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Abstract

Genomic regions participating in recombination events may support distinct topologies, and phylogenetic analyses should
incorporate this heterogeneity. Existing phylogenetic methods for recombination detection are challenged by the
enormous number of possible topologies, even for a moderate number of taxa. If, however, the detection analysis is
conducted independently between each putative recombinant sequence and a set of reference parentals, potential
recombinations between the recombinants are neglected. In this context, a recombination hotspot can be inferred in
phylogenetic analyses if we observe several consecutive breakpoints. We developed a distance measure between unrooted
topologies that closely resembles the number of recombinations. By introducing a prior distribution on these
recombination distances, a Bayesian hierarchical model was devised to detect phylogenetic inconsistencies occurring
due to recombinations. This model relaxes the assumption of known parental sequences, still common in HIV analysis,
allowing the entire dataset to be analyzed at once. On simulated datasets with up to 16 taxa, our method correctly detected
recombination breakpoints and the number of recombination events for each breakpoint. The procedure is robust to rate
and transition:transversion heterogeneities for simulations with and without recombination. This recombination distance is
related to recombination hotspots. Applying this procedure to a genomic HIV-1 dataset, we found evidence for hotspots
and de novo recombination.
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Introduction

A variety of distinct methods have been developed to detect

recombination (for a review see [1]). They can be broadly

classified into two classes, depending on the relative contributions

of the recombinational and mutational processes [2]: the

population genetic approach and the phylogenetic approach [3].

The population genetic approach uses the information of the

linkage disequilibrium among segregating sites, assuming ubiqui-

tous recombination. The linkage disequilibrium depends not only

on the recombination rate between the sites but also on the the

population history. Recombination rate and the population history

are then estimated by introducing the ancestral recombination

graphs (ARGs) as nuisance parameters (i.e., the population

histories are averaged over all possible particular recombination

scenarios) [4–12]. The population genetic approach is efficient

when recombination is pervasive along the genome, disrupting the

phylogenetic signal. In this context recombination hotspots can be

detected as regions where the recombination rate is higher than

the local background rate [4,13].

When the recombination rate is moderate compared with

mutation rate, the sequences may be decomposed into a few

segments that have specific phylogenetic histories. Instead of

treating the recombination history as a nuisance parameter, the

phylogenetic approach estimates the breakpoints and the phylog-

eny of the segments, assuming that some phylogenetic structure is

preserved. Many techniques are based on sliding window

procedures that compare the topology of one segment against

neighboring segments or the whole alignment. This comparison

may be based on the phenetic distance [14–16], likelihood [17] or

posterior distribution [18] of the topologies for each arbitrary

segment. Hidden Markov Models [19,20] regard topologies at sites

as hidden states, where the transition probability penalizes the

inconsistency of topology between neighboring sites. Bayesian

change point models [21,22] identify recombination breakpoints

and differentiated substitution rates as change points of topologies

and evolutionary rate parameters. While these Bayesian proce-

dures have a sound statistical background, they can not reliably

estimate the history of recombination events when the number of

taxa increase, due to the large degree of freedom on topologies.

Here, we present a new method to detect recombination based

on the disagreement of topologies from adjacent segments of DNA

alignments. Our approach falls into the category of phylogenetic

approaches, and we consider only recombinations that influence

the topology. We conceived an algorithm that approximates the

minimum number of subtree prune-and-regraft (SPR) operations

required to resolve inconsistencies between two competing

unrooted trees. This number is called the SPR distance (dSPR).

We refer to our algorithm as the (approximate) SPR distance

(d̂SPR). The distributions of distances between adjacent segments

are then used as a prior in a Bayesian approach to penalize highly

discordant topologies between two neighboring segments. Conse-
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quently, this approach reduces the topology space explored for

each segment, thereby reducing the computational burden.

Additionally, because inconsistent topologies are constrained by

the distances of neighboring segments, the uncertainty in the

estimation is largely reduced. It is possible to extract well-resolved

trees even from short non-recombinant DNA regions within an

alignment. Since the distances can be obtained from unrooted

trees, our method does not assume a known outgroup. The

posterior distribution of distances and the topologies of the

segments make it possible to interpret the recombination history.

Therefore, our procedure may work well for the exploratory

analysis of identifying recombination patterns.

We evaluated our method initially by analyzing sets of simulated

alignments in the presence and absence of recombination. The

results suggest that this is a reliable method to detect and

distinguish recombination from rate heterogeneity in simulated

data. We then used our method to study recombination in

empirical sequences from HIV-1. Recombinant HIV-1 variants

that spread epidemically throughout a population of unrelated

individuals are designated circulating recombinant forms (CRF),

and genomes of CRF viruses are mosaics comprised by regions

derived from two or more distinct parental subtypes. These

recombinants are routinely detected by phylogenetic methods

based on a local similarity between the putative recombinant and

all possible parental sequences [14,15]. Although in South

American countries subtype B remains the most prevalent clade

of the HIV-1 infection, there are great varieties of different BF

recombinants (as a result of recombination between subtypes B

and F) co-circulating in these countries [23]. In this context, it is

expected that recombinations among HIV-1 BF variants will occur

frequently and that these events are currently neglected by

methods that exploit the mosaic pattern based on sequence

parentage. For this reason, we explored the pattern of recombi-

nation in BF viruses from South American countries in more

detail. Our method provides evidence that the extent of

recombination in HIV-1 can be underestimated if one relies solely

in the mosaic pattern dictated by the reference parentals.

Results

Approximate SPR distance between topologies
To evaluate the performance of our approximate SPR distance

(d̂SPR) algorithm, we applied subtree prune-and-regraft (SPR)

moves on a random topology and then estimated the distance

between the original and rearranged topologies [24]. Figure 1

shows the distribution of estimated distances obtained by the

complement Maximum Agreement Subtree (cMAST, number of

leaves causing the disagreement) by the Robinson-Foulds (number

of edges in disagreement) method and by our d̂SPR method for

topologies with 64 taxa (the largest number our implementation

can handle). We performed 1–16 SPR moves (‘‘real’’ dSPR) in this

analysis, with 5000 replicates for each distance. The approxima-

tion d̂SPR is very good for small values of dSPR, and we observed a

lower performance when the ‘‘real’’ number of SPR moves

increases. The same behavior was observed for smaller trees, with

the observation that performance decreased faster in this case

(results not shown). Conversely, estimates obtained by cMAST or

Robinson-Foulds non-linearly overestimate the number of SPRs in

most cases. The procedure always gave the correct answer for

simulations of one SPR, which means that our procedure is

conservative since it does not report a distance larger than one

(several moves) if the topologies can be explained by one SPR

event. The sub-optimal performance is the result not only of the

heuristic nature of the algorithm but also of the inability in

simulating topologies with an exact SPR distance [25]. The

calculation of d̂SPR for this analysis (86104 simulated tree pairs)

took 100 seconds on a Pentium M 1.6GHz running Debian

GNU/Linux. A panel with individual histograms for this

comparison can be seen in Figure S1.

By applying several SPRs on a topology, it does not guarantee

that the final topology can be explained by fewer than the number

of applied moves [25,26]. In our simulations, we tried to

circumvent this problem by allowing branches to participate in

only one SPR move and by simulating recombination on large

phylogenies. Other strategies based on exploiting the SPR

neighborhood of topologies [26] gave similar results with a much

higher computational burden for simulation (results not shown).

Recombination detection on simulated sequences
To evaluate the performance of our method in detecting

recombination, we simulated datasets with eight and 12 taxa while

mimicking DNA sequences with recombination breakpoints. To

do this, we simulated fragments of sequences assuming a defined

evolutionary model (tree and parameters) using PAML [27]. We

used the HKY model (pA = 0.3, pG = 0.4, pC = 0.2, pT = 0.1),

where each branch length was drawn from a uniform distribution

between 0.2 and 1 and then rescaled. We simulated 100 replicates

under the same evolutionary model for each scenario. Each

fragment was simulated independently and then concatenated into

Figure 1. Comparison of tree distance metrics for topology
pairs over 64 taxa. The vertical bars represent the 95% range, and
diamonds intercept the median over 5000 replicates for each simulated
distance. The cMAST estimates (black) were calculated with PAUP [33],
while the Robinson-Foulds (RF) distance (gray) and our d̂SPR approxi-
mation (blue) were computed using in-house software. The diagonal
line (red) represents the case where the estimate and true values agree.
On the horizontal axis, we have the ‘‘real’’ number of SPR moves applied
(ranging from one to 16) on random topologies, and, on the vertical
axis, we show the estimated distances using the RF, cMAST and d̂SPR

methods.
doi:10.1371/journal.pone.0002651.g001

Bayesian Tree Distance
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a single alignment. As a result, the simulated alignments

corresponded to mosaic DNA sequences formed by distinct non-

recombinant fragments. Each fragment included in the alignments

was simulated from distinct topologies (distinct evolutionary

history). Therefore, the concatenation mimics the effect of natural

recombination. Consequently, the simulation approach resembles

natural recombination that occurs in organisms that exchange

large genomic regions between distinct lineages. In addition, the

heterogeneity of branch lengths resembles a relaxed molecular

clock process, simulating heterogeneity among lineages.

Figure 2A shows the simulation strategy for eight sequences,

where each non-recombinant fragment is composed of 64 base

pairs (bp). The concatenated alignment then has 256 bp with three

known breakpoints. For this simulation, we fixed kappa (k) to 1.4

and rescaled branch lengths such that each site had, on average,

one substitution. This apparent high value reflects our assumption

that some phylogenetic signal is present, and the non-recombinant

fragments are short. MCMC analysis was conducted with 56104

iterations (after 56103 iterations were initially discarded), with 100

samples from the posterior being drawn. For this analysis, we

assumed that each segment was composed of 2 bp such that we

sampled from 128 segments.

For 12 taxa simulation, each non-recombinant region (128 bp)

supports not only a different topology but also distinct evolutionary

parameters. The average rate per site of each 32 bp region was

scaled to be between one and four, and k was set to a random

number between one and two. In such a scenario, our simulations

take into account rate heterogeneity among sites and lineages.

Likewise, we simulated non-recombinant fragments of 128 bp

following the topologies displayed in Figure 2C, and the fragments

were then concatenated into an alignment of 512 bp. We noticed

that, at each recombination breakpoint, at least two recombina-

tions (SPR moves) were necessary to explain differences between

non-recombinant regions. In this case, the MCMC analysis was

conducted with 26104 iterations (sampling at each 200 iterations),

and we assumed each segment to be composed of 4 bp, containing

128 segments in total.

If, for each replicate, we look at the average posterior SPR

distance per segment (actually, the distance between each segment

and the next), we will have the distribution of the mean distances

for each segment for 100 replicates. The distribution of average

posterior distances for the simulation with eight and 12 taxa are

illustrated in Figure 2 (panels B and D, respectively). Considering

the regions surrounding the true breakpoints (filled triangles), we

observe that breakpoints, as estimated by a mean distance larger

than zero, are usually found within 20 bp from the true ones. If we

sum the mean values around the peaks (red lines), we can find the

true number of SPR moves between the regions. In fact, for each

posterior sample we can sum up the individual distance values

(
PK
i~1

di) to obtain the total number of SPRs (lower bound for the

minimum number of recombinations) and the count of how many

segments have d̂SPR larger than zero (
PK
i~1

Idiw0, where Ix is the

indicator function) that will give us the number of recombination

breakpoints. For each dataset, we have the distribution of the

number of SPRs and breakpoints. The mode values inferred the

true number of SPR operations in 71% of the datasets and

correctly predicted the number of breakpoints in 84% of the

simulations with eight taxa. For simulations with 12 taxa, it was

successful in detecting a total number of six SPRs in 80% of the

replicates and a total number of three breakpoints in 94% of the

datasets (data not shown). By summing up the fraction of posterior

samples where d̂SPR is larger than zero over a region we have the

posterior probability of a breakpoint over this region. By repeating

this procedure for all replicate datasets over a 20 bp region around

the true breakpoints, we found the estimated breakpoint locations

to be within 20 bp of the true values on 63% of the eight taxa

datasets and on 91% of the simulations with 12 taxa, on average.

The individual values for the first, second and third breakpoints

are respectively 62%, 76% and 51% for eight taxa and 91%, 96%

and 86% for 12 taxa. Each dataset on eight taxa took, on average,

less than eight minutes to analyze, while each of the 12 taxa

simulations took approximately 15 minutes to complete on a

Pentium M 1.6 GHz running Debian GNU/Linux.

Inferred versus true trees
To check the frequency at which the true topology was

reconstructed, we compared, for each dataset, the maximum a

posteriori (MAP) topology of each segment against their respective true

trees (i.e., the trees initially used to simulate the datasets). From this

comparison, we counted the number of times the topologies agreed

in all datasets, which gave us the frequency of topology hits per

segment. The results for eight taxa datasets are shown in Figure 3. In

this figure, we show the same statistic (proportion of correctly

reconstructed topology) using cBrother software [28], a fast

implementation of the Bayesian procedure DualBrothers [21].

DualBrothers (and cBrother) is a Bayesian phylogenetic procedure

for recombination detection [29] and cBrother is capable of relaxing

the parental assumption [28] accurately working with up to six or

seven taxa [30]. The output from cBrother analyzed was the MAP

number of breakpoints and mosaic structure, namely the most

frequent combination of topologies and breakpoints. Here, we report

that cBrother performed well with eight taxa, finding the true

topology in 60% of the simulations-median over sites (Figure 3).

Conversely, our procedure outperformed cBrother, given that, for

most sites, the MAP topology corresponded to the true topology in

73% of the simulations (red dots in Figure 3). For datasets with 12

taxa, the MAP topologies using our procedure reconstructed the true

ones in 75% of the segments, on average (data not shown). If we

consider only the detection of recombination, cBrother retrieved the

correct number of breakpoints in 55% of the datasets with eight taxa,

much lower than the 84% reported by our procedure (not shown).

Both methods have decreased performance around the

recombination breakpoints, where the phylogenetic signal is

conflicting. The superior performance of our method is due to

the penalty against distant topologies since cBrother needs to

consider equally all (2n25)!! topologies over n taxa without

parental assumptions. We also compared the results described

above with MrBayes, a Bayesian procedure used to infer the

posterior distribution of topologies in the absence of recombina-

tion [31,32]. For each simulated dataset, we used MrBayes to infer

the posterior distribution of topologies for each of the four 64 bp

non-recombinant fragments independently. The results, depicted

in gray in Figure 3, show that MrBayes is less effective than our

method in recovering the true tree, except for the region between

sites 129 and 192. Our procedure does not assume that

breakpoints are known, but outperformed MrBayes applied to

each fragment free from recombination. This shows that MrBayes,

similar to cBrother (but to a lesser extent), suffers from the large

topology space and that the prior on the SPR distance is effective

to reduce the degree of freedom. Another approach (but difficult to

implement with recombinant datasets) would be to analyze

consensus topologies instead of MAP topologies. We also inferred

the topologies of the non-recombinant fragments using minimum

evolution and maximum likelihood criteria [33], reconstructing

the true trees respectively in 53% and 60% of the simulations, on

average (results not shown).

Bayesian Tree Distance
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Figure 2. Bayesian analysis on simulations of eight (panels A and B) and 12 (panels C and D) taxa. Panels A and C show trees used in the
simulations. Branch lengths are proportional to the amount of evolution between nodes. Numbers below trees show site ranges over which the
topologies were used, with true dSPR to the next topology in parenthesis. Disagreements between segments can be explained by one SPR between
trees for the eight taxa scenario and two SPR moves between 12 taxa trees. From left to right, one possible SPR explanation is represented by arrows.
The distributions of posterior mean SPR distances per segment over 100 simulated datasets (for each scenario) are shown in panels B and D. The
black vertical lines are the 95% inter-quantile ranges, while the light blue dots are the median values over all datasets. The red lines are the mean
values of the average SPR distance per segment. The true recombination breakpoints are represented by filled triangles.
doi:10.1371/journal.pone.0002651.g002

Bayesian Tree Distance
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Rate heterogeneity in absence of recombination
Even in the absence of recombination, spatially structured

model heterogeneity can lead to falsely detected recombination

[21]. To evaluate the robustness of our method against the bias

induced by rate heterogeneity, we simulated a 256 bp alignment

with eight taxa where all sites share the same topology (first

topology in Figure 2A). Furthermore, the average substitution rate

per site was set to 0.6 for almost all segments, with the exception of

sites 129 to 192, where the average rate was fixed at 4.8

substitutions per site; k was set to 1.4 for all sites (Figure 4). No

evidence of recombination was found in any of the 100 datasets

(results not shown). Since our procedure integrates out individual

substitution rates over branches, the parameter mi is the average

substitution rate per branch. Thus, an average of 0.6 substitutions

per site over eight taxa implies that mi = 0.046 since we have

26823 = 13 branches. Our primary interest, however, is not the

estimation of individual site rates, but our method seems robust

enough to model heterogeneity. In our model, the independence

of rates between segments accommodates this heterogeneity while

avoiding over-parameterization caused by individual branches.

Simulation of a recombination hotspot
The previous simulations with 12 taxa provide a scenario in

which each breakpoint can be considered a hotspot because at

least two SPRs are necessary to explain the inconsistency between

neighboring regions and because the true number of recombina-

tions will always be larger than the unrooted dSPR. We are also

interested in the scenario in which a hotspot can be represented as

unusually clustered adjacent breakpoints since we suspect that

distinguishing both might be difficult given the stochastic error on

the breakpoint locations. Therefore, we simulated datasets with 16

taxa having three recombination breakpoints at a distance of

10 bp between each other in a 500 bp alignment. The SPR

distance between adjacent trees is one, giving a total of three SPR

events. This scenario is represented in Figure 5A, where one

possibility is that the recombinant sequences are those labeled 2, 3,

c and d. Notice that it is of equal likeliness that sequence 3 is a

parental and sequence b (or sequences 4 and 7) is the recombinant.

The mosaic structure for these sequences is depicted in panel B.

For example, the sequence c is a recombinant between sequences 1

and b, and the recombination breakpoint is between sites 265 and

266. In the same way, the ancestor of sequences 6, e and g

recombined with the ancestor of taxa eight between sites 255 and

256, resulting in the extant sequences 2 and d. Note that, in this

case, there are two recombinant sequences sharing one ancestral

recombination.

We therefore simulated 200 replicate alignments under this

scenario with an average number of substitutions per site

randomly sampled between two and five (rate heterogeneity) and

a transition:transversion ratio between one and four for each 5 bp

region. In the Bayesian analyses, we assumed segments of 10 bp,

such that the true breakpoints would lie within segments. This is

likely to happen in practice, mainly in large segments where the

true breakpoints will not lie in the segment border. The summary

of the analyses is shown in Figure 5C, in which the average SPR

distances are larger than zero only in the region under

recombination. Since breakpoints are clustered, our method could

not locate their exact location in the alignment. We also observed

that the procedure correctly detects the total number of SPR

events, corroborating the hypothesis of a recombination hotspot.

This lack of resolution in pinpointing the breakpoint locations is

not an artifact of the misplaced segment locations since a similar

behavior is observed for 5 bp segments (data not shown). It is, in

fact, the result of the lack of phylogenetic signal since there are

only 10 bp supporting the intermediate topologies. In our

procedure, as long as there is some phylogenetic structure (in this

case, in the border regions), it is possible to quantify the number of

recombinations even when the breakpoints cannot be precisely

located. The true first and last topologies were found as the MAP

topologies in 82% and 85% of the datasets, respectively.

HIV-1 recombination in South America
To validate our procedure with experimental DNA sequences

we analyzed near full-length HIV-1 genomes. We first selected BF

recombinant sequences with similar mosaic patterns. These

sequences were selected from an alignment of South American

BF recombinant sequences comprising 8402 bp. We compared

each one independently against reference subtypes F, B and C

using the DualBrothers software. By repeating the DualBrothers

analysis for each putative recombinant, we assume that the

parental sequences are not involved in recombination, an

unnecessary feature in our method. Our final dataset consisted

of eight BF recombinant sequences with similar mosaic patterns

plus three reference subtype sequences, which were then analyzed

at once using our procedure. The recombinant sequences

Figure 3. Accuracy of Bayesian methods in reconstructing true
topologies. The red dots represent the fraction of simulated datasets
for each segment, where the MAP topology estimated using our
method corresponds to the true topology over 100 datasets. The black
dots represent the accuracy of the cBrother software in obtaining the
true topologies based on the MAP structure. The gray horizontal bars
represent the same quantity for the independent analyses of each non-
recombinant region (of 64 bp) using the software MrBayes (over 100
datasets).
doi:10.1371/journal.pone.0002651.g003

Figure 4. Bayesian analysis of one simulated dataset with
single topology and model heterogeneity. The panel shows the
distribution of average substitution rates mi per branch for each
segment. Dark gray vertical bars represent the 95% credibility interval,
and light blue points represent the median values. The true values are
depicted by red horizontal lines.
doi:10.1371/journal.pone.0002651.g004

Bayesian Tree Distance
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represent the reference circulating recombinant form CRF12_BF

(according to the Los Alamos HIV databank) and are described in

the Supplemental Table S1.

We ran the sampler for 104 iterations as a warm-up and then

ran 56105 iterations sampling 1000 times on the 11 sequences

alignment. The initial states for the warm-up were chosen based

on five cycles of 500 iterations of simulated annealing with final

temperature of 1.2 (initial temperature of 0.2). In this analysis, we

assumed 10 bp segments, and, since the genomic alignments are

composed of 8402 bp, we have 840 segments. This procedure was

repeated for two independent chains to access convergence from

overdispersed starting points. The results reported here are based

on the pooled chains. The starting point (initial state) was, in fact,

the same, but the simulated annealing stage disperses these states.

The convergence was accessed by visual inspection of the time

series of the samples, posterior distribution and the scaled

reduction factor [34] for the posterior probability, the number of

breakpoints and the total estimated number of SPR moves. Each

run took approximately 24 hours to complete.

Figure 6 shows the support for recombination based on d̂SPR

estimated by our method and the posterior probability of

recombination estimated by DualBrothers program. The results

indicate that regions with a higher probability of recombination (as

indicated by DualBrothers, Figure 6A) were also detected by d̂SPR

(Figure 6B). Therefore, both methods agreed in identifying

recombination along HIV-1 sequences. Our method, however,

detected much more phylogenetic heterogeneity that was

undetected by the independent recombination analysis that we

conducted with DualBrothers. This suggests that these recombi-

nations do not involve parental references because, in our analysis

with DualBrothers, we neglected the correlation between the

recombinants, as is usually done when estimating the mosaic

structure. Our result with the proposed Bayesian hierarchical

method could indicate ongoing recombinations among CRF_12

viruses. The posterior distribution on the number of recombina-

tion breakpoints ranged between 30 and 47 with a mode (and

median) of 37, while the sum of d̂SPR over the genome had a

credibility interval of 55–77 SPR events with a mode of 65. This

finding supports the existence of recombination hotspots since

there are breakpoints harboring more than one recombination

event. Examples include the beginning and the end of the pol gene

and at the tat/rev genes (Figure 6B). The prior m0 for the average

Figure 5. Simulation of a hotspot region. Panel A shows the topologies used in the simulation, where the number ranges represent the site
regions, and the numbers in parenthesis represent the SPR distance to the next tree. One possible recombination scenario is shown with colored
subtrees. Panel B shows the mosaic structure of the four recombinant sequences, highlighting the nearness of the breakpoints. Panel C shows the
distribution of average SPR distances assuming 10 bp segments, with median (light blue dots) and 95% inter-quantile ranges (dark gray bars) (over
200 datasets). The filled triangles represent the true recombination breakpoints. On the inset of panel C, the histogram of the total number of SPR
distances (in black) and the number of breakpoints (in blue) based on the modal values over 200 datasets is shown.
doi:10.1371/journal.pone.0002651.g005

Bayesian Tree Distance
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branch length was around 0.025, and, since we have 11 sequences

(19 branches), we have an expected substitution at every two sites,

compatible with the values used in the simulations.

One difficulty in the analysis is to summarize the information

from posterior topologies since we have a distribution of topologies

for each segment. Our strategy was to observe the MAP topologies

for each segment and to infer a possible recombination whenever

neighboring MAP topologies disagree. The distances between

MAP topologies for each segment indicate 49 and 52 breakpoints

(for each independently sampled chain), an overestimation

compared with sampled distances. This overestimation can be

explained using Figure 6C, which shows the support (posterior

frequency) for the two most frequent topologies for each segment

along the alignment. There is virtually no difference in frequency

between the MAP topology (most frequent) and some other

topology after site 7500 of the alignment. This figure also shows

which regions have a higher phylogenetic signal (for instance,

between sites 4400 and 4900) and regions where the posterior

distribution of trees is flatter and less reliable (such as the region

around site 2000 or after 7500). A better strategy would be to

summarize the distribution of topologies given the breakpoint

pattern.

The accuracy of our recombination detection method is

confirmed by observing the MAP topologies (Figure S2), that

can be used to reconstruct the mosaic structure for a given choice

of parentals. In fact, breakpoints detected by DualBrothers

indicate inter-subtype recombinations according to our algorithm

(observing the clustering of the recombinant sequences with the

parental ones). For example, looking at the first two rows of figure

S2, we observe that the clustering of the putative recombinants

between the parentals C, B and F changes before sites 160, 1620,

1920, 2190 and 2870, in agreement with the breakpoints detected

Figure 6. Evidence for recombination in HIV-1 genome sequences. Panel A shows the posterior probability of having a recombination
breakpoint based on analyses using DualBrothers software, with a schematic representation of HIV-1 genes in scale. Since we analyzed each of the
eight putative recombinant sequences independently in DualBrothers, this overall posterior probability is given by the sum of individual distributions.
Panel B represents the posterior distribution of SPR distances between 10 bp segments as inferred by our method using samples from two
independent runs. The horizontal axis is in the same scale as panel A. The support (posterior frequency) for the two most frequent topologies over
segments is shown in panel C. For each segment we have the frequencies of the MAP topology (blue line) and the second most frequent topology
(red line).
doi:10.1371/journal.pone.0002651.g006

Bayesian Tree Distance
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by DualBrothers. Even though d̂SPR is just an approximation to the

recombination distance, it should not be inflated if there are no

recombination hotspots. This can be explained by the fact that,

when d̂SPR is larger than one, more than one recombination is

necessary to explain the disagreement between the neighboring

segments.

Discussion

A recombination can be represented by an SPR move between

rooted topologies; thus, the number of recombinations between

neighboring sites can be estimated by the SPR distance between

their underlying rooted trees [35,36]. In this context, an explicit

model for divergence times and evolutionary rates should be

considered [37–39] since recombination can happen only between

contemporary taxa. Neglecting branch lengths, SPR operations on

rooted topologies always have an equivalent on unrooted

topologies [40]-replacing the root node by one extant taxon in

the unrooted case [41]. Then, the SPR distance between unrooted

topologies that we approximate by d̂SPR can be regarded as a lower

bound on the number of recombinations between sites, with the

advantage that we do not need to disentangle times and rates. Our

final target is not to find the recombination history, which can be

better addressed by coalescent methods, but to estimate the most

parsimonious number of recombinations necessary to explain the

phylogenetic incongruence.

Our Bayesian hierarchical procedure not only detects the

recombination breakpoints but also quantifies the disagreement

between the trees. It therefore provides information regarding

regions where recombinations occur frequently. The chance of

correctly inferring the true tree is also higher than using other

Bayesian procedures that neglect the similarity between trees on

neighboring regions. Assuming a model of independent rates for

each site and averaging over individual branch lengths as

described in [42] proved to be useful in distinguishing recombi-

nation from non-random rate heterogeneity. It is worth mention-

ing that the integration Et[Q(t)] over individual branch lengths for

a site (where Q(t) is the transition matrix as a function of branch

length t) is not the same as assuming a fixed branch length t* for all

branches since, in general, does not exist t* such that

Et[Q(t)] = Q(t*). In other words, marginalizing over branches is

not equivalent to assuming the same branch length. Rather, it

regards branches at each site as independent realizations from

random variables. In simulations with 16 taxa, our procedure was

robust to quantifying recombination (of which d̂SPR is a

conservative measure) even when the real history is described by

several nearby recombination breakpoints. These simulations also

highlight how the SPR distance differentiates an ancestral

recombination event (where d̂SPR = 1) from independent recombi-

nations when we are confronted with several recombinant

sequences sharing a similar mosaic structure. Distinguishing one

ancestral recombination (shared among many sequences) from a

recombination hotspot (many recombinations rising independent-

ly) can be difficult [22]. The robustness of our procedure comes

from the fact that a breakpoint cannot be pinpointed with

arbitrary precision, and the prior on the SPR distance accommo-

dates this compromise. The amount of recombination over a

region can, therefore, be quantified regardless of the number of

breakpoints just by looking at the sum of d̂SPR over this region.

Credibility intervals can be constructed in the same way, by

including all potential breakpoints (from larger to smaller posterior

values), whose accumulated sum lies below some threshold. For

example, the 95% credibility interval for Y breakpoints (where Y is

the posterior mean of the total number of breakpoints) can be

found by summing up the posterior frequencies of recombination

for each segment, where these frequencies are given by the

number of samples in which the segment had a distance larger

than zero. If the sum is conducted for segments ordered from

larger to smaller posterior frequencies, the credibility interval is

composed by all segments such that the sum is smaller than 0.95

times Y. The same reasoning can be applied to the inference of

recombination cold spots, regions where recombination might lead

to disruption of protein function [43].

Applying our method to the HIV-1 dataset, we detected a

number of recombination breakpoints much higher than the

number detected when parental sequences are assumed. Conse-

quently, there are many undergoing recombinations among BF

viruses that may not involve the parental sequences. Moreover,

since each SPR represents at least one recombination, the total

number of approximate SPR moves is higher than the number of

breakpoints (modal values of d̂SPR = 65 distributed among 37

locations). Thus, there are regions with recurrent recombinations

in this dataset. One way of identifying these regions is to observe

the segments in Figure 6B, where the mean d̂SPR is larger than one.

Simply summing up the mean distances over a region provides an

estimate of the minimum number of recombinations in that

region. In the same figure (panel C), we can also have an idea

about the most promising regions for further analysis. For

instance, in the vicinity of vif-vpr genes, there is a region free from

recombination that has one MAP topology with high support

compared to other alternative trees. This region can, therefore, be

used to compare the relatedness among distinct subtypes. In

conclusion, our results show that HIV-1 variants with similar

mosaic patterns may have been subjected to repeated events of

recombination, which was not apparent from the mosaic structure.

Methods

In the next subsection, we propose the approximate SPR

distance between topologies. In the following two subsections, we

describe the hierarchical Bayesian model, and, in the last two

subsections, we describe the implementation of the sampling from

the posterior distribution.

SPR distance of topologies
Limits of existing distances in our framework. In an SPR

operation, one edge of a topology together with one of the subtrees

that it spans (the pruned subtree) is chosen, and this edge is then

regrafted to a distinctly different edge of the remaining subtree [44].

The SPR distance dSPR is the minimum number of SPR operations

needed to reconcile two trees on the same leaf set. For the general

case, it can be calculated only by an exhaustive search [45,46].

Heuristic approaches to calculate dSPR have been proposed in the

context of horizontal gene transfer, where we can assume the

topologies are rooted [25,40,47–50]. These procedures were

designed for handling large topologies with a limited number or

type of recombinations. The SPR distance is also related to the

minimum number of recombination events that took place between

two trees [51]. It is possible to use the SPR distance between

unrooted topologies as the minimum number of recombinations

[52], with the remark that the unrooted dSPR will always be a lower

bound of the rooted dSPR since the rooting imposes a time constraint

on events [41,53]. There is a heuristic algorithm implementing the

unrooted version of dSPR, but unfortunately with prohibitive time to

be incorporated in our Bayesian analysis [54].

The most widely used topology metrics are the Robinson-Foulds

distance and the maximum agreement subtree (MAST) distance.

The Robinson-Foulds distance, or symmetric difference, is based

Bayesian Tree Distance
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on the split decompositions of the two topologies and is simply the

number of edges that have no counterpart in the other topology

[55]. Another measure is the MAST distance, which describes the

number of leaves on the largest subtree that both topologies have

in common [56]. Equivalently, the cMAST is the smallest number

of leaves that should be removed from both topologies to make

them agree. Unfortunately, neither of these distances is related to

the SPR distance (see Figure S3).

Since we are interested in a conservative measure of

recombination events, we adopt the dSPR between unrooted

topologies. The actual number of recombinations will always be

at least as large as our proposed d̂SPR. By doing so, our inference

does not depend on resolving the root or on any assumption about

potential parental sequences.

Proposed algorithm to approximate unrooted dSPR. Here,

we develop a novel algorithm that calculates the approximate SPR

distance d̂SPR between unrooted topologies through a label

compression technique in which equal subtrees in both topologies

are replaced by a new leaf [45]. Recalling that a split, or bipartition,

is a description of the leaves that become disconnected by removal of

the edge it represents, an unrooted binary topology T on N leaves

can be uniquely represented by its split set B(T) = {B(e1),…,B(eN23)} if

we consider only its internal edges e1,…,eN23 [57]. Namely, a

bipartition B(ei) defined by an edge ei can be represented by

B eið Þ~ e0 eið Þ e1 eið Þj½ � s:t: e0 eið Þ|e1 eið Þ~V,

e0 eið Þ\e1 eið Þ~1,

where e0(ei) and e1(ei) are the leaves separated by edge ei, and V
represents the whole set of leaves such that |V| = N. For given two

topologies T and T9, we can then classify its edges B(T) and B(T9) into

equivalent BE(T), BE(T9) and nonequivalent edges BN(T), BN(T9).

They represent the set of identical and distinct edges on both

topologies as

BE Tð Þ~BE T 0ð Þ~B Tð Þ\B T 0ð Þ

and

BN Tð Þ~B Tð Þ\B T 0ð Þ BN T 0ð Þ~B T 0ð Þ\B Tð Þ:

The number of nonequivalent edges between the topologies

(|BN(T)|+|BN(T9)|) is their (unnormalized) Robinson-Foulds

distance [55]. For binary trees, as is always the case in our study,

we also have that |BN(T)| = |BN(T9)|. The label compression can

then be accomplished by iteratively looking at the bipartitions in

BE(T) where there is e0(ei) or e1(ei) with exactly two leaves and then

replacing all occurrences of these leaves by a new leaf. Ties (when

both |e0(ei)| = 2 and |e1(ei)| = 2 are broken by an arbitrary ordering

of the leaves, and we acknowledge that this may be a poor solution.

Figure 7A shows an example of such a label compression, where we

can observe that the number of SPR events is not affected [45]. In

the third top-down panel in this example, we show the bipartitions

representing the (reduced) topologies.

For B(ei)MBN(T) and B e
0
j

� �
[BN T

0� �
, let us define a disagree-

ment split Bd ei,e
0
j

� �
~ e0 ei,e

0
j

� �
e1 ei,e

0
j

� ����h i
, where

e0 ei,e
0
j

� �
~ e0 eið Þ\e0 e0j

� �� �
| e0 e0j

� �
\e0 eið Þ

� �
~

e1 eið Þ\e1 e0j

� �� �
| e1 e0j

� �
\e1 eið Þ

� �

and

e1 ei,e
0
j

� �
~ e0 eið Þ\e1 e0j

� �� �
| e1 e0j

� �
\e0 eið Þ

� �
~

e1 eið Þ\e0 e0j

� �� �
| e0 e0j

� �
\e1 eið Þ

� �
:

B(ei) and B e0j

� �
become the same when we consider only the

complementary set of e0 ei,e
0
j

� �
or e1 ei,e

0
j

� �
. Either of them is the

minimal set which satisfies this property. For example, in Figure 7,

we have that the disagreement split between e1 and e01 will have

leaf sets

e0 e1,e01
� �

~ 1,að Þ\ 1,3ð Þð Þ| 1,3ð Þ\ 1,að Þð Þ~ að Þ| 3ð Þ~ a,3ð Þ

and

e1 e1,e
0

1

� �
~ 1,að Þ\ a,4,5,6ð Þð Þ| a,4,5,6ð Þ\ 1,að Þð Þ~

1ð Þ| 4,5,6ð Þ~ 1,4,5,6ð Þ

After calculating the disagreement split between all pairs of edges,

we elect the smallest set of leaves found among them (that is, e0(.,.)

or e1(.,.)), with ties broken by same leaf ordering as previously

described. Figure 7C shows all disagreement splits in our example,

where the smallest leaf set (actually just one leaf, after the tree

reduction) is depicted in red. This elected set of leaves is then

removed from both topologies, and d̂SPR is increased by one. This

procedure of label compression and removal of the smallest leaf set

in disagreement splits is repeated until all edges are in agreement

between the topologies (BN Tð Þ~BN T 0ð Þ~1). The approximate

SPR distance between the topologies will then be the iteration

count of the procedure.

Assuming that the comparison between edges can be done in

constant time O(1), the procedure then has complexity O(dSPRN2)

for distinct trees. We have tried several other ad-hoc procedures,

including MAST distance on reduced trees, but the one presented

here was empirically the most successful. One simple case where

our procedure fails is when the smallest set of leaves has two

pruned subtrees. Our procedure counts it as one SPR, and taking

the number of leaves into account decreases the performance for

many other cases. The program can be extended to show the

leaves that were actually removed as opposed to showing the

distance, but we must bear in mind that there could be several

SPR histories leading to the same minimum number.

Prior distribution of the distances as a penalty against
recombinations

We introduce a prior distribution for the SPR distance between

the topologies of neighboring segments in the hierarchical

Bayesian framework. This prior imposes a penalty against

inconsistencies of topologies that require too many SPR operations

to be resolved. Our assumption is that the number of SPR moves

between unrooted topologies is related to the minimum number of

recombinations. The strength of the penalty is expressed as a

hyper-parameter. By introducing a hyper-prior, the value of the

hyper-parameter is estimated as a posterior distribution.

Denoting the SPR distance d̂SPR at breakpoint i by di, our prior

distribution is described as a modified truncated Poisson:

P di li,wi,mjð Þ~ e{li wiz1ð Þl
di wiz1ð Þ
i

g li,wi,mð Þdi! wiz1ð Þ :

Here, g li,wi,mð Þ~
Pm

d~0

e{li wiz1ð Þld wiz1ð Þ
i

d! wiz1ð Þ . is the normalizing constant
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to account for the fact that any two topologies with N taxa cannot

have an SPR distance larger than m = N23, and wi is the weight

on the penalty. Poisson distribution has the property of equality

between the variance and mean, while the negative binomial

distribution is often used to take account of over-dispersion

compared with the Poisson distribution. In our case, we can make

the segments arbitrarily short, even to 1 bp, as long as the

computation is feasible. When the sequence is divided into short

segments, it is reasonable to assume that the neighboring segments

share the same topology in most cases. Even the Poisson

distribution with a mean close to zero may not reflect this

expectation sufficiently. The hyper-parameter wi of our modified

Poisson distribution will easily adapt to the analysis of short

segments since it induces an under-dispersed distribution com-

pared to the Poisson. The prior on the total number of SPR events

is not given explicitly since it is determined by this prior

probability on the number of SPR moves per segment. The

Bayesian hierarchical model incorporates further hyper-priors to

account for the uncertainty on the strength of the penalty. That is,

li and wi follow gamma distributions whose hyper-parameters al,

bl, aw and bw are shared across segments. This choice of hyper-

priors, together with the ‘‘penalty’’ parameter wi, can take into

account under- and over-dispersion of the SPR distance

distribution compared to the Poisson distribution.

Marginal likelihood and the prior for rate heterogeneity
among sites and lineages

The whole alignment X is assumed to be decomposed into K

consecutive segments. Neighboring segments may have different

topologies due to recombinations. These segments can be arbitrarily

small and should represent all regions with a potentially conflicting

phylogenetic signal since our procedure estimates the recombinant

regions as a subset of K and fixes evolutionary parameters within a

segment. At the same time, since the speed of the algorithm is greatly

affected by the number of segments, a reasonable choice for the

number of segments should be made, with one segment per site in

the ideal case. To achieve the robustness against rate heterogeneity,

we assume that the evolutionary rate matrices are stochastically

distributed among segments.

Figure 7. Example of one iteration of the algorithm that calculates d̂SPR. Panel A shows the topologies before and after the label
compression in which the subtrees common to both topologies are replaced by a new leaf. Panel B shows the bipartitions induced by the edges of
the compressed topologies, where the leaves (1), (a) and (6) represent the subtrees (1,2), ((a,b),(c,d)) and (6,7), respectively. Panel C represents the
disagreement splits between all possible edge pairs in which the smallest leaf set for each disagreement split is shown in red. Ties, such as the
disagreement between e1 and e

0

2 , are broken by choosing the leaf set including some specific leaf, one in this case. We can observe that the smallest
number of leaves causing a disagreement can be found by comparing e2 and e

0

1 or, equivalently, e3 and e
0

2 . The associated subtree is the leaf (a), and,
after its removal, both trees will be equivalent.
doi:10.1371/journal.pone.0002651.g007
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We use the standard evolutionary model, where the nucleotide

substitution process at a given site is described by a continuous-

time Markov chain and a phylogenetic tree describing the

ancestral relations between extant taxa [58]. The evolutionary

process of the segment i (i = 1,…,K) is assumed to follow the HKY

model [59]. Each segment has its own ratio ki (i = 1,…,K) of

transitions to transversions, and the equilibrium frequencies of

nucleotides are shared among all segments.

We write X = (X1,…,XK) where Xi~ Xi1, . . . ,Xini
ð Þ is the vector

of alignment positions belonging to segment i. Denoting the

topology of segment i by Ti and the branch lengths of the hth

alignment position of the segment by bh
anc jð Þ,j j[node Tið Þð Þ, the

conditional likelihood of segment i given the branch lengths is

L Xi Ti,ki,b
h
anc jð Þ,j ,j[node Tið Þ,h~1, . . . ,ni

���� �

~ P
ni

h~1

X
sh

j0

psh
j0

P
j[node Tð Þ\j0

X
sh

j

P sh
j sh

anc jð Þ,b
h
anc jð Þ,j ,ki

���� �

where P = (s1|s0, b, ki) is the transition probability from nucleotide

s0 to s1, node(Ti) is the set of nodes of the topology Ti, and j0 is the

root. If the tree is an unrooted tree, as always in our case, j0 is any

of the internal nodes and anc(j) is the parental node of node j. The

summation is over the states at the internal nodes, and the states at

the terminal nodes should fit to the observed data.

If we assume, such as in [42] that all branch lengths follow an

exponential distribution with mean mi and are independent among

branches as well as among alignment positions, then we have the

marginal likelihood:

L Xi Ti,mi,kijð Þ~ P
ni

h~1

X
sh

j0

psh
j0

P
j[node Tð Þ\j0

X
sh

j

P sh
j sh

anc jð Þ,mi,ki

���� �
:

Here, P(s1|s0, mi, ki) is the marginal probability of transition from

nucleotide s0 to s1, which can be calculated analytically through

P s1 s0,mi,kijð Þ~
ð

P s1 s0,b,kijð ÞP b mijð Þdb:

Since the marginalization is applied to each branch and to each

site separately, the model allows the branch lengths to vary among

sites while fixing the tree topology. When a large number of

sequences are analyzed, our model assumes that the average

branch length is common among sites within a segment but that it

allows variable rates among segments. By partitioning the

alignment into short segments (e.g., less than 10 base pairs), our

procedure takes account of rate heterogeneity among sites, with

more accurate modeling for smaller segments. The marginaliza-

tion over individual branches and the assumption of independence

among segments should accommodate for rate heterogeneity

among lineages and sites.

In our hierarchical setting, the transition:transversion ratios ki

and the average substitution rates mi are independent from each

other and from the segments, and they follow exponential

distributions with the means m0 and k0, respectively. Furthermore,

m0 and k0 follow exponential distributions with the meansM and

K, respectively. The equilibrium frequencies are calculated

empirically from all segments.

Sampling from the posterior distribution
If we represent the parameter vector by h, then the posterior

probability can be written as

P h Xjð Þ! P
K

i~1
P Xi Ti,mi,kijð ÞP mi m0jð ÞP ki k0jð Þ

� �

| P
K{1

i~1
P di li,wi,mjð ÞP li al,bljð ÞP wi aw,bwjð Þ

� �

|P m0 Mjð ÞP k0 Kjð Þ

This distribution is numerically simulated by a Metropolis coupled

Markov chain Monte Carlo (MC-MCMC) [60]. We employ a

Metropolis-within-Gibbs sampler where all parameters are

updated sequentially (systematic-scan) and the acceptance prob-

ability ah h
1
i

� �
of a candidate state h

1
i given its current state hi is

given by ah h
1
i

� �
~min 1,Ah h

1
i

� �� �
where

Ah h
1
i

� �
~

P Xi h
1
i

���� �
P h

1
i

� �h ih

q hi h
1
i

���� �

P Xi hijð ÞP hið Þ½ �hq h
1
i hij

� � :

P(hi) is shorthand for the prior distribution of parameter hi, and

q(?|hi) is the proposal distribution. The parameter h (0,h#1) is the

heat value of the chain, and states sampled from the cold chain

(h = 1) form an approximation of the posterior distribution. We run

one cold and one heated (0,h2,1) chain concurrently, such that

swap of states between them are accepted with the probability a(h1,

h2) = min(1, A(h1, h2)), where

A h1,h2ð Þ~ P hh1
Xjð Þ½ �h2 P hh2

Xjð Þ½ �h1

P hh1
Xjð Þ½ �h1 P hh2

Xjð Þ½ �h2
:

Here, hhi
represents the parameter vector h of chain hi.

For the continuous variables, namely mi, ki, m0, k0, li and wi a

random variable u,uniform (0,1) is drawn, and the candidate

state is set as h
1
i ~hie

jhi
u{0:5ð Þ, where jhi

is a tuning parameter.

The proposal ratio for these cases is
q hi h

1
ijð Þ

q h
1
i hijð Þ~

h
1
i

hi
.

We borrowed ideas from reversible-jump MCMC [42,61,62] to

increase and decrease the number of recombination breakpoints

and to change their location. Since updating all segments

independently would have a very poor mixing, we always consider

a block of consecutive segments that share the same topology. In

our model, the number of parameters is constant, since even the

topologies are distinct for every segment.

Break-points update scheme
Let j1 and j2 be two segments such that Ti = Ti+1 for all

iM(j1,…,j221). If we call this topology TB, then our proposal

topology T
1
B will be accepted with the probability

A T
1
B

� �
~

P
j2

i~j1
P Xi T

1
B,mi,ki

��� �� �

P
j2

i~j1
P Xi TB,mi,kijð Þ

� �

|
P d

1
j1{1 lj1{1,wj1{1,m

��� �
P d

1
j2

lj2 ,wj2 ,m
��� �

P dj1{1 lj1{1,wj1{1,m
��� �

P dj2 lj2 ,wj2 ,m
��� �

|
q TB T

1
B

��� �
q T

1
B TBj

� �|L
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since all segments inside the block share the same topology. The

constant L refers to the proposal ratio, which is usually one. If we

have Ti = Ti+1 for all iM(k1,…,k221) with both dk1{1 and dk2
non-

zero, then (k1,…,k2) is the largest non-recombinant region between

k1 and k2. The removal of one recombination breakpoint is

equivalent to choosing T
1
B to be equal to Tk1{1 or Tk2z1 (with

equal probability). The addition of a breakpoint can be attempted

by setting j1 = k1+1,…,k2 or j2 = k1,…,k221 using the above

formula, with T
1
B different from the border topologies Tk1{1 (if

we chose j1) or Tk2z1 (if we pick up j2). If the proposal topology T
1
B

and the pertinent border are the same, it is equivalent to shifting

the recombination breakpoint. If addition and removal of

recombination breakpoints are attempted with equal probability,

then detailed balance of the chain is satisfied. The exceptions are,

thus, the regions before the first and after the last recombination

breakpoints, where the frequency of removal updates is twice as

large as the frequency of addition updates. For these cases, we set

L~2 when proposing a breakpoint addition and L~1=2 when

proposing a deletion.

This breakpoints update scheme is performed in a symmetric

scan (from the first breakpoint to the last and back). To decrease

the autocorrelation between samples, we attempt to update all

segments belonging to a non-recombinant region at every iteration

by proposing a new topology T
1
B. Here and at the breakpoint

addition update, the new topology is chosen by applying one SPR

move at the current topology TB. Another move is the nearest-

neighbor interchange (NNI), a special case of SPR where the

pruned subtree is neighbor to the regraft edge. The frequency fNNI

at which an NNI move occurs can be set up to optimize the

acceptance rate. Thus, when trying a breakpoint addition on a

dataset with N taxa,

q TB T
1
B

��� �
q T

1
B TBj

� �~
fNNI

2 N{3ð Þz
1{fNNIð Þ

2 N{3ð Þ 2N{7ð Þ

� �{1

ð1Þ

since the numbers 2(N23) and 2(N23)(2N27) correspond to the

neighborhood sizes of the NNI and SPR moves, respectively [45]

and the removal is deterministic. When attempting a breakpoint

removal, the proposal ratio is the inverse of equation 1.

With this design, the proposal topology will always have dspr = 1

to the neighboring segment (since they differ by one SPR

operation) when proposing a breakpoint addition. Alternatively,

topologies with dspr = 1 may be rejected too often at recombination

hotspot locations. To increase the acceptance rate in these cases,

we developed a sampling procedure equivalent to the one

proposed in [61]: after proposing a change in the number of

breakpoints, we walk on the parameter space by a fixed number of

steps. In practice, this means that several SPR or NNI moves are

applied before the acceptance/rejection of the final state,

decreasing the correlation between samples and allowing for

neighboring segments to have a high SPR distance. Further details

can be found in [61].

Initial state sampled from heated ‘‘warm-up’’ chain
For both chains, their initial states are chosen independently

based on cycles with variable temperature, whose initial values are

picked up randomly from the priors or set to arbitrary values.

When 0,h,1, as is usually the case in MC-MCMC, the updates

are accepted more often. This allows for a better exploration of the

parameter space. Conversely, using h.1 is more effective in

finding a near-optimum state at the cost of low convergence if the

chain is attracted by a local peak. In our simulated annealing

scheme, the temperature hc at cycle c is given by hc = h0log(c+C) for

some initial temperature h0.0 and C.0.

Availability
The source code, datasets and scripts used in this study are

available at http://corn.ab.a.u-tokyo.ac.jp/̃leo/biomc2. The

ANSI C source code is available under the GNU public license.

In its current implementation a statistical software like R [63] is

necessary to interpret the posterior distributions, but we are

working on a way to circumvent this inconvenience.
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