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Abstract

Background: The genetics of transcript-level variation is an exciting field that has recently given rise to many
studies. Genetical genomics studies have mainly focused on cell lines, blood cells or adipose tissues, from human
clinical samples or mice inbred lines. Few eQTL studies have focused on animal tissues sampled from outbred
populations to reflect natural genetic variation of gene expression levels in animals. In this work, we analyzed gene
expression in a whole tissue, pig skeletal muscle sampled from individuals from a half sib F2 family shortly after
slaughtering.

Results: QTL detection on transcriptome measurements was performed on a family structured population. The
analysis identified 335 eQTLs affecting the expression of 272 transcripts. The ontologic annotation of these eQTLs
revealed an over-representation of genes encoding proteins involved in processes that are expected to be induced
during muscle development and metabolism, cell morphology, assembly and organization and also in stress
response and apoptosis. A gene functional network approach was used to evidence existing biological
relationships between all the genes whose expression levels are influenced by eQTLs. eQTLs localization revealed a
significant clustered organization of about half the genes located on segments of chromosome 1, 2, 10, 13, 16, and
18. Finally, the combined expression and genetic approaches pointed to putative cis-drivers of gene expression
programs in skeletal muscle as COQ4 (SSC1), LOC100513192 (S5C18) where both the gene transcription unit and the
eQTL affecting its expression level were shown to be localized in the same genomic region. This suggests cis-
causing genetic polymorphims affecting gene expression levels, with (e.g. COQ4) or without (e.g. LOC100513192)
potential pleiotropic effects that affect the expression of other genes (cluster of trans-eQTLs).

Conclusion: Genetic analysis of transcription levels revealed dependence among molecular phenotypes as being
affected by variation at the same loci. We observed the genetic variation of molecular phenotypes in a specific
situation of cellular stress thus contributing to a better description of muscle physiologic response. In turn, this
suggests that large amounts of genetic variation, mediated through transcriptional networks, can drive transient
cell response phenotypes and contribute to organismal adaptative potential.
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Background

Most quantitative phenotypes or disease susceptibility
factors are complex traits that are the result of interplay
between genetic variation and environmental exposure.
In animal genetics, many quantitative trait loci (QTL)
have been described as components of genetic variation
in muscle physiology, disease resistance, and reproduc-
tion traits [1]. But positional cloning of polymorphisms
underlying those QTLs is a long process, as is under-
standing the molecular cascades that lead to the pheno-
types observed. The identification of expression QTLs
(eQTLs) should help to characterize the primary effects
of genetic variation and provide opportunities to under-
stand the molecular processes that are affected by this
variation. Genes whose transcripts are affected by these
eQTLs do not necessarily embed causative polymorph-
isms, but the distribution of eQTL localizations joined to
transcript correlation structure enables functional groups
of genes to be defined [2]. Variation in gene expression is
thought to be responsible for a large part of the phenoty-
pic variation observed in natural populations. Changes in
gene regulation have been found to underlie adaptative
phenotypes in different species [3,4]. For all these rea-
sons, eQTL mapping studies is a new powerful tool to
identify genetic variants that regulate gene expression
[5-9]. Transcriptome analysis using microarrays measures
the expression level, the phenotype in eQTL analysis, of
many genes, and segregation of genetic markers within
families allows mapping of the loci affecting those pheno-
types to specific genomic regions. Global eQTL analyses
have enabled detection of cis genetic variation controlling
individual genes and significant clustered trans eQTLs
that regulate group of genes [10].

Muscle is a highly organized and complex tissue
whose properties are likely to be determined at different
levels. In farm animals, muscle fiber characteristics play
a key role in meat quality. Myofibril type ontogenesis
occurs during the embryonic period and continues until
the early postnatal period in the largest species (cattle,
sheep, and pigs) and the total number of fibers is fixed.
Contractile and metabolic differentiations occur soon
after birth in pig [11]. In mammals, post-natal muscle
tissue constitutes about 50% of the body mass and
enables high potential of plasticity in response to meta-
bolic variation (stress, heat production, exercise, injury,
nutrient storage and supply, etc.) [12,13]. This plasticity
corresponds to the possibility of changes in gene expres-
sion in response to rapid environmental events, or with
remodeling, the renewal of muscle cells as satellite cells
[14]. Consequently, muscle is one of the best examples
of a tissue with an inherent adaptation capacity to sus-
tain not only locomotion but also a number of life-sus-
taining processes [15].
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Other authors have explored eQTL mapping in pig
[16-19]. Cardoso et al. (2008) presented a simulated data
to describe a way to design pig eQTL experiment and to
select animals for eQTL mapping. Ponsuksili et al. (2008,
2010) explored eQTLs associated with water holding
capacity, an important meat quality trait [16] and
recently reported on a global comparative analysis
between eQTLs and several meat quality traits [18]. In a
QTL project for expression profiling, Steibel et al. (2011)
analyzed eQTLs obtained with 176 F2 animals chosen for
their extreme phenotypes for either loin muscle area or
backfat depth. These authors compared the eQTL and
the QTL results to identify candidate genes [19].

The aim of our study was to analyze muscle eQTLs in
one F2 family without preselecting trait-associated gene
expression levels. Using muscle samples from 57 half
sibs, we identified 335 eQTLs that characterize genetic
variation in the expression levels of 272 genes. Moreover,
the overlapping genomic localization of eQTLs and some
transcribed genes suggests candidate genes for embed-
ding cis-acting causative polymorphisms. Alternatively,
clustered trans-eQTLs genomic regions can define sets of
genes potentially affected by the same genetic poly-
morphisms through shared cellular functions.

Results
The expression levels of 272 genes are genetically
regulated by one to four eQTLs
Using a cDNA microarray, we measured the expression
levels for 2,454 transcripts in 57 Longissimus lumborum
samples collected on pig carcasses 20 minutes after
stuning and exsanguination. Heritability of expression
levels was estimated to select transcripts for which the
expression level is driven by inherited factors (Figure
1A) and to enable a QTL segregation to be tested
against a polygenic additive only model (null hypoth-
esis). Heritability of at least 5% was estimated for 1,057
of these transcripts which were then analyzed for QTL
detection. The large proportion of transcripts for which
the estimate additive variance was not significant (1,397/
2,454: 57%) reflects (i) RNA species with little or no var-
iance, and (ii) the limited power of our design, where, in
contrast to paternal haplotype segregation, the estima-
tion of additive variance is only possible for the dam
side. The average heritability across the 1,057 transcripts
deemed heritable (h® > 0.05) was of 0.18 (Figure 1A’).
Analysing QTLs that affected expression of 1,057 tran-
scripts deemed heritable, we detected 335 eQTLs, signif-
icant at a chromosome-wide threshold of 1%, that
regulate the expression of 272 genes. Details of eQTL
detection including maximum LRT, most likely position
on the genetic map and estimated heritability are given
for each of the 272 transcripts with identified eQTLs in
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Figure 1 Distribution of heritability estimates (A) for the 272 genes with eQTLs and (A’) for the 2464 genes expressed in muscle and
(B) histogram of the LRT values of the 272 genes. Detailed information is given in Additional files 1 and 3.

Additional file 1. Accounting for the large number of
tests performed (18 chromosmes, 1,057 traits) using a
canonical transformation of traits suggests an overall
false discovery rate of 15% (see Methods). The 1% chro-
mosome-wise thresholds for LRT are listed in Additional
file 2. The average heritability was of 0.45 + 0.25 for the
272 transcripts with at least one significant eQTL.

Additional file 3 presents all the 335 LRT values and

Additional file 1 summarizes the loci identified as affect-
ing the expression level for the 272 transcripts. LRT
values ranged from 7.5 to 25.3 (Figure 1B). The Table 1
and Additional file 1 (the last line of the table) also list
the number of genes whose expression was shown to be
genetically regulated by loci localized on each chromo-
some; e.g. the expression of 49 genes was genetically
regulated by at least one gene on SSCI.
Figure 2 shows the locations and LRT values of the 335
identified eQTLs. These eQTLs were not randomly dis-
tributed along the genome, 46% of them were grouped
in six clusters. The clusters were on SSC1 at 133-149
c¢M (31 transcripts), on SSC2 at 51-77 ¢cM (18 tran-
scripts), on SSC10 at 1-5 ¢cM (25 transcripts), on SSC13
at 15-29 ¢cM (18 transcripts), on SSC16 at 41-65 cM (36
transcripts), and on SSC18 at 20-55 cM (14 transcripts)
(Table 1 and Additional files 1 and 3). Six clusters of
eQTL were each associated to a highly significant chis-
quare test for enrichment of eQTL in the referenced
genome segment (p value < 10, Additional file 4).

The 272 genes were affected by one to four significant
eQTLs each: one gene was associated with four signifi-
cant eQTLs, 11 genes with three significant eQTLs, 38
with two eQTLs, and 222 with only one eQTL.

Gene mapping and annotation revealed mainly trans-
eQTL and few cis-eQTL

Knowing the chromosomal localization of genes is
essential in an eQTL study. Mapping and annotations

are described in Methods and results are summarized in
Additional files 1 (transcripts) and 2 (genetic markers).
Most of the transcripts (213, 78%) were directly loca-
lized on the pig genomic sequence (Sscrofa9). For 88%
of the transcripts, we obtained an alignment with a BAC
sequence, which, excepted for five transcripts, was loca-
lized on pig chromosomes allowing 33 more transcripts
to be localized on chromosomes. This enabled a total of
246 transcripts to be localized on pig chromosomes
(90%).

As a result of gene annotation, 71% of the transcripts
were annotated (193/272). Annotation results are given
in Additional file 1 and details in Additional file 5. We
observed a low redundancy with 186 unique genes out
of the 193 genes annotated (less than 4%).

The final important information provided by gene and
eQTL mapping was the identification of eQTLs coloca-
lized with gene transcription units, i.e. cis-eQTL. Identi-
fying of cis-eQTL is not easy, owing to the very large
confidence intervals associated with each eQTL. To
compare respective eQTL and gene localizations, we
had to assign both locations to common reference coor-
dinates. Practically speaking, we used genome assembly
as a common reference, having localized the position on
the genome assembly (Additionnal file 2) of the STS
genetic markers used to build the genetic maps (eQTL
position reference). We considered as putative cis-
eQTLs those where genetic markers flanking the most
likely eQTL position on the genetic map also bracketed
the gene position on chromosome. This condition
applied to a total of 18 eQTLs and affected the trancrip-
tion of the following genes: EEFIAI, COQ4 and
CR939593 on SSC1; IK and PDLIM7 on SSC2; MDH?2
on SSC3; PCBP2, HNRNPAI, MGP and EMGI on SSC5;
TMEM?201 on SSC6; EAPP on SSC7; THYNI on SSC9;
ALDH?2 and ACTN2 on SSC14; BX676048 and OCLN
on SSC16; and LOCI100513192 on SSC18. The average
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Table 1 Description of the 335 eQTLs localized on swine chromosomes.

eQTL
number of eQTL clustered eQTL cM adjusted p-value

SSC1 49 6 83-101 NS

31 133-149 9.06E-61
SSC2 28 18 51-77 3.14E-12
SSC3 16 4 39-55 NS
SSC4 17 4 61-81 NS

5 100-131 NS

4 149-151 NS
SSC5 13 4 1-39 NS

5 100-150 NS
SsCe 13 5 20-60 NS

5 80-140 NS
SSC7 12 3 60-80 NS

6 160-end NS
SSC8 23 5 0-60 NS

11 63-109 NS

8 125-180 NS
SSC9 6
SSC10 29 25 1-5 9.09E-38
SSC11 3
SSC12 5
SSC13 29 18 1-39 1.69E-06

5 85-120 NS
SSC14 7 5 40-60 NS
SSC15 6
SSC16 44 36 41-65 8.87E-68
SSC17 " 6 0-15 NS
SSC18 24 8 1-10 NS

15 20-55 0.00010
Total 335 242
Significant total 154

72 % of the eQTL are co-localized.

46 % of the eQTL are co-localized and this enrichment is significant at the chromosome level.

The number of eQTLs is given for each chromosome. This number is in bold when the chromosome level is significantly high (Bonferroni-corrected p-value). The
position of the clusters is given in cM (details are given in Additional files 1, 3 and 4).

distance between a gene and the eQTL closest bracket-
ing marker was 15.3 Mb (see Additional file 3 for
details). Some of these cis-eQTLs were isolated, such as
LOCI100513192, and some others (e.g. COQ4, PDLIM?)
are co-localized with clusters of trans-eQTLs.

Ontological and functional description of the eQTLs

A functional annotation of the genes identified as being
genetically regulated in muscle tissue should provide
new insights into the molecular mechanisms that deter-
mine the muscle phenotypes. In this study, we did not
preselect genes, e.g. genes differentially expressed for
one trait. All 272 genes analyzed for function were

identified solely on the basis of their expression being
affected by one of the eQTLs identified in muscle tissue.

As a consequence of partial gene annotation, only 186
genes were practically used for the functional analysis.
Two approaches were used to explore the biological
functions regulated by the genes involved in these
eQTLs. First, we used a systematic ontologic analysis
with the EASE software. Ontologic (biological process,
molecular function, and cellular component) annota-
tions were obtained for 123 genes and 33 genes had a
KEGG pathway annotation. The systematic results of
the gene ontology and the Kegg pathways are summar-
ized in Additional file 6. The 186 genes regulated by at
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Figure 2 Localization of the 335 eQTLs along the genome. Around the half of the eQTLs were organized in clusters on chromosomes 1, 2,
10, 13, 16 and 18 (see Table 1 and Additional files 1 and 3 for details).

least one eQTL were analyzed using the IPA software
(Ingenuity Pathway Analysis). IPA took into account
145 genes for the enrichment analysis of biological func-
tions (ontologies and KEGG pathways, Figure 3 and
Additional file 7). Twenty-eight biological functions
were identified (pvalue < 0.01). The pie chart in Figure
3, shows the functions organized by category from cell
death to biochemistry. The most significant functions
concern lipoprotein lipase deficiency just before cell
death, cell morphology, stress response, transcription
and translation, and other more muscle specific
functions.

Among the 186 genes, IPA identified 169 as “network
elligible” to propose biological networks based on biblio-
graphic data (Figure 4 and Additional file 8). IPA con-
structed three highly significant networks. The first
network had a score of 81 (each including 57 genes),
the second network had a score of 79 (including 55
genes), and the last had a score of 61 (including 47
genes). The three networks are presented in Additional
file 8 (as 8.1, 8.2 and 8.3). The top biolological functions
associated with the three networks were the muscle
development and physiology (networks 1 and 2), cell
metabolism (network 3), cellular movement, cell-to-cell
signaling and interaction (network 1), and protein synth-
esis and post-translational modification (networks 2 and
3). These three networks included 80% of the genes
identified as network elligible (149/169) by the IPA soft-
ware, then suggesting that these genes, which where not
selected according to a specific trait or physiological
function, nevertheless reflected shared biological

functions. This might be understood as if the largest
components of the genetic regulation of gene expression
in this tissue and sampling condition do not necessarly
reflect muscle ontology or physiology associated func-
tions but instead are depicting the most regulated cell
functions at sampling point, where gene expression reg-
ulation appears as a coordinated cell response to envir-
onmental challenges. Moreover, a combined large
network (Additional file 8, network 8.4) was constructed
with the three networks with some genes/eQTLs shared
by two networks: ACOXI, CSDEI, OCLN, PABPNI,
PIK3AP1I joined networks 1 and 2, CSDEI joined net-
works 2 and 3, while CSDE1, NEB, SMARCC?2 joined
networks 1 and 3.

The low proportion of genes with functional annota-
tion found in clusters prevented us from performing a
significant functional annotation within each cluster. For
example, one of the largest clusters containing 31
eQTLs on chromosome 1 (Figure 5) included only 14
genes with functional annotation. An alternative indirect
way to infer a putative common regulation of genes
included in the same cluster of trans-eQTL would be to
assess the relationships between the estimated eQTLs
effects for the different levels of expression involved.
This might not include all cases of shared genetic deter-
minism (when the same polymorphism has different
effects on gene expression for different genes) but none-
theless might highlight the easiest case of a parallel
response to the same polymorphism. Accordingly, we
visualized the correlation structure among the individual
eQTL effects predicted for these 31 transcript levels
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biological functions for the 186 annotated genes with genetically regulated expression (details in Additional file 7). These functions are
organized by category and the number of genes involved is given for each function.
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(Figure 5A) at a median position (141 cM) and observed
that 26 of these transcripts were affected by highly cor-
related eQTL effects (Figure 5B). The mean of Pearson
correlation coefficients among the eQTL effects affecting
these 26 transcripts levels was 0.89. The corresponding
residuals from the same analyses (i.e. after correction for
eQTL effects) showed substantial but lower correlations
between the transcripts involved (mean correlation of
0.67). Moreover, the combination of concentration
ellipses and loess smoothing (as schematic visual repre-
sentation) summarizes the linear and possibly nonlinear
association underlying the complexity of molecular reg-
ulation we were searching for [20].

Within the 129-205 c¢M interval on chromosome 5
where four putative cis-eQTLs co-localized with a smal-
ler group of trans-eQTLs, the correlogram of predicted
eQTL effects at the 141 ¢cM mid-cluster position
revealed two functional groups of transcripts, where cor-
related eQTL effects are affected the expression of
PCBP2, HNRNPAI1, KCTD1, and EMG1, while MGP,
MGSTI, and TACCI are affected by a distantly related

set of correlated eQTL effects (Figure 6). The mean of
absolute values of Pearson correlation coefficients
among PCBP2, HNRNPAI, KCTDI1, and EMGI eQTL
effects was 0.81 (the mean correlation of corresponding
residuals was 0.41). The mean of absolute value of Pear-
son correlation coefficients among MGP, MGSTI, and
TACCI eQTL effects was 0.78 (the mean correlation of
the corresponding residuals was 0.43).

Discussion

A total of 272 genes are genetically regulated in muscle
tissue with an average heritability of 0.45 in a F2 pig
half-sib family

The specific interest of this work was first focusing on
global gene expression regulation without prior selection
of transcripts for association with a particular trait, and
second using a family structured population that
enabled genetic analysis. We observed differences in
heritability estimates between the group of 1,057 tran-
scripts subjected to QTL analysis (average h® 0.18) and
trancripts affected by the eQTLs identified (h* 0.45).
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This is consistent with the expectation that significant
QTL contribute to polygenic additive variation estimates
even when this is not the best possible model. The size
of our dataset limited the power of detection and it is
likely that we were not able to detect all the loci
involved in the regulation of gene expression. In a
review of genetical genomics studies done with SNP and
genome wide associations, Cookson et al. (2009)
observed that the QTL underlying genetic variability of
expression is often detected for only less than 20% of
the estimated trait heritability [21]. Cookson et al.
explained that some genetic or other factors like family
clustering, sample stratification and genetic markers
informativity are limiting the power to detect other loci.
Nevertheless, the starting point is that variation of
expression is not only a result of transcriptional regula-
tion but also of genetic regulation in order to explain
part of the phenotypic variability in a constant
environment.

Another original choice was using tissue RNA
sampled in individuals from an outbred population (but
in a controlled environment) to analyze genetic

regulation of gene expression. Most published eQTL
studies used inbred lines of model organisms and Gilad
et al. (2008) [10] suggested that it would be more infor-
mative to evaluate regulation of expression in popula-
tions carrying natural sources of genetic variation.
Example of such representative genetic variability could
be found in human populations, outbred mice [22,23]
or, to a lesser extent, pig lines (from breeding pro-
grams). In our work, it is worth noting that this F2
family was constructed from two synthetic lines (a syn-
thetic line and an outbred line) intercrossed for two
generations in order to increase the segregation of
genetic variability in F2 animals. All animals analyzed
were raised in the same conditions, allowing us to con-
trol the effect of the environment, while exploring a
physiological context (post slaughtering/hot ischemia)
which is very specific of meat harvesting in livestock
animals raised for meat but which could be also consid-
ered as an animal model of ischemia in skeletal muscle.
In human, the first eQTL studies orginally focused on
transformed lymphocyte cell lines (mainly the HapMap
lymphoblastoid cell lines). New studies have been
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Figure 5 eQTL mapping on SSC1 (A) and correlogram of the predicted eQTL effects for the genes involved in the 133-149 trans-eQTL
cluster (B). A. The chromosome-wise threshold of 1% (based on simulations) corresponds to the lowest LRT value of 86 on the graph. All the
49 eQTL on SSC1 are mapped. The trans-eQTLs are represented by narrow lines whereas the three putative cis-eQTL are represented by thick

lines (COQ4, EEFTAT and CR939593). B. The correlogram comprises the 31 genes with

eQTL in the 133-149 cM cluster with the colored lines used

for mapping. The correlogram includes a circle and an ellipse. Each circle is shaded red or green depending on the sign (+ and - respectively) of

the correlation, and with the intensity of color scaled 0-100% in proportion with the

magnitude of the correlation. The ellipse is a schematic

scatterplot matrix and each panel depict the patterns of relations among variables with confidence ellipse and smoothed curve.
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Figure 6 Four putative cis-eQTLs mapped on SSC5 (A) and correlogram of the predicted eQTL effects for the seven gene with an
eQTL on 139-205 cM on SSC5 (B). A. The chromosome-wise threshold of 1% (based on simulations) corresponds to the lowest LRT value of
7.5 on the graph. Only the four putative cis-eQTL are presented. B. The correlogram is for the seven genes with an eQTL in the 139-205 cM
(maximum LRT values for each gene on the chromosome 5) with the color lines used for mapping.
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undertaken on clinical samples of liver, adipose tissue,
postmortem brain [24-28], although sample access and
standardization remains limiting. Animal studies in
outbred populations offer an attractive combination of
standardized environment, large family sizes allowing
linkage studies and more easily accessible tissues.

The 335 eQTLs are mainly trans-eQTLs revealing genes
with shared biological functions

In our study, we based the precise localization of the
transcribed genes on highly reliable sequence homolo-
gies of cDNA used as probes on the genome sequence
(related to a genome sequence in progress, version 9
available). It is also worth noting that the method we
used to quantify gene expression, which is based on
¢DNA microarray hybridization, is relatively immune to
artefactual cis-eQTL identification [29-31] where DNA
polymorphisms such as SNPs can modify the hybriza-
tion efficiency of oligo probes and lead to an apparent
change in gene expression, in fact contributed by these
loci. In these conditions, we identified a small propor-
tion of putative cis-eQTL (18 putative cis-eQTLs loca-
lized in 335 eQTLs) like in a recent comparable study
on pig muscle reported by Ponsuksili et al. (2010) where
35 putative cis-eQTLs were identified [18]. An observa-
tion common to our and other eQTL studies is that the
significance of detection is generally higher for cis-eQTL
than for other eQTLs. In our study, the highest LRT
value was found for a putative cis-eQTL LOCI100513192
on SSC18. This was expected as cis-eQTLs are supposed

to transfer the contribution of a given genomic poly-
morphism directly to local gene expression, and not
indirectly via actions that occur along pathways or via
gene interactions, all of which can create background
noise thus hindering the detection of QTL. This was
also the case in eQTL studies in mouse, rat and human
[10,32] using very large oligo arrays for gene expression
measurements and large sets of SNPs genetic markers in
which multitesting to avoid false discovery mainly high-
lighted highly significant cis-eQTLs and few trans-
eQTLs. This is a powerful way to directly identify SNP
polymorphisms as putative regulators of local gene
expression but it does not provide information on the
architecture of gene and molecular pathway regulation.
In genetic analysis of physiology and pig meat quality
traits, many QTLs have been reported but few led to
the identification of genes and causal polymorphisms
mainly because of the complexity of trait determinism
and epistatic regulations [16,33,34]. This is why we
hoped that eQTL studies would help to decipher how
this complexity is established. In this context, it was
interesting to identify eQTL for genes without prior
selection and to identify only six clusters of trans-
eQTLs suggesting a shared genetic regulation (for about
half the genes), but also that the expression levels of
some genes are regulated by more than one eQTL.
Constructing bibliographic gene networks (using Inge-
nuity software), we obtained three highly significant net-
works for 149 genes (out of the total of 186 annotated
genes) suggesting that the genes identified for their
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genetic regulation mostly work together (Figure 4).
Moreover the three networks can be merged into a sin-
gle network underlying the shared biological functions
regulated by these eQTLs/genes (Network 8.4 in Addi-
tional file 8). Networks 1 and 2 mainly underlie the
development and organization of muscle tissue whereas
network 3 is involved in cell metabolism. We were not
able to allocate a specific cluster of trans-eQTLs to one
network or vice versa to be able to say that one network
is specifically regulated by one or more clusters of
eQTLs. Likewise, as discussed below in the case of the
cluster of eQTLs on chromosome 1 (and in Results), the
low number of annotated genes per cluster did not
allow us to really perform functional analysis of each
cluster.

However, we performed enrichment analysis of the
biological functions regulated by IPA (Figure 3). Among
the top biological functions identified, the cell cycle and
death (tumorigenesis, proliferation, apoptosis, cell death)
were the major functions identified. Forty-seven genes
(28% of the genes named elligible by IPA) are involved
in cell death (including apoptosis and inhibition of
apoptosis). This may be related to the way muscle tis-
sues were sampled (at slaughtering) and may be corre-
lated with the effect of stress, which was the second top
function identified. These functions were previously
considered as related to meat quality traits [34] and
stress is well known to be responsible for meat defects
[35-38]. Some biological functions are related to the
organization of muscle cells and tissue including con-
nective tissue, focal adhesion, filaments, and vasculariza-
tion. Others are more related to muscle signal
transduction pathways like the quantity of heavy metals,
phosphatidic acid and calcium flux. Fundamental mole-
cular processes such as degradation of DNA, mRNA
processing, protein biosynthesis and modification are
also involved.

The genetic regulation of muscle gene expression by the
133-149 cM locus on chromosome 1 is involved in stress
response

To explain the genetic regulation of a cluster of eQTLs,
we use the example of one of the largest cluster in our
study. It concerns chromosome 1 at locus 133-149 cM
which regulates the expression of 31 genes (Figure 5).
The bibliographic network of this cluster involved nine
genes that shared the biological function cell death (data
not shown), obtained with Ingenuity software, including
COQ4 a putative cis-eQTL co-localized with the cluster.
We explored the correlation structure of gene expres-
sion of members of this eQTL cluster to identify possi-
ble coregulations and to distinguish between groups of
genes affected (or not) by the same genetic variation
(individual predicted eQTL effect, Figure 5B). This
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observation suggests a shared genetic determinant
affecting 26 transcripts levels out of the 31, while above
and beyond eQTL effects, the overall phenotypic corre-
lation would be consistent with co-regulation of these
transcripts in the same pathway or transcriptional net-
work. This would imply parallel responses not only to
an eQTL allele, but also to all alternative genetic and
environmental effectors that affect this expression net-
work. This analysis also highlighted functional heteroge-
nity within a group of co-localized eQTLs, where
colocalization can result not only from multiple tran-
scripts affected by the same locus, but also from inde-
pendent genetic effets localized on the same
chromosome segment.

Nevertheless, we observed that expression of most of
the genes in the cluster was highly correlated among
genes and particulary with COQ4. In this context, the
putative cis-eQTL COQ4, can be proposed as a candi-
date primary effector of an identified eQTL locus, affect-
ing the whole group of transcripts downstream. This
was not originally expected firstly because of the co-
localization of eQTLs within a cluster could be random,
and secondly because if gene expression is influenced by
shared genetic regulation, this is far from implying a
tight coregulation owing to alternative sources of regula-
tions from the environment or from other loci for each
gene. Gene COQ4 is located in the same genetic interval
(cis-eQTL) and has recently been identified in human
[39] as coding for one of the Coenzyme Q (CoQ) pro-
teins, which are small lipophilic molecules that transport
electrons in the mitochondrial respiratory chain and
function as a cofactor for mitochondrial enzymes [40].
Human COQ#4 is an interesting candidate gene for
patients with CoQ, deficiency or with developing iso-
lated myopathy with progressive muscle weakness [41].
In pig, several QTLs were detected for fatness and
growth at the position of the cluster [42-45]. The results
of these different studies suggest that the cluster of
eQTLs on chromosome 1 probably regulate cell death
via mitochondrial respiratory function and subsequently
muscle physiology. COQ#4 could be an interesting candi-
date gene for further experiments to characterize alleles
and how this allelic variation is affecting COQ4 gene
expression and possibly muscle functions.

Two putative cis-eQTLs are regulated by SSC5 and are
tightly flanking the HOXC cluster

RNA levels of two genes, PCBP2 and HNRNPAI, were
found to be genetically determined by two co-localized
eQTLs, along with their own transcription unit (cis-
eQTL), on the same segment of the distal arm of chro-
mosome 5 (Figure 6A). These two eQTLs are part of a
larger group of eQTLs at the same location (139-190
cM, but not identified as a cluster) where the two
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transcripts form a distinct transcription module as evi-
denced by the eQTL effects on these RNA levels (Figure
6B). It is striking that among the small number of cis-
eQTLs found in our experiment, two were located in at
neighboring positions and were co-regulated. This sug-
gests shared dependence of the same cis-localized poly-
morphism through a transcription control mechanism
acting locally. This is in contrast with the mechanism
which is generally expected in clusters of trans-eQTLs,
where a causative polymorphism may affect the down-
stream expression of a target gene and this gene, e.g.
transcription factor, affect the expression of the other
genes involved in the cluster.

The two genes tightly flank the HOXC cluster (PCBP2
is localized 200 kb 5’ from HOXC13, HNRPAI is loca-
lized 50 kb 3’ from HOXCS, according to the genomic
sequence version Sscrofa9). It has been reported that the
HOXA and HOXC clusters are involved in the control of
adult skeletal muscle differentiation [46] and although
HOXC genes were not identified as eQTL co-segregating
at this particular position, HOX genes are prototypes of
multigenic cis-regulatory modules [47]. The cis-regulon
observed in our study brackets the HOXC cluster,
whereas evolutionary analysis [48] points to the consoli-
dation of HOX clusters in vertebrates through selection
of cis-regulons as better co-regulation systems. It is
tempting to speculate that the flanking genes identified
here were co-opted by a local cis-regulon including the
HOXC cluster to drive an adult skeletal muscle differen-
tiation program. All the more, as reviewed by Williams ez
al. (2007), PCBP2 and HNRNPA1 are plausible sites of
action for genetic determinants of mRNA levels [29].
These two genes are known to be heterogeneous nuclear
ribonucleoproteins (hnRNPs). HNRNPA1 is involved in
pre-mRNA processing, polyA+ mRNA transport from
nucleus to cytoplasm and alternative splicing control
[48]. PCBP2 is a poly(C) binding protein known to con-
trol translation of specific mRNA through competitive
binding of C-rich tracts in target genes 5’"UTR and mir-
328 [49]. PCBP2 has been shown to provide for selective
expression of cell survival factors [50]. These functions
may support control of a cell differentiation program
linked to a stress response.

Conclusion

Identifying the genetic regulation of gene expression is a
new powerful way to decipher complex traits such as
mammalian disease or livestock production traits. We
can now describe phenotypic variations not only
through genetic analysis, not only with differentially
expressed genes but also with genetic analysis of gene
expression of thousands of intermediate phenotypes.
Integrated analyses across all these data types may help
to more efficiently and more accurately identify

Page 11 of 17

causative polymorphisms or understand the molecular
events involved in phenotype construction even when
these are affected by several QTLs [21,51]. In this study,
we identified 335 eQTLs of which half co-localized at
six loci, suggesting co-regulation by the same polymor-
phims and subsequently, co-functions. The other half of
the eQTLs provide information about the genetic con-
trol of the expression of specific genes. In addition, all
the affected genes participate in a consistent set of bio-
logical functions, since when functionnal annotation is
possible, functionnal networks can be contructed.
Beside the analysis of genetic variability in gene
expression presented here, this systematic dataset will
also offer opportunities in a priori analysis of expression
levels correlations structure as for example inferring co-
expression networks [52]. In future experiments, we
expect to be able to combine trait-related gene expres-
sion and QTL analysis to propose positional candidate
genes as underlying trait QTL and contribute to the
identification of the causative polymorphisms.

Methods

Animals and Muscle samples

A group of 57 half-sib and full-sib pigs was selected from
a larger F2 resource population, produced as an inter-
cross between 16 FO males and 25 FO females from two
production sire lines FHO016 (Pietrain type, France
Hybrides SA, St. Jean de Braye, France) and FHO19 (Syn-
thetic line from Duroc, Hampshire and Large White
founders, France Hybrides SA, St. Jean de Braye, France),
respectively. The two parental lines differed marginally in
adiposity (backfat thickness) and longissimus muscle
developpement (cross-section surface), although both
were close to European pork production standards. The
whole population included 1,370 F2 animals, progeny of
18 F1 males and 72 F1 females, and was used as a QTL
detection resource population [53]. Animals considered
in the present work were 33 females and 24 barrows
selected from the largest half-sib family, representative of
overall population variability in carcass and meat quality
traits. These 57 animals where produced by three F1
sows mated with the same F1 boar for one to three lit-
ters, and were genotyped as non-carriers of either the
RYR1 Cys®'® or the PRKAG3 GIn?? allele, known to
alter substantially the longissimus muscle physiology
[54,55]. Muscle samples were biopsied from Longissimus
lumborum (LD) muscle 20’ after stunning and exsangui-
nation. Samples were immediately frozen in liquid N,
and kept at -80°C until analysis. Procedures and facilities
were approved by the French Veterinary Services.

Genetic markers
Genomic DNA was extracted from piglet tails docked at
birth, using a QIAGEN DNAg extraction kit, following
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manufacturer protocol. 170 microsatellites loci spanning
the 18 autosomes with an average spacing of 17 ¢cM
were selected based on informativity on F1 animals and
genotyped by PCR amplification with fluorescently
labeled primers followed by denaturing acrylamide gel
electrophoresis, revealed within a LICOR 4200 auto-
mated sequencing system. Allele calls were performed
based on comigration with molecular weight standards
using LICOR SAGA genotyping software. F2, F1 and FO
animals were all genotyped and Mendelian segregation
was checked. Custom genetic maps were reconstructed
with CRIMAP software [56]. The 170 microsatellites
markers are described in Additional file 2 with position
on genetic map and the corresponding genomic localiza-
tions. These localizations where estimated from genetic
markers STS sequence homologies on genome sequence
assembly using blat program (Ensembl Sscrofa9, see in
silico Genomic localization).

Total RNA extraction

The total RNA extraction was previously described [57].
Total RNA was isolated from each of the 57 muscle
samples. Briefly, the muscle samples were disrupted,
homogenized and ground to a fine powder by rapid agi-
tation for 1 min in a liquid-nitrogen cooled grinder with
stainless steel beads. An aliquot of 250-300 mg of the
fine powder was then processed for total RNA isolation
and purification using RNeasy Fibrous Tissue Midi kit
according to the manufacturer’s instructions (Qiagen SA
France, Courtaboeuf, France). The method included a
proteinase K digestion step to remove proteins and a
DNase digestion step to remove contaminating DNA.
The extracted total RNA was eluted in 300 pl of RNase-
free water and stored at -80°C. RNA quality and concen-
tration were controlled using an AGILENT 2100 bioana-
lyzer (RNA solutions and RNA 6000 Nano Lab- Chip
Kit, Agilent Technologies France, Massy, France).

Design and hybridization of cDNA arrays

The 9 K micro-array (GEO accession number GPL3729)
used in this work was previously described [58]. The
microarray Nylon cDNA hybridization and quantifica-
tion using BZScan were the same as in [57]. The cDNA
arrays were first hybridized with a vector oligonucleotide
labeled with y**P-ATP at 42°C for 12 h to determine the
quality of the spotting process. After washing, the arrays
were exposed for 6 or 24 h to radioisotopic sensitive
imaging plates (BAS-2025, Fujifilm, Raytest France S.A.
R.L., Courbevoie, France). The imaging plates were
scanned thereafter with a phosphor imaging system at
25 pm resolution (BAS-5000, Fujifilm, Raytest France S.
A.R.L., Courbevoie, France). The arrays were then
stripped and hybridized with a complex target. Briefly,
c¢DNA was synthesized and labeled from 5 pg total RNA
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by simultaneous reverse transcription of mRNA using
SuperScript II RNase H-Reverse Transcriptase (Invitro-
gen SARL, Life Technologies, Cergy Pontoise) and o.**P-
deoxy-CTP. The mRNA of each muscle sample was
hybridized at 68°C for 24 h to one array. Exposition and
scanning were done as for vector hybridization. The
hybridization images from vector and complex targets
were quantified using the semi-automated software,
BZScan [59]. Fixed circle segmentation, i.e. a grid pro-
cess with a fixed spot diameter was applied. The grid
obtained with vector hybridization images was used to
assess the reproducibility of the quantification signals
between array replicates and also to analyze the complex
target hybridization images. The complex hybridization
images were quantified by extracting the intensity of
each spot. The microarray data from this research has
been deposited in the NCBI Gene Expression Omnibus
data repository under accession number GSE26924.

Normalization/filtering of raw data

Data from BZScan outputs were normalized by the fol-
lowing process. First the vector oligonucleotides hybridi-
zation has been used to exclude spots without enough
DNA spotted; this is in order to have an accurate hybri-
dization with the muscle RNA sample. Then data were
log base 10 transformed. 2,464 clones with signal inten-
sity higher than 2 times the median value of background
(water, plasmid and empty spots). Data were centered
with the median value obtained from the arrays within
each hybridization experiment. As we observed a non-
linear median across samples, we used the loess function
of R to adjust the medians for each sample. Finally,
hybridization data have been centered for each spot.
Normalization has been done using R software (R, lan-
guage and environment for statistical computing, R
Foundation for statistical computing, Vienna, Austria,
http://www.cran.r-project.org).

Genetic analysis

All normalized gene expression levels (2,464 spots
selected) were first analysed for polygenic additive varia-
tion with an animal model using ASREML 2.0 software
[60]. We estimated a narrow sense heritability (h?) for
each e-trait as h? = VA/(VA+VE), where VA is the esti-
mated additive genetic variance for the expression level
of a transcript and VE is the estimated residual variance.
All transcripts associated with an estimated heritability
higher than 0.05 (1,057 transcripts) where then sub-
jected to QTL analyse using a variance component
approach [61]. Briefly, univariate mixed models of var-
iance were fitted for each expression trait, using as fixed
effects slaughter batch (7 levels), hybridization batch (2
levels) and spotting batch (2 levels). Additive genetic
effect was fitted in an animal model, using a 3
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generations pedigree structure to setup animal relation-
ship matrix, and QTL effect was fitted using Identical
By Descent (IBD) relationship matrix for the given gen-
ome position. IBD relationship matrices were estimated
using package LOKI 2.4.6 [62], and variance compo-
nents were estimated using Residual Maximum Likeli-
hood (REML) method with ASREML 2.0 software [60].
A QTL detection test was computed each 2 cM along
linkage groups using as a Likelihood Ratio Test (LRT),
-2*(log(Additive and QTL model Likelihood)-log(Addi-
tive only model likelihood). We determined an empirical
significance threshold within each linkage group from
the distribution of LRT observed on simulated data
under null hypothesis (no QTL). We simulated phenoty-
pic data only, using same marker data and family struc-
ture and modeling only additive genetic variation within
this pedigree structure (h* = 0.2). We generated 1,000
simulated datasets, which we further submitted to the
same QTL detection procedure, recording distribution
of maximum LRT values by chromosome (i.e. distribu-
tion of tests when no QTL contributes to variation)
when scanning all genome positions. We then set 0.99
quantile of these LRT distributions for each chromo-
some, as a 1% chromosome-wise threshold for detection
of eQTL.

While we detected 6 to 10 eQTL by chromosome with
LRT higher that this threshold overall from 1,000 simu-
lated data, when using the 1,057 heritable gene expres-
sion levels, we detected from 6 to 140 eQTL by
chromosome, which suggests an achieved FDR for
eQTL detection of 100% (no eQTL detected) to (2.4 x
10/140 = 17%), according to chromosomes. Those FDR
estimates are likely very conservative, as many expres-
sion levels are highly correlated, and thus far to be mod-
elled as 2,464 independent variables. All the results are
given in Additional file 3 and summarized in Additional
file 1.

However, as we have proposed a biological interpreta-
tion for all 335 eQTL identified as significant at a 1%
chromosome-specific chromosome-wise threshold,
including for each chromosome, the 10 false-positive
eQTL that would be identified by chance for each chro-
mosome if testing for 1,057 independent variables, we
investigated realized FDR when considering all of the
identified 335 eQTL, and taking into account the depen-
dence among expression levels. We followed the
approach suggested [63] and applied to this multiple
trait and multiple chromosome testing issue [43] using a
canonical transformation of traits based on phenotypic
correlation structure, to estimate the number of inde-
pendent variables being tested. The 1,057 expression
traits having been subjected to the eQTL scan can be
described with 55 independent eigenvectors, accounting
for 99.6% of total variation (R software). Using a
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Bonferroni correction for testing of 18 independent
chromosomes, a 1% chromosme-wise threshold applied
to these 55 equivalent independent traits would give rise
to 10 false positive eQTL overall. We identified 335
eQTL from 272 spots or RNA expression levels (1.23
eQTL/spot), accounting for a similar dimensionality of
54 independent traits in positive results. Positive results
can be expressed as 67 (1.23 x 54) independent eQTL,
thus our proposition of an overall FDR of 15% (10/67)
when considering all of the 335 eQTL.

Correlation structure of predicted eQTL effects and
residuals

The correlation structure of predicted eQTL effects on
expression levels for the transcripts associated with sig-
nificant eQTL localized in the same genomic region was
visually explored using correlograms as proposed [20]
and implemented in R/corrgram software. The predicted
eQTL effects were the solutions of the eQTL random
effect in mixed model analysis at the selected genome
position, as computed by ASREML 2.0 at model conver-
gence. Residuals were collected from the same runs and
subjected to the same correlation analysis among tran-
scripts showing colocalized eQTL. The corrgram func-
tion produces a graphical display of a correlation matrix,
called a correlogram. For each pair of expression mea-
surements, color intensity and circle fill level are pro-
portional to the absolute value of the corresponding
correlation. The circles are filled clockwise for positive
values, and anti-clockwise for negative values. The ellip-
tic representations are depicting the patterns of relations
among variables. The combination of concentration
ellipses and loess smooth summaries of linear and possi-
bly nonlinear association. The ellipse have their eccen-
tricity parametrically scaled to the correlation value.

In silico Genomic localization

To evaluate if the 272 genes could be associated with
genomic region governing any eQTL region, we have
identified their chromosomal localizations on the por-
cine genome. As the porcine genome is not completely
sequenced [64], an in silico process was undertaken to
ensure pig genome localization (Additional file 1). The
same process has been applied for the 170 genetic mar-
kers (Additional file 2).

1) The pig ESTs were mapped to the pig genome
(Sscrofa9.2) using the Narcisse alignment tool [65]. Only
mapping location exhibiting more than 94% identity
were considered as reliable (Ensembl http://www.
ensembl.org/Multi/blastview, Sscrofa9, April 2009). 2) A
systematic porcine localization was done against the
High Throughput Genomic Sequences (HTGS, NCBI).
The blast results (88%, 239/272) correspond to a BAC
sequence previously localized on the porcine physical
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map and on the genomic human sequence by homology
[66]. 3) When only a gene name is obtained from the
c¢DNA annotation, the human localization of the corre-
sponding gene are recovered and the results were com-
pared to expected localizations from IMpRH web server
[65] and the comparative human-pig map [67]. Com-
parative genomics were used for the 15 remaining tran-
scripts with only a human gene annotation, but most
transcripts were localized directely on porcine chromo-
somes. Fourteen transcripts have not been localized at
the time of the analysis.

eQTL distribution over genome and cis-eQTL detection
The observed distribution of eQTL most likely positions
over the whole genome was compared to the expected
distribution of these eQTL when assuming an equiprob-
able distribution of eQTL locations all over the 18 auto-
somes. A chisquare statistic was computed for the
windows of 40 ¢cM or more, where several eQTL co-
localized. The six clusters of eQTL referred as such in
results and in Table 1 were each associated to a highly
significant chisquare test for enrichment of eQTL in the
referenced genome segment (p-value < 107°). These p-
values have been adjusted with a Bonferroni correction.
Details are given in Additional file 4.

The eQTL localizations are only broadly defined as a
result of the long range linkage in a F2 population. We
considered as putative cis-eQTLs those where genetic
markers flanking the most likely eQTL position also
bracketed the gene position at the 1% chromosome-
wide significant eQTL detection on the genetic map.
We also considered a more restrictive definition of cis-
eQTL, including all eQTL where gene transcription unit
was located within 25 Mb of the closest genetic marker.
We qualified eQTL as putative cis-eQTL when coordi-
nates of gene transcription unit on Sscrofa9 genome
assembly were found within the interval defined by the
genomic locations on the same assembly of the genetic
markers bracketing the QTL closest marker position.
We estimated the expected number of cis-eQTL as fol-
lowing a binomial law with a nominal probability of 1/
(number of markers intervals/2), applied to 335 eQTL.
Expected number of cis-eQTL detected by chance with
this criteria would have a mean of 3.94 cis-eQTL, and a
p-value lower than 0.01 of being higher than 9. It results
in subselecting 15 cis-eQTL with an average distance of
7.8 Mb between the closest genetic marker and gene
transcription unit. Both ways to identify the 18 putative
cis-eQTL are given in the Additional file 3.

cDNA clone annotation
The cDNA annotation was mostly done by homology
with other complete genome such as the human or
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bovine genomes. The 272 transcripts were annotated
searching sequence homologies against following data-
bases: SwissProt, TIGR Pig SsGI 12, UniGene Pig,
Ensembl Human Transcripts NCBI36 (annotation from
SIGENAE, http://www.sigenae.org/). Finally, the 272
genes were manually annotated with blastn against the
Refseq_RNA library (NCBI). The results are summarized
in Additional file 1 and details are given in Additional
file 5. E-values thresholds filtering alignments between
Sigenae contigs and other databanks are: UniProt/
RefSeq proteins, 10°°; RefSeq RNA, 10°%; UniGene/
TIGR contigs, 10°%. For SIGENAE, hits are the most
homologous sequences to our consensus sequences,
after a BlastX (nucleotid/protein) on SWISSPROT. Only
the best 20 first hits are recovered, with at least a score
of 100 and an E-value of 107,

Manually, with NCBI/Refseq or Genbank databases,
the observed thresholds are score 100, E-value 107%°,
identity 74% (pig compared to another mammalian) or
91% (pig-pig comparisons). We verified the correspon-
dence between the gene name and the genomic localiza-
tion using comparative genomics between human and
pig. Finally, a consensus gene name was kept.

Functional annotation

The software EASE (the Expression Analysis Systematic
Explorer; http://david.abcc.ncifcrf.gov/ease/ease.jsp) was
used to obtain functional Gene Ontology (GO) terms for
each gene. The systematic ontological annotation is given
in Additional file 6. The Ingenuity Pathways Analysis
(IPA, http://ingenuity.com/) application was used to
identify the biological mechanisms, pathways and func-
tions involving genes affected by eQTL. Statistically
enrichment functions have been determined from the
145 eligible genes (Additional file 7) and illustrated with
a pie chart (Figure 3). This system, a web-based interface,
provides computational algorithms to identify and dyna-
mically generate significant biological networks and path-
ways that are particularly enriched with our genes of
interest. It also ranks networks by a score that takes into
account the number of focus genes and the size of the
networks, indicating the likelihood of the focus genes in
a network being found together by chance. The higher
the score (score = -log (p-value)), the lower is the prob-
ability of finding the observed Network Eligible Mole-
cules in a given network by chance. We chose networks
with direct relationships between genes. The detailed
gene names presented in each network, cellular localiza-
tion and function are described in Additional file 8. Main
functions corresponding to each network are given by
IPA after a statistical analysis of the significance of the
included genes. The software tool Path Designer (IPA)
was used to improve the readability of the networks.
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Additional material

Additional file 1: Description of the 335 eQTLs for 272 genes with
heritability and genomic localization. For each gene/accession
number, this file gives the estimated heritability, the number of eQTL,
the chromosome localization of the eQTL with the LRT value, the gene
name, the gene localization on Sscrofa9 or on BAC chromosome or
predicted localization by human-pig comparative genomic, and if the
eQTL is a putative cis-eQTL (when associated with ** or ***)

Additional file 2: Description of the microsatellite markers used for
the eQTL study. Markers are positioned on genetic map (H.cé: Haldane
distance units, cM), as estimated on resource F2 population and used in
QTL detection procedures. This table also gives the putative genomic
localization when possible. The last column gives the statistical threshold
obtained after simulation.

Additional file 3: Description of all the 335 eQTL located all along
the genome. This file gives details for all the 335 LRT value (maximum
for each chromosome) for each gene/accession number, the estimated
heritability and the genetic localization (cM) of the eQTL. The genes
involved in one of the six clusters of eQTL are in bold. The definition of
the putative cis-eQTL is given according two ways: comparison of the
interval of the genetic localization of the gene (cM) with the eQTL
interval for putative cis-eQTL at 1% chromosome-wide significant eQTL
detection (cM), and calcul of the position between the LRTmax to the
genomic localization of the gene (Mb).

Additional file 4: Six significant clusters of trans-eQTL were
identified. The observed distribution of eQTL most likely positions over
the whole genome was compared to the expected distribution of these
eQTL when assuming an equiprobable distribution of eQTL locations all
over the 18 autosomes. A chisquare statistic was computed for a
window of 40 cM or more, where several eQTL co-localized. These p-
values have been adjusted with a Bonferroni correction.

Additional file 5: Detailed annotation (gene and genomic
localization) for the 272 genes. For gene/transcript, the first annotation
was obtained by the Sigenae bioinformatic platform. Next are given
results from NCBI blast with (human genome and transcript) or transcript
reference (Refseq) or Unigene or Ensembl databases. Transcript were
mapped with Sigenae, with NCBI blast against HTGS database and
Narcisse software for the genomic sequence or Blat with Ensembl
genome browser (Sscrofa9). The consensus gene annotation and gene
mapping are given in Additional file 1.

Additional file 6: The EASE web software provided funtional
information for 127 of the annotated genes (from the 272 genes
with at least one eQTL). For each annotated gene (when a gene
symbol is available), this file gives the gene description, the human gene
identifiers, the alias symbols, the Gene Ontologies (GO: Biological Process,
Cellular Component, Molecular Function), the KEGG (Kyoto Encyclopedia
of Genes and Genomes) pathway, and a summary of the functions of
the gene when available.

Additional file 7: The 28 top biological functions identified by
Ingenuity Pathways Analysis (p-value < 0.01). This table corresponds
to Figure 3 and shows the co-ocurrence annotations found by IPA.

Additional file 8: Three significant gene networks were obtained
with Ingenuity Pathways Analysis for the 186 annotated genes (out
of the 272 genes) associated with eQTLs. Detailed information about
the genes included in each network are given in the neighboring
columns: gene symbol, synonym(s), the Entrez Gene Name, in which
networks the corresponding gene is involved, the subcellular location,
the type(s) of the encoded protein, the Entrez Gene ID for Human. The
three networks are presented with their description and the merged
network. Genes in green are genetically regulated by a putative cis-eQTL.
Genes in red are genetically regulated. Network 8.1: score 81, 57 genes/
eQTL, cellular movement, cell-to-cell signaling and interaction, system
development and function. Network 8.2: score 79, 55 genes/eQTL, post-
translational modification, organ morphology, organismal injury and
abnormalities. Network 8.3: score 61, 47 genes/eQTL, protein synthesis,
drug metabolism, small molecule biochemistry. Network 54: A merged
network between the three first networks with five genes shared by
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network 1 and 2, three genes shared by networks 1 and 3, and one
gene shared by networks 2 and 3.

List of abbreviations

QTL: quantitative trait loci; eQTL expression quantitative trait loci; LRT:
likelihood ratio test; SSC: Sus scrofa chromosome; GO: Gene Ontology; FDR:
false discovery rate; IPA: Ingenuity Pathways Analysis; STS: Sequence Target
Sequence
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