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Background
Drug discovery is critical for the therapy of complex diseases, particularly for these 
scare diseases such as cancers [1]. The current algorithms for drug discovery are 
roughly classified into two classes, i.e., the bio-chemical and computational strategies. 

Abstract 

Background: Drug combination, offering an insight into the increased therapeutic 
efficacy and reduced toxicity, plays an essential role in the therapy of many complex 
diseases. Although significant efforts have been devoted to the identification of drugs, 
the identification of drug combination is still a challenge. The current algorithms 
assume that the independence of feature selection and drug prediction procedures, 
which may result in an undesirable performance.

Results: To address this issue, we develop a novel Semi-supervised Heterogeneous 
Network Embedding algorithm (called SeHNE) to predict the combination patterns 
of drugs by exploiting the graph embedding. Specifically, the ATC similarity of drugs, 
drug–target, and protein–protein interaction networks are integrated to construct the 
heterogeneous networks. Then, SeHNE jointly learns drug features by exploiting the 
topological structure of heterogeneous networks and predicting drug combination. 
One distinct advantage of SeHNE is that features of drugs are extracted under the 
guidance of classification, which improves the quality of features, thereby enhancing 
the performance of prediction of drugs. Experimental results demonstrate that the 
proposed algorithm is more accurate than state-of-the-art methods on various data, 
implying that the joint learning is promising for the identification of drug combination.

Conclusions: The proposed model and algorithm provide an effective strategy for 
the prediction of combinatorial patterns of drugs, implying that the graph-based drug 
prediction is promising for the discovery of drugs.
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The traditional strategy makes full use of chemical and biological experiments to syn-
thesize the novel drugs and validate the toxicity of drugs. Generally, this strategy is 
reliable and effective, whereas it is also criticized for the time and finance. Usually, 
the design of a drug takes more than 10 years with billions of dollars. Therefore, there 
is a critical need for alternatives for the traditional method. The traditional assump-
tion that drugs can only be applied to specific diseases, which limits the applications 
of drugs [2]. Actually, drugs for a specific disease may also be a potential alternative 
for other diseases because some complex diseases with the same or similar underlying 
mechanisms, requiring the same or similar therapy strategies and drugs [3].

The accumulated identified drugs and corresponding features provide an opportu-
nity for the identification of potential drugs for diseases without drugs for therapy, 
which significantly alleviates the burden of period and finance. Furthermore, the pre-
dicted drug patterns possibly shed light on the products of drugs. On the basis of the 
assumption that similar drugs have the same or similar performance on therapy, great 
efforts have been devoted to this issue with an immediate purpose to identify the 
potential drugs for diseases by exploiting the similarity among drugs [4]. The major 
difference between these algorithms lies in how to define and infer the similarity by 
exploiting various features, such as structure, toxicity, and so on. Given the target dis-
ease and potential drugs, the vast majority of current algorithms focus on the ranking 
of potential drugs by measuring the similarity between the known drugs and candi-
dates, ignoring the effects of drugs combination. Actually, the combination of drugs 
promotes the performance of treatment. For example, the combination of BRAF and 
V600E significantly improves the therapy of melanoma, and many drug combinations 
are approved by FDA (Food and Drug Adminstration) [5].

Therefore, it is promising for the identification of combinatorial drugs for diseases. 
But, it is highly non-trivial to predict the combination of drugs because combinatorial 
drugs are very likely to produce synergistic, additive, antagonistic, or even suppres-
sive effects [6]. Consequently, the antagonistic or suppressive drug-drug interactions 
lead to undesirable consequences. For example, drug DDIs, accounting for 3–5% of 
inpatient medication errors, often lead to patient morbidity and mortality [7–9]. Even 
though it is difficult, great efforts have been devoted to the identification of combina-
tion drugs largely due to the merits of applications [10–12].

Specifically, the most reliable and intuitive strategy for the identification of drug 
combinations is biochemical experiments, including the typical P450 testing [13] and 
transporter-associated interactions [14]. Compared to drug discovery, the identifica-
tion of drug combinations based on biochemical is much more complicated for sev-
eral reasons. First, the factors involved in drug combinations, such as the positive and 
negative interactions among drugs, are much more than the traditional single drug 
discovery, which imposes a great challenge on the design of experiments and pro-
tocols since the balance of multiple factors is complicated. Second, the biochemical 
experiment-based approaches in clinical trials usually are criticized for the expensive 
cost, intolerable duration, and unpredictable effects of clinical validation. Finally, the 
selection of candidates of drug combination is usually impractical because the solu-
tion space exponentially increases.
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Therefore, many computational algorithms have been devoted to the identification of 
drug combinations to alleviate the burden of biochemical methods by exploiting the sim-
ilarity of various drugs [15, 16]. On the basis of the computational strategies, the avail-
able algorithms are classified into three classes: statistic-, feature- and network-based 
methods. The most intuitive and straightforward statistic-based methods are the Loewe 
additivity and Bliss independence models [17], which are two commonly used methods 
for the quantification of synergy between drug combinations. Specifically, the Loewe 
additivity model assumes that drugs can be combines if the inhibitors have the same or 
similar mechanism of regulations, whereas Bliss makes use of independence assumption 
based on probability theory [18]. The advantage of statistic-based methods is simple and 
easy to implement. However, these approaches are criticized for two limitations. First, 
the prerequisite of statistic strategy is the large or super-large scale samples to guarantee 
the accuracy of prediction, which hampers the application of these algorithms because 
some drugs cannot be validated on the huge population. Second, the accuracy of predic-
tion is not desirable because the statistic strategy only focuses on the significance of the 
difference between groups with various responses, neglecting the features of drugs.

To overcome these problems, the feature-based methods predict the combination of 
drugs by exploiting the machine learning techniques, such as classification, which aim 
to extract the most discriminative features. The major difference of feature-based algo-
rithms depends on how to select the features of drugs, and what classifiers to choose 
for prediction. For example, PDC-SGB [19] integrates six types of features to predict 
drug combinations, including the 2-dimensional molecular structures, structural simi-
larity, anatomical therapeutic similarity, protein–protein interaction, chemical–chemi-
cal interaction, and disease pathways, where three classification algorithms to build the 
drug combination prediction models are proposed. Compared to the statistic-based 
methods, PDC-SGB not only significantly improves the accuracy of prediction of the 
drug combination, but also ranks the importance of features. Sun et al. [20] predict drug 
combinations by integrating the gene expression data of multiple drugs, which enhances 
the performance of algorithms, indicating that gene expression is also a discriminative 
feature for drug combinations. To validate the role of genomic features, HNAI [21] fuses 
the drug phenotypic, therapeutic, structural, and genomic similarities to the prediction 
of drug combinations by using five machine learning-based classifiers.

Even though the feature-based algorithms dramatically outperform the statistic-
based methods, the performance is still unsatisfied because the relations among 
features are ignored, failing to characterize the indirect relations among features. 
Fortunately, networks (also called graphs) provide an effective and efficient man-
ner to model and characterize complex systems, where vertices denote entities and 
edges represent interactions among vertices [22, 23]. Thus, many algorithms have 
been developed by utilizing the networks of features with an immediate purpose to 
improve the performance of prediction of drug combinations by exploring the indi-
rect relations of features. The key techniques involved in these algorithms concentrate 
on the network construction and analysis, where network construction determines 
how to model the features by using similarity of features, and network analysis focus 
on how to extract the indirect relations from networks to facilitate the prediction of 
drug combinations. For example, Liu et  al. [24] construct a heterogeneous network 
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by exploiting the similarity between drug and protein, in which three types of simi-
larity, i.e., drug–drug, drug–protein, and protein–protein, are integrated. Then, they 
perform random walk to extract features of drugs by exploiting the topological struc-
ture of the constructed network, which serves as the input of a gradient tree boosting 
(GTB) classifier to predict drug combinations. To further explore features, NDD [25] 
employs a nonlinear fusion method for multiple types of similarity to achieve high-
level features, and then predicts drug combinations by using the neural network. Li 
et al. [26] integrate multiple types of features to improve the accuracy of prediction 
by using the neighbor recommender strategy in networks. NIMS [27] made use of 
networks to screen potential drug combinations, where the disease-specific biological 
network is treated as a therapeutic target.

To further improve the performance of prediction, integrating features of various 
entities is also promising. For example, NLLSS [28] predicts the potential synergis-
tic drug combinations by integrating different kinds of information, such as known 
synergistic drug combinations, drug-target interactions, and drug chemical struc-
tures, which are integrated into a heterogeneous network. Cheng et al. [29] develop 
a comprehensive drug-drug interaction network incorporating 6946 interactions of 
721 approved drugs using data from DrugBank by using the phenotypic similarity, 
therapeutic similarity, chemical structure similarity, and gene similarity. EPSDC [30] 
utilizes the ensemble method to predict the drug combinations by integrating mul-
tiple-sources information, where construct a feature vector for each pair of drugs by 
exploiting the drug similarity. Then, the rank of drug pairs is performed by analyzing 
the topological structure of the heterogeneous drug–target network. Finally, EPSDC 
fulfills the prediction of drug combination by balancing the rank and output of fea-
ture-based classifiers.

Even though significant efforts have been devoted to the prediction of drug com-
binations, many unsolved problems remain. For example, the current network-based 
algorithms are time-consuming, hindering the applications of large-scale networks. 
Furthermore, the accuracy of current methods can be further improved. Finally, most 
network-based algorithms construct the heterogeneous network to characterize the 
interactions among drug and gene/protein. However, these algorithms extract fea-
tures of drugs by using the topological analysis strategy for homogeneous networks, 
ignoring heterogeneity of networks. Recently, graph embedding has been applied to 
heterogeneous networks, aiming to learn features by preserving the topological struc-
ture [31–39]. Different from homogeneous networks, it is challenging to develop 
methods for modeling the heterogeneous types of vertices and edges in a unified way. 
Heterogeneous information network embedding aims to obtain the low-dimensional 
representation for each vertex by preserving the topological structure of networks. 
For example, PME [34] utilizes the metric learning to simultaneously preserve the 
first- and second-order proximity of heterogeneous networks. Dong et al. [35] design 
the meta-path-based random walks to neighborhoods of vertices and then leverages 
a skip-gram model to perform embedding. metapath2vec preserves both the struc-
tures and semantics of a given heterogeneous network by simultaneously learning the 
low-dimensional and latent embedding for vertices. SHINE [38] extracts the latent 
representations of vertices by preserving the signs of edges by using auto-encoder, 
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and there are some deep learning based methods [39]. In this study, we investigate the 
possibility of predicting drug combinations by fully exploiting the graph embedding 
in heterogeneous networks, which is one of the major motivations.

To overcome these problems, we develop a semi-supervised heterogeneous network 
embedding algorithm (called SeHNE) to identify drug combination by integrating fea-
tures of drugs and proteins, which consists of three major components, i.e., network 
construction, graph embedding for heterogeneous networks, and prediction of drug 
combinations. To construct the heterogeneous network for drugs, we integrate the drug–
drug, protein–protein interactions, and drug–target associations. The graph embed-
ding for drugs is performed by nonnegative matrix factorization for the drug-drug and 
drug–target networks, where the basis matrices are fused to generate the heterogeneous 
features for drug pairs. To incorporate protein–protein interaction network into feature 
extraction, we employ the regularization strategy, where the local topological structure 
of proteins are preserved. Finally, the feature extraction of heterogeneous and prediction 
of drug combination are jointly learned. In this case, the features are extracted under the 
guidance of the classifier, thereby improving the discriminative of features. The experi-
mental results demonstrate that the proposed algorithm outperforms state-of-the-art 
methods in terms of various measurements, such as the area under curve (AUC), aver-
age precision (AP), and accuracy.

Results
Overview of SeHNE

The overview of SeHNE is depicted in Fig. 1, which consists of three major components, 
i.e., graph embedding in heterogeneous network, and prediction of drug combination. 
SeHNE jointly learns features of drugs and prediction of drug combination, where graph 
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Fig. 1 The overview of the proposed algorithm, which consists of two major components, i.e., 
heterogeneous embedding for drug, and drug combination prediction, where graph embedding learns 
the features of drugs by using matrix factorization for drug combination prediction, and drug combination 
prediction performs the classification
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embedding for heterogeneous networks is selected to obtain features of drugs, and SVM 
[40] is used for the prediction of drug combination.

To check whether SeHNE is sensitive to the selection of classifier, six typical classi-
fiers, including k-nearest neighbor (KNN), logistic regression (LR), random forest (RF) 
[41], gradient boosting tree (GBT) [12], adaboost (ADB) [42] and linear discriminative 
analysis (LDA) [43], are selected to replace SVM. The performance of SeHNE with vari-
ous classifiers in terms of different measurements, including accuracy, precision, recall, 
F-measure, MCC, and AUC, is shown in Table 2, where SeHNE obtains a similar perfor-
mance, implying SeHNE is not sensitive to classifiers.

To check whether SeHNE is sensitive to different similarities, we replace Anatomical 
Therapeutic Chemical(ATC) with chemical structure similarity (CSS) (Methods Sec-
tion). The performance of SeHNE is shown in Table 1, where SeHNE is also stable. These 
results demonstrate that SeHNE is not sensitive to similarity.

Parameter analysis

There are three parameters involved in SeHNE, where parameter �1 and �2 control the 
importance of drug-target network and classifier, and k denotes the number of features 
in graph embedding. We investigate how AUC of SeHNE changes by varying the value of 
one parameter with values of other parameters fixed. The drug combination data is split 
into the training and testing data. We use training data for the 10-fold cross-validation 
to obtain AUC of SeHNE and then utilize training data to construct the model and test-
ing data to measure the accuracy. How AUC of SeHNE changes as parameter k varying 
from 20 to 180 by fixing �1 and �2 as 1 is shown in Fig. 2A. As k increases from 20 to 140, 
the accuracy of SeHNE also improves. However, the performance decreases as k keeps 
increasing. When k is small, the features in embedding are insufficient to characterize 
drugs. When k is large, the redundancy of features results in undesirable performance. 
When k equals 140, SeHNE achieves the best performance.

Table 1 Comparison of various similarity strategies

Similarity Accuracy Precision Recall F-measure MCC AUC 

ATC 0.751 0.566 0.635 0.751 0.436 0.753

CSS 0.750 0.568 0.618 0.750 0.431 0.758

ATC and CSS 0.755 0.560 0.587 0.750 0.427 0.749

Table 2 Performance of various compared algorithms with different classifiers

Classifier Accuracy Precision Recall F-measure MCC AUC 

SVM 0.751 0.566 0.635 0.751 0.436 0.753

KNN 0.736 0.471 0.489 0.727 0.371 0.673

LDA 0.743 0.486 0.540 0.738 0.397 0.691

ADB 0.746 0.490 0.540 0.741 0.404 0.693

GBT 0.741 0.480 0.516 0.734 0.387 0.683

RF 0.732 0.465 0.486 0.723 0.361 0.668

LR 0.741 0.479 0.510 0.733 0.385 0.681
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By fixing k=140, and �2=1, how AUC of SeHNE changes as parameter �1 increases 
from 0 to 9 with a gap 1 is shown in Fig. 2B, where the AUC decreases as �1 increases. 
The possible reason is that, when �1 is small, the drug–target and drug networks reach 
a good balance. When �1 is large, the drug–target network dominates the objective 
function, where features deviate from the drug network. SeHNE obtains the best per-
formance at �1 = 1. Figure 2C shows the AUC of SeHNE by varying �2 from 0 to 9 by 
setting k = 140, and �1 = 1. As �2 increases from 0 to 1, the performance improves and 
then keeps stable. Therefore, in the forthcoming experiments, we set �1 = �2 = 1 , and 
k = 140.

Performance on drug combination prediction

Before presenting the detailed performance of various algorithms, we give an illustra-
tive example as shown in Fig. 3, where panel A is the benchmark interactions, and panel 
B is the predicted DDI of drugs. In Fig. 3, colors correspond to the type of interactions 
among drugs, where the green edges denote antagonistic, and purple edges represent 
the synergistic relationship. It is obvious the predicted interactions among drugs are 
highly consistent with the ground truth ones, i.e., the accuracy is 0.7553 on test data. 
Figure 3 demonstrates that the proposed algorithm is efficient for the prediction of drug 
combination (Table 2).

In SeHNE, we adopt SVM as the classifier to predict drug combinations. To select the 
best kernel function for SVM, we compare SeNMF by using various kernel functions, 
including the linear, logistic regression, and RBF kernels. The AUC and AP scores of 
SeHNE by using various kernel functions are shown in Fig. 4, where panel A is for AUC, 
and B for average precision score (AP score). These panels show that the polynomial ker-
nel significantly outperforms the others on AUC and AP score. However, the effect of 
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SeHNE with logistic regression is not ideal because the feature space is large. Thus, we 
select the polynomial kernel in the experiments.

In this study, the graph embedding and prediction are jointly learned. It is natural to 
ask whether joint learning is promising for the drug combination. We execute SeHNE in 
two different strategies, i.e., independent learning and joint learning, where independent 
learning first extracts the graph embedding and then utilizes SVM to predict drub com-
bination. The results are shown in Fig. 4A, B, where joint learning is superior to inde-
pendent learning in terms of AUC and AP scores. These results demonstrate that joint 
learning is promising for the drug combination.

Finally, we compare SeHNE with state-of-the-art to fully validate the performance 
of various algorithms. Two algorithms are selected for a comparison, including GTB 
[24] and EPSDC [30]. These algorithms are selected because EPSDC is the newest 
method that is simultaneously fusing heterogeneous network and ATC similarity. 
GTB is the typical algorithm drug combination. The 10-fold cross-validation strat-
egy is used to testify the performance of various algorithms. The AUC and AP score 
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are used to quantify the performance of algorithms. The results are shown in Fig. 4, 
where panel C is for AUC and panel D is for AP score.

The result demonstrates that the SeHNE algorithm outperforms the others in terms 
of AUC score and AP score. The SVM is better than logistic regression for SeHNE. 
The reason is that SVM is more discriminative since it exploits the critical features 
for the prediction of the drug combination. There are three reasons why the proposed 
algorithm outperforms state-of-the-art methods: SeHNE extracts features of drugs 
by exploiting the heterogeneous network, which is more discriminative than cur-
rent algorithms because the indirect relations are explored. Joint learning improves 
the quality of features since features are selected under the guidance of classification. 
Matrix factorization extracts the latent features from heterogeneous networks, which 
is more comprehensive to depict drug combinations. These results demonstrate that 
joint learning of heterogeneous networks and classification is promising for the pre-
diction of drug combinations.
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Convergence analysis

The proposed algorithm consists of multiple stages, where the objective function is com-
posed of several components, i.e., L[d] loss, L[t] loss, and L[c] loss. To validate the conver-
gence of the proposed algorithm, we check those components changes as the number of 
iterations changes as shown in Fig. 5, where panel A is for L[d] loss, B for L[t] loss, and C 
for L[c] loss, respectively. From these panels, it is easy to conclude that these sub-proce-
dures quickly converge, i.e., they only take 30 iterations to converge.

Finally, we investigate how the objective function of the proposed algorithm changes 
as the number of iterations, which is shown in Fig. 5 D. SeHNE converges within 30 iter-
ations, implying that the proposed algorithm is efficient. There are two reasons why the 
proposed algorithm quickly converges. First, SeHNE factorizes the drug–target network 
by regularizing the drug–drug and protein–protein interaction (PPI) networks, which 
enhances the efficiency of feature extraction. Second, the heterogeneous features of pro-
teins and drugs serve as prior information, which accelerates the speed of convergence.

Discussion
Drug discovery is critical for the therapy of complex diseases, particularly for these 
scare cancers. However, the biological experiment-based methods are time and finance 
consuming, requiring efficient and effective alternatives for this issue. And, the compu-
tational approaches provide an alternative for the traditional bio-chemical strategy by 
exploiting features of various entities, such as genes, and proteins. Even though great 
efforts have been devoted to this issue, vast majority of algorithms solely focus on the 

Fig. 5 Convergence analysis of SeHNE with various strategies: A L[d] loss, B L[t] loss, C L[c] loss, and D 
objective function loss versus the number of iterations
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identification of potential drugs for complex diseases based on the assumption that simi-
lar drugs have similar functions. Therefore, current algorithms concentrate on how to 
define and compute similarity among drugs with various strategies.

Actually, drug combination is also critical needed since therapy of cancers is compli-
cated, where a single drug is insufficient. However, effort for drug combination is really 
limited largely because the identification of drug combination is much more complicated 
than the detection of similar drugs. In this study, we present a novel integrative method 
for drug combination, where drugs, proteins, and interactions are integrated into a het-
erogeneous network. The proposed algorithm jointly learns the graph embedding and 
classification. On the one hand, similar to the previous work [24–30], SeHNE fuses the 
drug-drug networks, drug-protein networks, and protein-protein networks into a het-
erogeneous network and extracts interesting feature for each drug combination from the 
heterogeneous network. Furthermore, similar to [24, 25], SeHNE takes features of com-
bined drugs as input, and adopts SVM to predict drug combination. On the other hand, 
different from these works [34, 36, 38], SeHNE joins the procedures of feature extraction 
and prediction, where matrix factorization is employ to obtain graph embedding as fea-
tures of drugs.

SeHNE outperforms baselines in terms of accuracy, implying that the joint learn-
ing strategy is more accuracy to model and characterize drug combination. There are 
two reasons explain why the superiority of the proposed algorithm. First, the topologi-
cal structure of heterogeneous networks provides complemental information for drugs, 
thereby improving the quality of features of drugs. Second, graph embedding reflects the 
latent features of drugs by preserving structural information of drugs.

Conclusion
A novel algorithm for the prediction of combination of drugs is proposed, where multi-
ple types entities are integrated to construct heterogeneous networks. Compared with 
state-of-the-art methods, the proposed algorithm fully makes use of the indirect rela-
tions among various entities, which provides a better way to characterize the features of 
drugs. Furthermore, we present joint learning for feature extraction and prediction of 
drug combinations, where the features of drugs are more discriminative, resulting in an 
improved performance. The experimental results demonstrate that the proposed meth-
ods outperform the current algorithms in terms of accuracy.

Even though the proposed algorithm algorithm is promising for predicting combina-
tion of drugs, there are still some unsolved problems for further study, which are listed 
as

• In this study, the proposed algorithm only focuses on the combination of drug pairs, 
rather than the high-order combination, because the space of candidates for combi-
nations of drugs exponentially increases. How to narrow the space of feasible drug 
combination is the foundation for the exploitation of high-order combination of 
drugs. The strategy for selecting candidates for high-order combination of drugs is 
critically needed.

• The developed algorithm makes use of the topological structure of heterogeneous 
networks to extract features of drugs, ignoring the intrinsic features of drugs. How to 
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assign attributes, such as the structure and function of drugs to drugs is also promis-
ing for modeling and characterization of drugs.

• SeHNE only integrates the information of drugs and proteins without considering 
the regulation principle of drugs. How to integrate gene expression, drug responses 
and immune micro-environment are also interesting for the identification of drug 
combinations.

Methods
In this section, we present the model, procedure, and analysis of the proposed algorithm.

Notations

Before presenting the procedure of SeHNE, we present the notations and formulation of 
drug combination that are widely used in the forthcoming sections.

Given a group of vertices {v1, . . . , vn} (n is the number of vertices), a network is denoted 
by G = (V ,E) , where E = {(vi, vj)} is edge set. The adjacent matrix of G is represented by 
A = (aij)n×n where aij =1 if vertex vi and vj are connected by an edge, 0 otherwise. A net-
work G is heterogeneous if and only if there are more than one type of vertices in G. For 
example, there are two types of vertices in the heterogeneous network in Fig. 6, where 
the yellow triangle vertices denote drug, and the blue circle ones are proteins. And, there 
are three types of interactions, i.e., drug–drug interactions, drug–protein interactions 
and protein–protein interactions.

Formally, let V [d] = {v[d]
1

, . . . , v[d]nd
} , and V [p] = {v[p]

1
, . . . , v

[p]
np } be the drug, and pro-

tein set, respectively. And, nd and np are the number of drugs and proteins, respectively. 
Among proteins, some proteins are targets of drugs, denoted by V [t] = {v[t]

1
, . . . , v[t]nt

} , 
where V [t] ⊂ V [p] . There are three types of interactions, including drug–drug, 

Fig. 6 The schematic example of heterogeneous network for drug and proteins, which consists of four types 
of interactions, i.e., protein–protein interaction, ATC similarity, drug–target association, and known drug 
combinations
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drug–target (proteins), and protein–protein interaction, denoted by E[d] = {(v[d]i , v
[d]
j )} , 

E[t] = {(v[d]i , v
[t]
j )} , E[p] = {(v[p]i , v

[p]
j )} , respectively. For a sake of convince, we use 

G[d] = (V [d],E[d]) , G[t] = ((V [d],V [t]),E[t]) , and G[p] = (V [p],E[p]) , respectively. For 
the drug network G[d] , the similarity matrix S[d] = (s

[d]
ij ) ∈[0,1] is constructed, where s[d]ij  

represents the similarity between v[d]i  and v[d]j  in terms of ATC. The incidence matrix for 
G[t] is denoted by B[t] = (b

[t]
ij )nd×nt , where b[t]ij  =1 if protein v[t]j  is the target of drug v[d]i  , 0 

otherwise. The adjacent matrix for G[p] is constructed as A[p] = (a
[p]
ij )np×np with element 

a
[p]
ij  as 1 if an interaction between protein v[p]i  and v[p]j  exists, 0 otherwise.

Problem definition

Given the heterogeneous network G = (G[d],G[t],G[p]) , G[d] denotes drug–drug simi-
larity graph, G[t] denotes drug–target (protein) interaction graph, G[p] denotes protein–
protein interaction graph. Drug combination aims to construct a prediction function φ 
to predict drug–drug interaction between drug v[d]i  and v[d]j  . The prediction function φ is 
defined as

where − 1 denotes that the two drugs cannot be combined, and this drug combination 
may produce an antagonistic or even suppressive effect. + 1 represents that they can 
combine. This drug combination may produce a synergistic or additive effect. 0 indicates 
that they are unrelated. In the study, the observed drug combinations is denoted as C, 
where cij = 0 , if drug combination (v[d]i , v

[d]
j ) is unobserved or unrelated in medical data-

base, ±1 otherwise. + 1 denotes the synergistic or additive effect, − 1 denotes the antag-
onistic or suppressive effect.

Objective function

As shown in Fig. 1, the heterogeneous network is categorized into three classes, i.e., the 
drug–drug network, drug—protein network, and protein–protein interaction. Given the 
similarity matrix of drug network S[d] , nonnegative matrix factorization (NMF) [44] is 
employed to extract the feature of drugs as

where W [d] and H [d] are the basis and feature matrix, respectively. Equation (2) is solved 
by minimizing the approximation, i.e.,

Here, symmetric NMF (SNMF) [45] is performed to extract the features of drugs by 
exploiting the topology of G[d] since the similarity matrix is systematic. In this case, 
Eq. (3) is transformed the optimization problem as

where W ′ denotes the transpose of W. By minimizing Eq.  (4), SeHNE generates a low 
dimensional feature vector for each drug, i.e., graph embedding.

(1)φ : (v[d]i , v
[d]
j ) �−→ {−1, 0,+1},

(2)S[d] ≈ W [d]H [d]
, s.t. W [d] ≥ 0,H [d] ≥ 0,

(3)min �S[d] −W [d]H [d]�2, s.t. W [d] ≥ 0,H [d] ≥ 0.

(4)min �S[d] −W [d](W [d])
′
�2, s.t. W [d] ≥ 0,
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Graph embedding for drugs in Eq.  (4) is insufficient to fully characterize the fea-
tures of drugs since the associations between drug and proteins are neglected. To 
address this issue, it is wise to extract features from the drug–target network. NMF is 
employed to extract the features of drugs and proteins, i.e.,

where W [t] and H [t] are the graph embedding for drugs and proteins under the drug-tar-
get network, respectively. However, features of proteins H [t] solely reflects the structure 
of drug—target networks without exploring the information of protein–protein interac-
tions. The most intuitive strategy is to obtain features of proteins by factorizing S[p] , i.e.,

Then, we can combine Eqs. (5) and (6) to obtain graph embedding for proteins as

However, the size of drug–target network is much less than that of protein–protein 
interaction networks, where Eq. (7) is dominated by the protein–protein interaction net-
work. To address the problem, we adopt the regularization strategy to integrate protein–
protein interaction network, where graph embedding for proteins H [t] must preserve the 
local topological structure in G[p] . Luckily, the Laplacian regularization meets our expec-
tation [46, 47], which is formulated as

where L[p] is the Laplacian matrix for G[p] . In this case, the features of protein–protein 
interaction network is transformed to graph embedding for drugs.

Notice that there are types of graph embedding for drugs either from drug–drug 
network or drug–target network. We aggregate them as the embedding of drugs. On 
the classification of drug combination, the loss function for binary classification is 
employed by mapping drug pairs with − 1 or + 1, which is formulated as

where ℓ[hl](φ(Ei,Ej), cij) = max(0, 1− cijφ(Ei,Ej)) is the hinge loss, 
φ(Ei,Ej) = �θ ,K

(

Ei,Ej
)

� is the inner product of θ and K, Ei is the feature vector of drug 
v
[d]
i .
Finally, let L[d] and L[t] denote the loss function of two drug embeddings

By combining Eqs. (4), (5), (8) and (9) to construct the joint learning framework for drug 
combination, we formulate the final objective function of the proposed algorithm as

(5)min �S[t] −W [t]H [t]�2, s.t. W [t] ≥ 0,H [t] ≥ 0,

(6)min �S[[p]] −H [p]H [p]�2, s.t. H [p] ≥ 0.

(7)�S[t] −W [t]H [t]�2 + �S[[p]] −H [t]H [t]�2, s.t. H [t] ≥ 0.

(8)min tr((H [t])
′
L[p]H [t])

(9)L
[c](φ) =

∑

cij=±1

ℓ[hl](φ(Ei,Ej), cij),

(10)
L
[d] = �S[d] −W [d](W [d])

′
�2

L
[t] = �S[t] −W [t]H [t]�2 + tr((H [t])

′
L[p]H [t])
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where �1 , �2 are parameters.
In the next subsection, we derive the updating rule to minimize the objective function in 

Eq. (11).

Optimization rules

Equation  (11) is non-convex, which can not be directly optimized. The iteration-based 
strategy is adopted, which updates one variable by fixing the others until the algorithm is 
convergent.

On the optimization of W [d] , we aim to obtain the optimal matrix W [d] by fixing W [t] 
and H [t] . By removing irrelevant terms to W [d] and employing the alternating minimization 
algorithms ANLS [48] to solve symmetric problem, the problem expressed in Eq. (11) is 
transformed into an optimization problem as

The partial deriative on W [d]
i  is derived as

where ∇
W

[d]
i
ℓ(φ(Ei,Ej), cij) is the gradient of hinge loss with respect to W [d]

i .

On the optimization of W [t],H [t] , the problem for W [t] and H [t] are deduced as

The partial derivatives for W [t] and H [t] are calculated as

(11)

L(W [d]
,W [t]

,H [t]) = L
[d] + �1L

[t] + �2L
[c]

= �S[d] −W [d](W [d])
′
�2

+ �1(�S[t] −W [t]H [t]�2

+ tr((H [t])
′
L[p]H [t]))

+ �2

∑

cij=±1

ℓ[hl](φ(Ei,Ej), cij)

s.t.W [d] ≥ 0,W [t] ≥ 0,H [t] ≥ 0,

(12)
min �S[d] −W [d]H [d]′�2 + ��W [d] −H [d]�2

+ �2

∑

cij=±1

ℓ[hl]
(

φ(Ei,Ej), cij
)

,

(13)

∇
W

[d]
i

=
∑

i,j

(W
[d]
i H

[d]′
j − s

[d]
ij )H

[d]
j

+ �(W
[d]
i −H

[d]
i )

+ �2

∑

cij=±1

∇
W

[d]
i
ℓ(φ(Ei,Ej), cij),

(14)

min �1�B[t] −W [t]H [t]′�2

+ tr(H [t]′L[p]H [t])

+ �2

∑

cij=±1

ℓ[hl]
(

φ(Ei,Ej), cij
)

,



Page 16 of 21Song et al. BMC Bioinformatics           (2022) 23:34 

and

On the optimization of function φ , we set it as the same strategy for the soft-margin lin-
ear SVM. The procedure of SeHNE is illustrated in Algorithm 1. 

Algorithm analysis

On the space complexity of the SeHNE algorithm, given a heterogeneous net-
work, the space for ATC similarity network O(n2d) , the space for Drug-target net-
work O(ndnt) , and the space for PPI network O(n2t ) . The space for drug embedding 
and protein embedding are O((nd + nt)k) . Therefore, the overall space complexity is 
O(n2

d
+n

2
t +ndnt + (nd +nt)k) = O((nd +nt)

2+ (nd +nt)k) = O((nd +nt)(nd +nt + k)) . In our 
experiment, k < nd < nt . Therefore, O((nt + nt)(nt + nt + nt)) = O(n2t ) , demonstrating 
that the proposed method is efficient in space complexity.

Then, the time complexity is analyzed. For each single-type or bipartite net-
works, SeHNE consists of three major components: symmetric NMF for similar-
ity network, graph regularized NMF for Drug-target network and PPIs network, 
classifier learning for drug embeddings. The time complexity of updating W [d] is 

(15)

∇
W

[t]
i

= �1

∑

i,j

(W
[t]
i H

[t]′
j − b

[t]
ij )H

[t]
j

+ �2

∑

cij=±1

∇
W

[t]
i
ℓ(φ(Ei,Ej), cij),

(16)∇H [t] = �1(H
[t]W [t]′W [t] − B[t]′W [t] + L[p]H [t])
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O(r(n2dk + n2k)) , where n is the number of known drug combinations, r is the num-
ber of iteration. The time complexity of updating W [t] , H [t] are O(r(n2t k + n2k)) . 
The time complexity of updating SVM classifier is based on the number of sup-
port vectors, and much more fast than embedding extraction. So the overall time 
complexity is O(r(n2d + n2t + n2)k) . In our experiment, nd < nt < n . Therefore, 
O(r(n2d + n2t + n2)k) = O(r(n2 + n2 + n2)k) = O(rn2k).

Data

The training data for drug combination is downloaded from DrugCombDB [49] with 
the leukemia-related Cell lines. The drug-target interactions are derived from Drug-
Bank, KEGG, and Therapeutic Target Database (TTD) datasets, covering 874 drugs 
and 1240 targets. Among them, we then removed a set of drugs, which don’t have 
enough information in the drug–drug network or drug–target network. Last, we 
obtained a group of 370 drugs and 18,126 drug–drug combinations. In general, there 
are 18,126 drug-drug combinations, consisting of 5903 synergistic and 12,223 antago-
nistic drug combinations. We summarize the fundamental properties of the drug–
drug combinations network (Table  3). The PPI network of humans covers 15,911 
proteins with 217,109 interactions [50].

Criteria

A couple of performance measures were used in our experiment, including Accuracy, 
Precision, Recall, F-measure, Matthews correlation coefficient (MCC), and the area 
under the receiver operating characteristic curve (AUC). They are formally defined as 
below:

Table 3 The analysis of heterogeneous network data

Scale Entries Value

Global Number of DDIs 18126.00

Number of drugs 370.00

Number of synergistic DDIs 12223.00

Number of antagonistic DDIs 5903.00

Drug degree Average degree of drug 97.04

Median degree of drug 119.50

Maximal degree of drug 343.00

Synergistic effect drug degree Average degree of drug 31.63

Median degree of drug 24.00

Maximal degree of drug 190.00

Antagonistic effect drug degree Average degree of drug 65.72

Median degree of drug 61.50

Maximal degree of drug 208.00
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where P, N, TP, FP, TN, and FN are the numbers of real positives, real negatives, true 
positives, false positives, true negatives, and false negatives, respectively. The AUC is one 
of the most popular evaluation metrics [51]. AUC is the area under the receiver operat-
ing characteristic (ROC) curve, which plots the true positive rate (TPR) versus the false 
positive rate (FPR).

Based on the therapeutic organ or system of the drug, drugs are classified in the 
Anatomical Therapeutic Chemical (ATC) coding system. The ATC similarity between 
v
[d]
i  and v[d]j  is defined as:

By observing the similarity matrix obtained from the above formula and the definition 
of ATC similarity, we can get that the ATC similarity matrix is sparse, which is advan-
tageous for application in large-scale networks. On the other hand, the use of ATC as 
drug-similarity is limited, as the first level is anatomical so that a drug could be found 
across different body systems.

We also measured the Chemical Structure Similarity(CSS) of drugs to take different 
information of drugs into account. We get the smiles of each drug from the Drugbank 
database and then calculate the Molecular ACCess System (MACCS) fingerprints of 
drug molecules [52] according to its smiles by RDKit (https:// github. com/ rdkit/ rdkit). 
MACCS is a binary fingerprint (zeros and ones) that answer 166 fragment-related 
questions. If the explicitly defined fragment exists in the structure, the bit in that 
position is set to 1, and if not, it is set to 0. Therefore, the drug fingerprint is a binary 
sequence. Then, the Jaccard similarity method is employed to calculate the chemical 
structure similarity of drug–drug pairs based on molecular fingerprints. Let A and 
B represent the counts of bits in the two-drug molecules, respectively, the chemical 
structure similarity between set (drug) A and B is defined as follows:

To utilize the information of two kinds of similarity matrices, two drug-drug similarities 
are integrated into a comprehensive similarity measure by the probability disjunction 
formula as

Accuracy =
TP + TN

TP + FP + TN + FN

Precision =
TP

TP + FP

Recall =
TP

P
=

TP

TP + FN

F −measure =
2 ∗ Precision ∗ Recall
Precision+ Recall

MCC =
TP ∗ TN − FP ∗ FN

√
P ∗ N ∗ (TP + FP) ∗ (TN + FN )

(17)SATCij =
ATC(v

[d]
i ) ∩ ATC(v

[d]
i )

ATC(v
[d]
i ) ∪ ATC(v

[d]
i )

.

(18)SCSSij = J (A,B) =
∣

∣

∣

∣

A ∩ B

A ∪ B

∣

∣

∣

∣

=
|A ∩ B|

|A| + |B| − |A ∩ B|

https://github.com/rdkit/rdkit
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SATCij  is the ATC similarity between Drugi and Drugj , SCSSij  is the chemical structure sim-
ilarity between Drugi and Drugj.
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