelling evidence comes from
ion-mobility (IM) spectrometry measurements, which
enable the direct determination of molecular size
in terms of a rotationally averaged collisional cross sec-
tion (CCS), in the gas phase. Evidence suggests the
experimental CCS of proteins to be similar to those esti-
mated from atomic constraints [121,122] (figure 4), and
that different conformations do not exchange on the
timescale of milliseconds [124,125]. Moreover, even
the size of fragile protein complexes has been observed
to match what is expected from their structure [126].
These observations combine to demonstrate that, on
the timescale of typical MS measurements, tertiary
and quaternary structures of the protein can be
preserved in the gas phase [60].

2.6.3. Structural restraints
The observations outlined above motivate the use of
MS for determining structural restraints on protein
complexes [4]. Stoichiometry and size information can
be obtained from ‘top-down’-type experiments, in
which the intact assembly is measured in the gas
phase by means of IM–MS. These experiments coupled
with the use of gas-phase dissociation can also gene-
rate composition and connectivity information.
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Figure 3. Nano-ESI MS of the heterogeneous ensemble populated by aB-crystallin. (a) Spectra obtained under conditions of
increasing activation, indicated on the z-axis, in which ions are subjected to energetic collisions with argon atoms. The peaks
at low m/z are from monomers and those at higher m/z are their complementary stripped oligomers. The peaks in the region
between 18 000 and 24 000 m/z correspond to oligomers stripped of two monomers which have sufficient resolution to allow
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peak with the black dot showing the corresponding ‘odd’ stoichiometries. The peak highlighted in green at m/z �20 200
corresponds to all aB-crystallin doubly stripped oligomers carrying the equivalent number of charges as subunits (c).
When a sample of aB-crystallin is mixed and incubated with its isotopically labelled equivalent (blue), the gradual disap-
pearance of the homo-oligomers and the concomitant formation of the hetero-oligomer allows the quaternary dynamics and
architecture to be obtained. All spectra were obtained on a modified Q-ToF instrument (Waters, Manchester), as described
previously [74].
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Alternatively, information can be obtained using a
‘bottom-up’ approach, through the interrogation of
sub-complexes [127] and folded subunits [128] released
from the assemblies in solution under destabilizing con-
ditions. This can provide data on the monomeric,
protomeric and oligomeric levels [129], providing valuable
information to enable the modelling of protein complex
architecture [130]. Furthermore, by combining IM–MS
with the additional separation afforded by tandem-MS,
candidate structures of polydisperse protein assemblies
can be filtered according to their correspndence with
measurement [123].

Spatial restraints obtained in this way can be aug-
mented by those obtained from other MS-based
approaches [4]. For example, hydrogen/deuterium
exchange [131] and oxidative footprinting [132] exper-
iments can be used to reveal secondary structure via
solvent accessibility. Limited-proteolysis [133] exper-
iments can provide information as to the domains of
the proteins, and cross-linking experiments can reveal
protein fold and inter-subunit connectivity [134].
Ultimately, MS-derived structural information can be
integrated with restraints obtained from different
J. R. Soc. Interface (2012)
sources, enabling the modelling of ‘hybrid’ structures
which best fit all the available data [135].
2.6.4. Monitoring dynamics
The function of protein complexes hinges not only on
their structure, but also on the dynamic processes
they undergo, both before and at equilibrium. The
speed of analysis and separation afforded by MS renders
it well suited to analysing such fluctuations in real time
[136,137]. In fact one of the earliest studies to show the
preservation of non-covalent interactions in the gas
phase monitored in real time the turnover of substrate
by the enzyme lysozyme [11]. Furthermore, MS has
been used to monitor various other dynamic aspects
of proteins, including the folding and conformational
fluctuations of protein chains [138].

MS is particularly useful in the study of protein
dynamics on the quaternary level, such as monitoring
protein complex assembly [139], disassembly [140] and
subunit exchange [141]. By virtue of intrinsic mass sep-
aration, different oligomeric states can be monitored
individually; whereas the quaternary dynamics of
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individual states can be monitored by incubation with
heavier or lighter equivalents (figure 3). An example
of this is the incorporation of a ‘mass tag’ introduced
by means of mixing homologous proteins [141], or by
employing isotopic labelling strategies [142]. Monitoring
the disappearance of homo-oligomers and the concomi-
tant formation of hetero-oligomers allows the quaternary
dynamics as well as details of their architecture to be
ascertained [143].
3. TECHNOLOGY AND METHODOLOGY:
THE STATE OF THE ART

Since the early experiments in examining non-covalent
complexes in the gas phase, instrumentation and meth-
odology have developed rapidly [144]. In this section, we
briefly describe the current state of the art of nESI MS
analysis of protein assemblies, but also suggest that the
reader consult recently published protocols for detailed
advice [93,145–149].
3.1. Protein preparation

Aqueous solutions of protein complexes are typically
prepared at concentrations of 1–10 mM (oligomer), in
a volatile buffer. The low concentration guarantees
minimal non-specific association during nESI, while
J. R. Soc. Interface (2012)
the buffer ensures electrochemical effects in the capil-
lary do not affect solution pH. The most commonly
used buffered standard is ammonium acetate which,
unadjusted, gives a neutral solution even up to high
ionic strengths [150], and readily evaporates during
ion desolvation. When necessary for the stabilization
of the protein assembly, low concentrations of involatile
salts or other kosmotropes can be added and still result
in tolerable mass spectra [151]. Membrane protein
assemblies have specific solubilization requirements,
either through stabilization with the minimum amount
of a specific detergent [76], or by their release from
intact micelles into the gas phase [81].

Spectra of the denatured proteins allow the deter-
mination of the masses of the individual subunits,
information often essential for establishing oligomeric
stoichiometry. These are typically achieved by the
addition of organic solvents and acid to the protein sol-
ution to degrade the quaternary and tertiary structures.
Similarly, identifying the protein chains themselves and
the location of post-translational modification through
typical proteomic means, either from fragmentation
within the mass spectrometer or proteolysis in solution,
can provide valuable additional information in the case
of purified rather than recombinant sample. Such MS-
based proteomics is well established [152], and an
important complement to the interrogation of intact
protein assembies described here.
3.2. Nanoelectrospray ionization

As described in §2.2, MS analyses of protein assemblies
are generally performed using nESI owing to the low
sample volumes required, and its tolerance of mild inter-
face conditions. nESI is typically performed using
borosilicate glass capillaries that have been pulled to
form mirco-pipettes. The ends can then be manually
clipped under a stereo-microscope to provide an orifice
size on the order of 1–5 mm in diameter. Electrospray
is initiated by applying a potential difference between
the capillary and the inlet to the mass spectrometer,
and current is delivered to the solution by either
making the capillary conductive via gold coating, or
the introduction of a platinum wire. Alternatively
nESI can be performed using a chip-based robotic
infusion system [153].
3.3. Transmission and analysis

As discussed in §2.3, the transmission of large pro-
tein assemblies is aided by collisional focusing in the
early vacuum stages of the mass spectrometer. Typically
this is achieved by reducing the pumping efficiency at the
front end of the instrument. Alternative methods exist,
and all similarly rely on increasing the number of col-
lisions with background gas experienced by the analyte
[32,34]. Additional stabilization of non-covalent com-
plexes can also be achieved in this region by using a
curtain gas such as sulphur hexafluoride [154].

These considerations are sufficient for analysing
protein complexes on a simple ToF mass spectrometer.
The majority of such experiments are performed on
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Q-ToF instruments, incorporating a modified quadru-
pole which allows the selection of high m/z ions
[32,34,50]. Optimum instrument parameters, i.e. oper-
ating pressures and voltages, are somewhat sample-
dependent, however conditions are typically adjusted
to achieve maximum removal of adducts while still
maintaining the protein complexes intact.

3.4. Ion mobility MS

The current state-of-the-art mass spectrometers for the
analysis of protein assemblies incorporate an IM stage,
thereby providing two dimensions of separation: effec-
tively mass and size [155]. A number of different means
exist to effect IM–MS separation [156] and several
have applied to the interrogation of protein multimers,
including drift-tube IM [157,158], differential-mobility
analysis [159] and energy-loss experiments [160]. The
majority of studies on macromolecular assemblies have
however employed travelling-wave IM [161], a high-
transmission approach which is available on commercial
platforms [162,163].

In all cases, the IM measurement can be related to a
rotationally averaged CCS of the ion. In the case of
travelling-wave experiments this conversion is enabled
by calibration using protein standards of known CCS. To
this end, a number of protocols [164–166] and CCS
databases [167–169] have been published, and it is
advisable to use standards of similar mobility to the
unknown when performing a calibration [167,170]. It
is important to note that even mildly activating con-
ditions within the mass spectrometer, typically used
to obtain good quality mass spectra, can cause
unwanted structural changes in the protein complexes
[57,164]. It is therefore of paramount importance to
employ low acceleration voltages prior to IM separation.
Additional stabilization can be afforded by charge-
reduction [68] or by the addition of kosmotropes [151].

The experimental CCS can be compared with those
calculated from atomic structures in silico. A number
of algorithms exist to achieve this, with the simplest
employing a ‘projection approximation’ (PA) [165,171–
175]. More sophisticated approaches, including the exact
hard-sphere scattering [176] and trajectory methods [177]
can also be used. These latter methods, though providing
CCS estimates matching experimental values more closely
than PA approaches, are more computationally expensive,
particularly in the case of the trajectory method [178].
Currently the most convenient strategy for structural
biology applications is to employ a scaled PA estimate,
as it affords equivalent accuracy and also allows the
assessment of coarse-grained molecular models [4].
4. THE NEXT TWO DECADES: MS IN
STRUCTURAL AND DYNAMICAL
BIOLOGY

With the dramatic advances since the first measurements
of intact non-covalent complexes, and the excellent instru-
mentation and protocols now available, MS appears
to have a large role to play in the evolution of struc-
tural and dynamical biology. While anticipating future
advances is naturally more difficult than describing
J. R. Soc. Interface (2012)
past developments, there are several research areas we
feel are likely to go beyond just incremental advances to
see exciting progress over the coming years.
4.1. Standardized and quantitative MS analyses

With the proliferation of structural information stem-
ming from MS experiments, there is an emerging need
for the development of experimental standards, and
independent criteria for evaluating data quality. Such
principles of best practice are either already established
or are undergoing development for other structural
biology techniques and MS-based proteomics. What
form these will take is still unclear, but ultimately we
can expect the annotation of protein databases with
information from MS-based ‘structural proteomics’
experiments, with the associated requirement for data
integrity and deposition.

Equally important to ensuring robust structural
information on proteins is the accurate determination
of the associated thermodynamic and kinetic para-
meters that describe their stability and dynamics. As
we have described here, MS is well placed to bridge
this gap between structural biology and biophysics.
Crucial to these efforts is the necessity for MS to accu-
rately reflect the distribution of all molecules in solution
[179]. This has been shown to be the case for similar
protein species in solution [4]; however, care needs to
be taken to overcome the m/z dependence of both cur-
rent mass analysers [180] and detectors [181]. It is
probable that future improvements in MS instrumen-
tation will act to overcome these difficulties, ultimately
leading to absolute quantification of varied species in
solution based on signal intensity alone. This will
enable MS to provide not only structural information
but also reliably the strength and dynamics of interfaces
within diverse macromolecular assemblies.
4.2. Structural proteomics through automated
multiplexed MS

In order to appropriately characterize the stoichiometry
of an unknown protein assembly three crucial elements
of information are required: the mass of the intact com-
plex, and the identity and masses of the constituent
subunits. As discussed in this article, obtaining the
former is now well-established and, building on previous
studies [182,183], will probably allow for the automated
screening of simple unknowns. The latter two are gener-
ally trivial to obtain in the case of recombinantly
expressed assemblies, but not in the case of heteromeric
complexes isolated from cells, where subunit masses
are often considerably different to that expected from
genomic databases [184]. It is necessary to perform
experiments which separate the protein subunits and
in parallel allow their mass measurement and the
determination of sequence information [185,186]. We
envisage the development in the coming years of MS
platforms in which all these levels of information can
be obtained in a single multiplexed experiment, thereby
providing an automated accurate and reliable means for
characterizing protein stoichiometry.
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Furthermore, while in this review we have focused on
the direct analysis of protein assemblies, there are a
plethora of MS-based technologies which can inform on
a wide range of structural aspects and timescales [4]. In
fact, the vast majority of MS experiments performed on
proteins rely on examining the array of peptides produced
by enzymolysis of cell extracts or purified components
[152,187]. These experiments can be highly automated
both in terms of software and hardware [144], and thereby
provide a vast amount of data on the sequence level of pro-
teins [188]. In this way, structural probes which have been
introduced through, for example, chemical cross-linking,
hydrogen/deuterium exchange or oxidative-foot-printing
experiments, can be localized. A major goal for MS is to
combine these approaches into an integrated structural
proteomics platform, enabling the determination of
spatial and dynamical restraints spanning the residue to
oligomer levels.
4.3. Visualizing gas phase ions

In addition to combining these existing MS technologies
into a synergistic whole, there are a number of exciting
frontiers in the gas-phase visualization of protein assem-
blies. The opportunities afforded by the possibility of
interrogating mass-selected ions, in the absence of solvent
background, are significant, and gas-phase spectroscopy
of isolated proteins [118,119] and complexes [189] promises
to provide considerable insight into their conformation.
IM–MS is likely to evolve considerably too, through
not only incremental improvements in resolution, but also
potentially by dipole alignment in the gas phase [189],
or through the use of specific dopants in the IM gas [190].

The use of MS as a high-resolution purification
method is likely to prove very useful, allowing ex situ
analysis of selectively deposited material by electron
microscopy [115]. This will allow the construction of
initial models to guide downstream single-particle elec-
tron microscopy analysis. Higher resolution structural
information on isolated biomolecules is promised by
the advent of free-electron laser single-molecule X-ray
diffraction [191]. Combining this ability of determining
atomic structures with the separation and manipulation
afforded by MS represents an exciting frontier for the
characterization of heterogeneous macromolecules.
4.4. From structural to cell biology

As we have discussed, MS can already contribute sig-
nificantly towards structural biology, both in isolation
and in combination with other techniques. With the
continual development of computational structural
biology, it is anticipated that ever fewer spatial
restraints will be required to produce high-fidelity struc-
tures. This is likely to lead to an increasing role for MS,
as its generality, speed, and sensitivity will outweigh
the fact that it provides fewer restraints than some
other structural biology techniques.

Crucial over the coming years are efforts to bridge
the gap between structural biology in vitro, and the
situation in vivo [192]. MS has the potential to play
an important role in this regard. Already MS-based
J. R. Soc. Interface (2012)
approaches dominate the field of proteomics (and are
likely to play a similar role in metabolomics, lipidomics
and glycomics [193]), informing as to the identity,
modification and abundance of different proteins in
the cell [188]. Furthermore, the high sensitivity of MS
allows the interrogation of protein complexes affinity-
purified directly from cells [98]. Indeed, when the
protein complexes are in high abundance, they can be
measured intact directly from diluted crude cell extracts
[194], and potentially even from individual cells [195].
The advent of desorption ESI [196], which has been
shown to allow the transfer of even protein complexes
into the gas phase [197] raises the possibility of probing
macromolecular assemblies directly from cell or tissue
surfaces. Combining this with the gas-phase separation
of different classes of biomolecules in IM-MS spectra
[198], leads to the prospect of not only extracting
good quality mass spectra of protein complexes despite
a high solute background [164], but also the tantalizing
prospect of interrogating protein assemblies within the
context of their cellular milieu.
5. CONCLUSIONS

Over the past two decades native MS has evolved to
become a structural biology approach of remarkably
general utility, providing insights into the composition,
architecture, and dynamics of protein complexes. With
the realization that the study of the most challenging
systems is likely to require a combination of approaches
[199,200] and an appreciation of the cellular environment
[192], MS will have a crucial role in characterizing
the molecular structure, dynamics, and interactions of
molecules in the cell.
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