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Abstract
Cutaneous melanoma tumors are heterogeneous and show diverse responses to treatment. Identification of robust molecular
biomarkers for classifying melanoma tumors into clinically distinct and homogenous subtypes is crucial for improving the
diagnosis and treatment of the disease. In this study, we present a classification of melanoma tumors into four subtypes with
different survival profiles based on three distinct gene expression signatures: keratin, immune, and melanogenesis. The
melanogenesis expression pattern includes several genes that are characteristic of the melanosome organelle and correlates
with worse survival, suggesting the involvement of melanosomes in melanoma aggression. We experimentally validated the
secretion of melanosomes into surrounding tissues by melanoma tumors, which potentially affects the lethality of metastasis.
We propose a simple molecular decision tree classifier for predicting a tumor’s subtype based on representative genes from
the three identified signatures. Key predictor genes were experimentally validated on melanoma samples taken from patients
with varying survival outcomes. Our three-pattern approach for classifying melanoma tumors can contribute to advancing
the understanding of melanoma variability and promote accurate diagnosis, prognostication, and treatment.

Introduction

Cutaneous melanoma is the most lethal form of skin
cancer, showing a continuous rise in worldwide incidence

over the past several decades [1–3]. Melanoma tumors
develop by uncontrolled proliferation of melanocytes, the
pigment-producing cells of the skin [4]. Primary mela-
noma tumors are regularly localized to the skin and are
usually curable by excision when detected early [5].
However, melanoma tumors tend to metastasize rapidly
into surrounding tissues and distant organs and are,
therefore, considerably more challenging to cure at later
stages [6].

Melanoma tumors are heterogeneous and show high
diversity in their biological characteristics, metastatic
potential, survival risk, and response to treatment [7].
Therefore, the stratification of melanoma tumors into
clinically distinct, prognostic subtypes is crucial for accu-
rate diagnosis, treatment guidance, and subtype-specific
drug development. For the past 40 years, a clin-
icopathological system has been used to classify primary
melanomas into four major subtypes (superficial spreading,
nodular, lentigo maligna, and acral lentiginous) based
on clinical and pathological features [8, 9]. Although ben-
eficial for diagnosis, this classification showed limited
clinical relevance, especially for prognosis and treatment
guidance [8].
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With the emergence of high-throughput genomic technol-
ogies, several commonly mutated genes that play a central role
in melanoma tumorigenesis and metastasis, such as BRAF,
NRAS, and NF1, were identified. These findings significantly
advanced the understanding of melanoma progression and led
to the development of targeted therapies that have improved
patient survival [10, 11].

In 2015, The Cancer Genome Atlas (TCGA) reported on a
study of 331 melanoma patients using six different high-
throughput omic technologies [12]. The study partitioned
melanoma tumors (both primary and metastatic) based on the
pattern of the most prevalent mutated genes into four subtypes:
BRAF, NRAS, NF1, and WT [12]. While this mutation-based
classification has proven beneficial for highlighting key
potential subtype-specific drug targets, it provides little
prognostic value.

The same study also suggested a transcriptomics-based
classification, which divided melanoma tumors into three
prognostic groups: high-immune, keratin, and MITF-low [12].
The high-immune group showed the best 10-year survival and
was characterized by the overexpression of many immune
genes. The keratin group contained most of the primary tumors,
conferred the worst survival (possibly due to a bias of large
primary tumor thickness in the TCGA cohort), and was char-
acterized by overexpression of keratin, pigmentation, and epi-
thelial genes. Lastly, the MITF-low group showed medium
survival and was characterized by the underexpression of
keratin and pigmentation genes. Interestingly, these three
transcriptomic sample groups showed little agreement with the
mutation-based groups. Moreover, the samples in the keratin
transcriptomic group showed low consistency in their expres-
sion profiles and the clinical labels, suggesting the need for a
more refined transcriptomic tumor classification.

In this study, we set out to explore whether the transcription-
based subtype classification can be improved based on the
larger number of 469 melanoma samples currently available
from TCGA. We reasoned that the larger dataset might allow
for the identification of new prognostic subtypes or improve the
characterization of previously described subtypes. We also
aimed at identifying a minimal set of informative prognostic
biomarkers that can be used to stratify patients into clinically
relevant subtypes. Finally, we performed a set of experimental
tests on human melanoma specimens to validate our compu-
tational discoveries.

Results

Unsupervised analysis identifies four distinct
melanoma subgroups

In order to identify groups of similar melanoma tumors, we
applied unsupervised analysis on 469 RNA-Seq expression

profiles obtained from TCGA’s melanoma dataset. The dataset
contained a mixture of primary (n= 104) and metastasis
samples (n= 365). Clustering of the samples based on the
2000 most variable genes resulted in four distinct sample
clusters showing significantly different 5-year survival rates
(Fig. 1a, b, and Supplementary Table S1). Gene Ontology
(GO) enrichment analysis identified active gene signatures that
were used to characterize each sample group (Supplementary
Fig. S1). We also used the clinical information available for the
samples in order to clinically characterize each sample group
(Fig. 1c and Supplementary Fig. S2).

Cluster 2, with the lowest survival rate, was mainly com-
posed of primary melanomas showing significantly high
Breslow depths and high pathologic T values. This cluster was
associated with overexpression of cornification, epidermis
development, and keratin-related genes, all of which are
characteristic of differentiated keratinocytes that form the
outermost skin barrier [13]. We attributed the poor survival in
this cluster to the bias in the TCGA cohort for thick primary
tumors [12]. The other three clusters were mainly composed of
metastatic melanomas. Cluster 1, which conferred the highest
survival rate, was enriched for lymph node metastases and
showed significantly high values for several immune scores
that correlate with lymphocyte infiltration. Cluster 1 was also
associated with the overexpression of adaptive immune
response genes. Cluster 3 showed relatively good survival and
was found to be marginally enriched for regional cutaneous
tissue sites, whereas cluster 4 showed relatively poor survival
and was found to be marginally enriched for metastasis to
distant tissue sites. Interestingly, what distinguished the rela-
tively poor prognosis cluster 4 from the relatively good
prognosis cluster 3 was an expression pattern enriched for
melanin biosynthesis genes (gene cluster 1) whose over-
expression was correlated with poor survival.

We compared our four-cluster partition to TCGA’s three
transcriptomic subtypes (Fig. 1a4 and Supplementary Fig. S3).
We found that the two partitions largely correspond (Chi-
square p value= 1.6e−79)—sample clusters 1 and 3 were
significantly enriched for TCGA’s immune and MITF-low
transcriptomic subtypes, respectively. However, TCGA’s ker-
atin subtype was split into two distinct clusters—the primary-
enriched worst outcome cluster 2 and the bad outcome
metastasis-enriched cluster 4. Overall, our analysis revealed a
partition of the metastatic samples into the high-immune, best
survival (cluster 1), low-melanogenesis good survival (cluster
3, corresponding to TCGA’s MITF-low subtypes), and a new
metastasis-enriched subgroup, characterized by poor survival
and by significant overexpression of melanogenesis genes
(cluster 4). We named the four identified melanoma subgroups
accordingly: (1) “Immune,” (2) “Keratin,” (3) “Melanogenesis-
low,” and (4) “Melanogenesis-high.” Table 1 summarizes the
characteristics of the four subgroups and their relation to
TCGA’s subgroups.

Classification of node-positive melanomas into prognostic subgroups using keratin,. . . 1793



Overexpression of melanogenesis genes
characterizes a poor-survival melanoma subtype

In order to further characterize the poor-survival cluster 4
(“Melanogenesis-high”), we analyzed the genes that were
overexpressed in this cluster (gene cluster 1). They were
enriched for genes related to the synthesis of the melanin
pigment (“melanin biosynthetic process,” p value < 3.46E

−08, see Supplementary Fig. S1). Additional gene sets
significantly enriched in that gene cluster were the “Mela-
nogenesis” KEGG-pathway (p value < 0.005, nine genes:
GNAO1, DCT, KIT, TYRP1, FZD9, ADCY2, ADCY1,
TYR, WNT4) and the “Melanosome membrane” GO term
(p value < 0.0004, six genes: OCA2, SLC45A2, GPR143,
DCT, TYRP1, TYR). See Supplementary Tables S2 and S3
for the complete enrichment results.

a

b c

Melanogenesis

Kera�niza�on

Immune

1

2

3

4

Fig. 1 Clustering of TCGA’s RNA-Seq melanoma dataset. a A heat
map representing the clustering of 469 melanoma samples (matrix
columns) into four groups based on the 2000 genes with the most
variable expression profiles (matrix rows). Each sample cluster
represents a group of similar melanoma tumors. Genes were also
clustered in order to identify groups of coexpressed genes. Both
samples and genes were clustered using the k-means algorithm (using
k= 4 for the samples and k= 5 for the genes). The bars below the

matrix display sample labels: (1) cluster ID, (2) primary versus.
metastasis, (3) tissue site, and (4) TCGA transcriptomic subtype.
b Kaplan–Meier curves for the four sample clusters. Log-rank p values
appear in the legend. c Summary of the significant enrichments on
sample clusters (columns) for clinical labels (rows). The value within
each cell specifies the most significant enrichment based on
the hypergeometric distribution. Cells are colored by enrichment
significance in −log10 scale.
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Interestingly, these results suggest that the “Melano-
genesis-high” samples differ from the “Melanogenesis-low”
samples by overexpression of genes that are specific to the
melanosome organelle (see Supplementary Fig. S4). The
melanosome organelle is the hallmark of melanocytes, the
melanoma cell of origin [14]. In normal skin, melanosomes
are responsible for melanin production, storage, and trans-
port from melanocytes to surrounding keratinocytes
[15, 16]. However, the reason melanoma cells retain this
function of their cell of origin and the function of the
melanosome itself in melanoma cells have only recently
begun to be revealed [17, 18]. The melanin biosynthesis
genes OCA2, TYRP1, DCT, and PMEL (SILV) also
appeared among the top genes overexpressed in “Melano-
genesis-high” samples in comparison to all other samples
(Supplementary Table S4).

To test the independent prognostic value of those
melanosome-related genes, we partitioned all of the dataset
samples into two groups based on the expression levels of
each gene and calculated the difference in the survival plots
of the two groups using the log-rank test. For OCA2, KIT,
GPR143, and TYRP1, overexpression was significantly
correlated with poorer 10-year survival as well as increased
recurrence risk (Fig. 2). These results may suggest a
mechanistic link between the melanosome organelle and the
increased lethality of melanoma.

Metastatic melanomas retain the ability to secrete
melanosomes into surrounding tissue

In primary melanoma, melanosome secretion was shown to
promote the formation of the dermal metastatic niche [17].
However, the role of melanosomes in promoting metastasis
of melanoma in later stages is mostly unknown. To further
explore the pigmentation/melanosome function in mela-
noma progression, we tested clinical melanoma specimens.
Since our unsupervised analysis that identified the four-
melanoma subgroups was based on mRNA expression
levels, we first confirmed the expression of melanogenesis
genes at the protein level. Primary in situ melanoma tissues
were immunostained for PMEL (SILV) using the HMB45
antibody. PMEL is a melanocyte-specific marker known to
be a melanogenesis gene and is used in the pathological

diagnosis of melanoma [19, 20]. PMEL is involved in the
initiation of premelanosome production [21] and was also
found in our analysis to be overexpressed in cluster 4
(Supplementary Table S4). PMEL strongly stained regions
of melanoma (Fig. 3a), confirming its presence at the pro-
tein level. To further test whether the complete melano-
genesis machinery is functional, indicated by the production
of mature melanosomes, specimens were immunostained
with mature melanosome marker, GPNMB [17]. Primary
melanoma and the surrounding tissue clearly stained with
GPNMB (Fig. 3a, left). This indicates that not only is the
melanogenesis machinery active but also that melanosomes
are actively secreted from melanoma into the stroma
via a gradient pattern of diffusion from the epidermis
(Fig. 3a, right).

Since our computational analysis showed that the
machinery of melanin production in melanosomes highly
correlated with poor prognosis, we further examined
melanosome synthesis and function along a typical
scheme of disease progression. In order to do this, we
picked melanoma metastasis specimens in the lymph
nodes, liver, and brain, from different patients. These
tissues represent different stages of aggression [22].
Metastatic specimens were subjected to immunohis-
tochemistry (IHC) for PMEL and GPNMB in order to
follow melanosome production and distribution.
Remarkably, metastases to the lymph, liver, and brain
retained a hallmark pattern of melanosome secretion into
the surrounding stroma (Fig. 3b). This indicates that
melanosome production is retained throughout the pro-
gression of melanoma and that melanosomes are actively
secreted to the tumor microenvironment. Taken together,
our data demonstrate, for the first time, the presence of
active production and secretion of melanosomes in distant
metastatic sites, suggesting an important function for the
melanosome organelle in the cancer metastases.

A three-gene classifier for predicting melanoma
molecular subtype

Having identified four distinct melanoma subgroups, each
bearing a different survival risk and gene expression sig-
nature, we sought to develop a simple procedure to classify

Table 1 Summary of the main sample cluster characteristics.

Cluster Number of
Samples

Cluster name TCGA transcriptomic
subtype enrichment

Survival Tumor tissue type
enrichment

Gene Ontology enrichment of
highly expressed genes

1 105 Immune Immune Best Regional
lymph node

Immune response

2 68 Keratin Keratin Worst Primary Cornification

3 118 Melanogenesis-low MITF-low Good Nervous system development

4 118 Melanogenesis-high Keratin Bad Melanin biosynthetic process

Classification of node-positive melanomas into prognostic subgroups using keratin,. . . 1795



Survival Recurrence

OCA2

KIT

GPR143

TYRP1

Fig. 2 Ten-year survival and recurrence risk estimates for
melanosome-related genes. All dataset samples were split into two
groups based on the gene expression levels of several melanosome-

related genes. For each gene, the threshold for splitting the samples
into two groups was the mean of its 5th and 95th expression percentile.
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a new tumor into one of the four subgroups based on a
minimal number of genes. We reasoned that such a proce-
dure would be easier to interpret biologically than a 2000-
gene signature and also cheaper to assay in diagnostics. We

selected the decision tree classifier, which was often used in
medical decision making due to its simplicity, easy inter-
pretability, and robustness to outlier values [23]. In order to
determine the number of genes to be used by our classifier,
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Fig. 3 Melanosomes diffuse outward from primary and metastatic
tissues. a Immunohistochemical (IHC) analysis of an in situ melanoma
showing mature melanosomes stained with anti-GPNMB (green) dif-
fusing rightward into the underlying subcutaneous tissues and away
from the primary melanoma tumor. HMB45 (red), an antibody for
PMEL, which stains the premelanosome, shows the location of the
melanoma. Nuclei were stained blue with DAPI. Equally sized,

equidistant zones were delineated on the image in order to quantify
differences in the intensity of GPNMB displayed by the graph to the
right of the image. b IHC investigation of the metastatic sites: lymph
node (top), liver (middle), and brain (bottom) showing secretion and
dispersion of mature melanosomes stained with GPNMB (green) into
the stroma (S) surrounding the tumor (T), stained with HMB45 (red).
Nuclei were stained blue with DAPI.
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we trained a large number of decision trees on random
subsets of the data and examined their performance as a
function of the number of genes in the tree (Supplementary
Fig. S5). Three genes gave a good tradeoff between clas-
sifier simplicity and performance. We then trained a three-
gene decision tree on the full dataset, which achieved a
training error of 0.187 (Fig. 4). Notably, the three genes
selected by the tree-training algorithm, KLK8, TIGIT, and
TRIM63, can be viewed as representatives of the three-gene
expression signatures described earlier (Keratin, Immune,
and Melanogenesis, respectively).

Remarkably, the genes identified as predictors by the
decision tree have been previously associated with mela-
noma progression and prognosis: decrease in expression
levels of kallikrein family member KLK8 was associated
with the transfer from primary to metastatic melanoma [24],
and its expression was linked to survival in various cancers
[25–27]. TIGIT is a T-cell immunoreceptor with Ig and
ITIM domains, which was recently identified as an attrac-
tive cancer immunotherapy target due to its central role in
tumor immunosurveillance [28, 29]. Lastly, TRIM63 was
implicated in melanoma cell migration/invasion [30].

Supplementary Fig. S6 provides a PCA visualization of the
469 melanoma samples projected to a three-dimensional
space based on the expression levels of the three genes used
in the decision tree. Supplementary Fig. S7 shows the RNA
expression levels of the three genes on various normal tis-
sues for reference, as obtained from The Human Protein
Atlas [31, 32].

Interestingly, when we trained three-gene decision trees
on 1000 random subsets obtained by resampling of the
dataset samples, most trees had the same topology and
contained predictors that are representatives of the three
signatures (see Supplementary Figs. S8–S10).

Experimental validation of predictor genes on
patient cohort

The produced decision tree consists of three informative
genes (KLK8, TIGIT, and TRIM63) along with a threshold
level for each gene, which together provide a simple method
for classifying melanoma tumors into one of the four sub-
groups. To classify a new tumor sample, one evaluates the
sample’s expression levels for three predictor genes

Predictor gene Threshold Surrogate genes

KLK8 1.179 KRTDAP, FAM83C, IVL, SBSN, SPRR1B, KRT14, KRT16, WFDC5, KRT6C, SERPINB5

TIGIT 0.226 CD2, SLAMF6, LCK, SIRPG, SLA2, UBASH3A, CD3D, CD27, ITGAL, SIT1

TRIM63 0.155 TRPM1, PMEL , SLC5A10, GPR143, TSPAN10, MLPH, MLANA, MMP16, SLC45A2, GMPR

a

b

(2) Kera�n

(1) Immune

(4) Melanogenesis-high(3) Melanogenesis-low

HighLow

HighLow

Fig. 4 A three-gene decision tree for classifying melanoma sam-
ples. a The tree trained on the 469 TCGA samples. Classification of a
new sample into one of the four subtypes is done by traversing the tree
from its root to one of its leaves (representing an assignment to a
subtype). Three biomarkers (shown in black) are used to determine
the route along the tree: overexpression of KLK8 distinguishes the
“Keratin” subtype, overexpression of TIGIT distinguishes the

“Immune” subtype, and finally, overexpression of TRIM63 distin-
guishes the “Melanogenesis-high” from the “Melanogenesis-low”
subtype. b Threshold values and surrogate genes for the three decision
tree predictors as identified by the algorithm. Threshold values are
used to distinguish between high and low values (based on normalized
expression values), and surrogates can be used as alternatives for the
respective predictor gene.
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(biomarkers): first, a keratin predictor gene is evaluated
(KLK8, or one of its keratinization surrogates such as
KRT6C, IVL, SPRR1B, KRT14, KRT16), where high
values would label the sample as “Keratin” and low values
would lead to the next predictor. Next, an immune predictor
is evaluated (TIGIT or one of its immune surrogates such as
LCK, CD2, SLAMF6, SIRPG, SLA2, UBASH3A, CD3D,
CD27, ITGAL, SIT1), where high values would label the
sample as “Immune” and low levels would lead to the next
and final predictor. Lastly, a melanogenesis predictor is
evaluated (TRIM63 or one of its melanogenesis surrogates
such as SLC45A2, PMEL, GPR143) where high values
would label the sample as “Melanogenesis-high” and low
values as “Melanogenesis-low.”We note that the distinction
between low and high expression levels in each step of the
classification process relies on gene-specific thresholds.

In order to validate the association between the classi-
fier’s predictor genes and outcome, we experimentally tes-
ted their expression on six lymph node samples from
patients of known outcomes. Patients who survived for 5
years or more after initial tumor diagnosis were defined as
“good survival,” and those who survived 2 years or less
after initial diagnosis as “poor survival” (Supplementary
Table S5). In all clusters except for cluster 2 (the “Keratin”
subgroup, which mostly corresponded to primary sites),
lymph node tissues were identified in a substantial fraction
of the samples (Supplementary Fig. S3b). For this reason,
we tested the tree predictor genes in melanoma metastases
to the lymph nodes from each patient using IHC.

We first conducted hematoxylin and eosin (H&E)
staining to confirm that the metastasis was, in fact, in the
lymph nodes (Fig. 5a), and then stained each sample by the
three predictor genes. Figure 5b shows the six tissue images
per gene and Fig. 5d shows quantification of staining levels.
All lymph node specimens stained negatively for the KLK8
gene, the predictor for the primary melanoma enriched
“Keratin” subgroup in the tree (Fig. 5b, first row), indicating
that the six samples do not belong to that subgroup. Staining
for the TIGIT gene, the predictor for the “Immune” sub-
group, appeared positive in the lymph node specimens of
patients 1 and 3, thus assigning them to the best prognosis
“Immune” subgroup based on the decision tree logic, in
agreement with their good survival (Fig. 5b, second row).
The specimens from patients 2, 5, and 6 stained negatively
for TIGIT, excluding them from the “Immune” subgroup.
The specimen from patient 4 showed borderline positive
staining, making it difficult to classify. Finally, using
TRIM63, the predictor for the “Melanogenesis-high” sub-
group, specimens 5 and 6 were stained positively and were
therefore assigned to the “Melanogenesis-high” subgroup,
while specimen 3 that was stained negatively and therefore
assigned to the “Melanogenesis-low” subgroup (Fig. 5b,
third row). Except for patient 4, all patients were assigned to

subgroups conferring relative survival in agreement with
their known outcome. The results demonstrate the utility of
biomarkers in prognostication of melanoma.

In addition to verifying the expression levels of proteins
identified by the decision tree and their correlation to sur-
vival, we examined three other proteins that were identified
as informative predictors for general prognosis (Fig. 5c). As
an additional representative from the immune protein cate-
gory we selected LCK, an Src family tyrosine kinase found
on lymphocytes, that was previously identified as a bio-
marker for good prognosis in melanoma [12]. Indeed,
patients with high LCK expression had a better prognosis.
As additional representatives for the melanogenesis cate-
gory, we selected GPNMB, indicative of mature melano-
some presence [33], and OCA2, a transporter protein
associated with melanocytes involved in melanin produc-
tion and pH regulation of the melanosome [34]. Patients
who had high levels of these proteins in their lymph nodes
had worse outcomes associated with the “Melanogenesis-
high” subgroup.

Finally, we repeated the experimental validation of the
predictor genes on a second group of six melanoma samples
(five metastatic and one primary) taken from patients with
varying outcomes. As with the first sample group, we
assigned each sample to a melanoma subgroup based on the
decision tree logic and tested its association with patient
outcome (Supplementary Fig. S11 and Supplementary
Table S6). The protein expression levels of the examined
predictor genes significantly varied among the various
melanoma samples: KLK8’s expression levels enabled the
assignment of the primary tumor sample to the keratin
subgroup, while the expression levels of TIGIT and
TRIM63 enabled the assignment of four out of the five
remaining lymph node samples to subgroups conferring
relative survival in agreement with their evaluated prog-
nosis (Supplementary Fig. S11C).

Our data demonstrate that using the expression levels of
only three classifier genes (keratin, immune, and melano-
genesis) in our decision tree, we can reasonably predict the
patient outcome using a lymph node biopsy. Our data fur-
ther suggest the involvement of melanogenesis genes and
the melanosome organelle in melanoma progression and
lethality.

Discussion

Our computational analysis of the 474 melanoma expres-
sion profiles identified four clinically distinct subgroups.
The identified groups (Table 1) showed significant corre-
spondence to TCGA’s transcriptomic classification [12];
however, TCGA’s keratin subgroup was split in our ana-
lysis into a keratin subgroup, composed mainly of primary
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Fig. 5 Melanogenesis and immune characteristics of melanoma
metastases in good and poor prognostic outcomes. a Hematoxylin
and eosin (H&E) staining of lymph nodes containing melanoma
metastases from six different patients taken at 20× magnification.
Patients 1–3 had good survival, while patients 4–6 survived poorly.
b Immunohistochemical staining of the three proteins of the decision
tree on the lymph node samples of the six patients. Nuclei were stained
blue using DAPI. Row 1: using KLK8 (pink) as a predictor for the
Keratin subgroup. Row 2: using TIGIT (Green) as a predictor of
the Immune subgroup. Row 3: using TRIM63 (Pink) as a predictor of
the Melanogenesis-high subgroup. The assignments of the specimens

from the six patients to subtypes based on the expression levels of the
three predictor genes are summarized as a label at the bottom bar.
c Immunohistochemical staining of additional biomarkers for general
prognosis. Row 1: LCK, an immune protein indicative of good
prognostic outcome. Row 2: melanogenesis protein OCA2. Row 3:
melanogenesis protein GPNMB. d Color matrix quantifying the
fluorescence intensity of immunohistochemistry across biomarkers and
patients. For each protein, values were independently normalized
across the samples. (The KLK staining of all samples is negative, as
they are all nonprimary, so KLK is not included here).
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tumors (cluster 2), and a melanogenesis-high subgroup,
composed mainly of high-risk metastatic melanomas
(cluster 4).

Three-gene expression signatures stratified the mela-
noma samples into the four clinically distinct subgroups:
patients in cluster 1, characterized by high expression of
immune genes, had the best survival, in agreement with
previous reports in melanoma and other cancer types
[12, 35].

Patients in cluster 2, characterized by a high expres-
sion of keratin related genes, had the worst survival.
That cluster contained mostly primary samples. As
noted by Akbani et al. [12], the poor survival can be
attributed to the size bias of primary melanomas in the
TCGA cohort.

The third expression pattern, which was of greatest
interest to us, was enriched for melanogenesis and
melanosome-related genes and distinguished the two
metastasis-enriched clusters 3 (“Melanogenesis-low”) and 4
(“Melanogenesis-high”). Patients with high levels of the
melanogenesis pattern were included in cluster 4 and had a
worse survival rate compared to those in cluster 3, who had
low levels. The association between overexpression of
melanogenesis genes and poorer prognosis can be explained
by several hypotheses: (1) trafficking of miRNA or other
agents within secreted melanosomes by melanoma cells to
their environment can make it more hospitable for mela-
noma progression [17]; (2) making the tumor resilient to
chemotherapy, due to the drug-detoxifying properties of
melanogenesis genes [18, 36]; or (3) removal of anticancer
drugs from the melanoma cells by melanogenesis related
transporters effluxing drugs outside of cells [37, 38]. The
latter hypothesis is consistent with the fact that in our
analysis, samples of the Melanogenesis-high cluster over-
expressed ABC transporters such as ABCB5 and ABCC2
[37] (Supplementary Table S4). Our validation on samples
from patients found that secretion of melanosomes to the
surrounding tissues occurs both in primary melanoma (with
clear gradient) as well as in metastatic melanoma. We
therefore hypothesize that the reduced survival rate that
characterizes the “Melanogenesis-high” subgroup is asso-
ciated with the significantly higher activation of the mela-
nogenesis pathway in these patients, as opposed to the
“Melanogenesis-low” subgroup.

The importance of keratin, immune, and melanogen-
esis expression patterns in classifying melanoma tumors
was also recognized in previous studies aimed at mole-
cularly stratifying melanoma tumors. In 2010, Jönsson
et al. identified four expression-based subgroups by
analyzing 57 stage IV melanomas taken from patients
[39]. These subgroups were called “normal-like,” “high-
immune,” “pigmentation,” and “proliferative” sample
subgroups. The normal-like group was characterized by

overexpression of keratin genes (KRT17, KRT10, and
KRT80), the high-immune group overexpressed immune
genes (CCL13 and CD209), and the pigmentation group
showed overexpression of melanogenesis genes (MITF,
TYR, DCT, and MLANA). The proliferative group
showed underexpression of the three signatures. The
subgroups showed significant survival differences and
were confirmed on additional patient cohorts [40–42]. A
comparison of that classification to the one described
here showed both commonalities and differences (see
Supplementary Figs. S12–S15). Importantly, the keratin,
immune, and melanogenesis expression patterns are
manifest in both analyses, supporting their potential
utility as biomarkers.

We trained a simple decision tree for classifying mel-
anoma samples into one of the four subgroups. Our tests
showed that a three-gene decision tree gave a good balance
between classifier simplicity and accuracy. Although
inferior in accuracy to more complex classifiers like SVM,
a three-gene decision tree is easier to interpret biologically,
easier to translate into a useful diagnostic kit in the future,
and also captures the hierarchy of biological signals we
identified in the data. A drawback for using a decision tree
is that its thresholds depend on the distribution of the
training data, and therefore must be recalculated before the
tree can be applied to other datasets. Indeed, manual
calibration of the decision thresholds was required to
further validate the three-gene decision tree on the Lund
melanoma dataset [41]. Once recalibrated, the decision
tree successfully identified prognostic subgroups with
corresponding biological characteristics on that second
dataset (see Supplementary Figs. S16 and S17, and Sup-
plementary Table S7).

Across multiple training runs, the trees produced
tended to select one representative predictor gene from
each of the three expression signatures. Key predictor
genes, as well as their other signature representatives,
were experimentally validated on a new cohort of
melanoma taken from patients. Although limited in
scope, the validation showed that the predictor genes
differed in their protein expression levels among mela-
noma samples and confirmed the association of predictor
levels with outcome. More substantial validation should
be conducted on a larger cohort, composed of both pri-
mary and metastatic tumors, in order to validate the
association of the identified expression signatures with
outcome, to better evaluate the performance of the
suggested classifier and to possibly identify better
predictor genes.

We hope that classifiers such as the one suggested here
will be translated in the near future into accurate and
accessible diagnostic kits for improving the diagnosis and
prognosis of melanoma tumors.
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Materials and methods

Gene expression analysis for identification of
melanoma subtypes

The expression profiles of 474 samples from TCGA’s
melanoma RNA-Seq dataset [12] were downloaded from
UCSC XENA’s web site in April 2018 (http://xena.ucsc.
edu/), together with their associated clinical information
(213 labels). We used the PROMO software suite (release
2019.5) [43, 44] for importing, preprocessing, analyzing,
and visualizing the data. The downloaded RNA-Seq dataset
(Illumina HiSeq platform, gene-level RSEM-normalized,
log2 transformed) included 104 primary and 365 metastasis
samples. Five samples were removed since they had
inconsistent phenotype labels, and a variability-based filter
was used to keep only the 2000 top variable genes. Clus-
tering was performed on both samples and genes using the
k-means algorithm with a correlation distance metric, using
k= 4 for the samples and k= 5 for the genes. The algorithm
was run 100 times and a solution minimizing the
sum of point-to-centroid distances was chosen. The TCGA
sample IDs included in each sample cluster are listed in
Additional file 1.

We used PROMO’s multilabel analysis to evaluate the
enrichment of the sample clusters for each of the clinical
labels. Enrichment significance of sample clusters for
categorical variables (such as sample type) was calculated
using FDR-corrected [45] hypergeometric test. For numeric
variables (such as age, Breslow’s depth, and pigmentation
score), the difference between sample groups was
evaluated using FDR-corrected Wilcoxon rank-sum test
(Mann–Whitney U test). For exploring the prognostic value
of the four sample clusters based on TCGA’s survival data,
we used PROMO to plot 5-year survival curves using the
Kaplan–Meier estimator [46], and calculated p values for
the difference in survival for each group versus all other
groups using the log-rank (Mantel–Haenszel) test [47, 48].

To identify active gene functions characterizing each of
the sample clusters, we applied GO enrichment analysis
[49] on the five gene clusters using both PROMO and the
Expander software suite [50, 51]. To further characterize the
biological function of the gene clusters, we also used
Expander to test each gene cluster for enrichment for KEGG
pathways [52].

Finally, to identify genes that were overexpressed on
sample cluster 4 compared to all other samples, we
applied the Wilcoxon rank-sum test on all dataset genes
exhibiting nonzero variance (n= 20,227), and ranked all
genes that were overexpressed on cluster 4 (in log scale)
and showed p value < 1e−04 by decreasing fold change
(difference between the mean expression in cluster
4 samples and all other samples). We used the GORILLA

tool [53] for identifying the melanin biosynthesis genes
appearing among the top 100 differentially expressed
genes (Supplementary Table S4). Complete lists of
overexpressed genes in each of the sample clusters
appear in Additional file 2.

Human histopathology and analysis of slides

Samples were obtained from patients at the E. Wolfson
Medical Center and Tel Aviv Medical Center. The experi-
mental study of the clinical samples was approved by the
hospital ethics committees (from Wolfson Medical Center:
approval number 0039-18WOMC; from Tel Aviv Medical
Center: approval number 16-660-TLV6/7). Surgeons
resected the primary tumors and the metastases and con-
firmed clear margins on the samples. Using demographic
information, tumor characteristics, and length of survival
following diagnosis, patients were identified as belonging to
either good or bad survival groups by a pathologist. For the
analysis of the first group of patients (Fig. 5), six patients
were selected, and individual specimens from each patient
were stained with either H&E or one of six different
fluorescent antibodies (n= 6). For the second group (Sup-
plementary Fig. S11), six additional patients were selected
and specimens were also stained with either H&E or one of
three different fluorescent antibodies (n= 6). Each picture
presented in these two figures is from a different sample,
and all samples in the same column are from the same
patient. Specimens were fixed in formalin and subsequently
embedded in paraffin. Hematoxylin (HHS16, Sigma-
Aldrich) and eosin (HT110232, Sigma-Aldrich) staining of
the samples was performed according to the manufacturer’s
instructions. H&E images were obtained at 20× using
Aperio Slide Scanner. Slides were first blocked and incu-
bated with various combinations of primary antibodies
including LCK (AF3704, R&D Systems), TIGIT (A700-
047, Bethyl Laboratories), TRIM63 (bs2539R, Bioss),
OCA2 (bs15510R, Bioss), GPNMB (AF2550, R&D Sys-
tems), HMB45 (ab732, Abcam), and KLK8 (MAB1719,
R&D Systems). After subsequent washes, slides were
incubated with the matching combinations of secondary
antibodies, including Alexa Fluor 488 (A11055, Invitro-
gen), Alexa Fluor 594 (A21203, Invitrogen), and/or Alexa
Fluor 647 (A31571, Invitrogen). 4′,6-diamidino-2-pheny-
lindole (DAPI; Vector Laboratories) was then added drop-
wise to adequately visualize cell nuclei in the stained
specimens. Images of slides were taken using fluorescence
microscopy (Nikon) at 40× magnification, split into the
individual color channels, and mean intensity of repre-
sentative areas from each image was measured using Ima-
geJ software. The mean intensity values recorded were then
used to generate a color matrix demonstrating the level of
expression of each protein in each patient’s sample.
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For the analysis of melanosome spread and secretion,
samples of human in situ melanoma, as well as metastases
from different patients including brain, lymph, and liver were
obtained from E. Wolfson Medical Center. Each image was
generated from a separate patient at a different stage of the
disease. Each metastasis location had one patient sampled for
it (n= 1 per stage of disease). Immunohistochemical staining
as described above was performed using GPNMB (AF2550,
R&D Systems) and HMB45 (ab732, Abcam) as primary
antibodies, and Alexa Fluor 488 (A11055, Invitrogen) and
Alexa Fluor 594 (A21203, Invitrogen) as secondary anti-
bodies, with DAPI (Vector Laboratories) added at the end.
Images of the slides were taken at 20× magnification using a
Nikon fluorescent microscope. The image of in situ melanoma
was then broken into its component color channels using
ImageJ software, and four equally sized, equidistant frames
were cut out and measured for the mean intensity of
GPNMB to quantify the gradient of its diffusion from the
primary tumor.

Training of a gene expression-based decision tree
classifier

To train a molecular classifier for predicting melanoma
subgroups, we used the expression levels of the 2000 most
variable genes on the set of 469 melanoma samples. We
used Matlab’s implementation (R2019a) (accessed through
PROMO [54]) to grow a classification tree using a curvature
test as the method for splitting predictors [55, 56]. The
training procedure consisted of two steps. First, we assessed
the best number of predictor genes to be included in the
decision tree, by training many trees on randomly selected
subsets of the dataset samples (90% of the samples were
included in each iteration) while varying the number of
allowed predictor genes and the pruning level. The average
training error was calculated for each tree size. Having
determined the number of predictor genes, we then used the
entire dataset samples (n= 469) to train the final decision
tree. To evaluate the robustness of the decision tree, we
repeated the procedure multiple times and compared the
resulting tree configurations and the selected predictor
genes and their biological categories.
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