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Obstructive Sleep Apnea Screening Using a Piezo-Electric Sensor

In this study, we propose a novel method for obstructive sleep apnea (OSA) detection using 
a piezo-electric sensor. OSA is a relatively common sleep disorder. However, more than 
80% of OSA patients remain undiagnosed. We investigated the feasibility of OSA 
assessment using a single-channel physiological signal to simplify the OSA screening. We 
detected both snoring and heartbeat information by using a piezo-electric sensor, and 
snoring index (SI) and features based on pulse rate variability (PRV) analysis were extracted 
from the filtered piezo-electric sensor signal. A support vector machine (SVM) was used as 
a classifier to detect OSA events. The performance of the proposed method was evaluated 
on 45 patients from mild, moderate, and severe OSA groups. The method achieved a mean 
sensitivity, specificity, and accuracy of 72.5%, 74.2%, and 71.5%; 85.8%, 80.5%, and 
80.0%; and 70.3%, 77.1%, and 71.9% for the mild, moderate, and severe groups, 
respectively. Finally, these results not only show the feasibility of OSA detection using a 
piezo-electric sensor, but also illustrate its usefulness for monitoring sleep and diagnosing 
OSA.
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INTRODUCTION

Obstructive sleep apnea (OSA) is a silently advancing sleep-re-
lated breathing disorder, and the majority of high-severity pa-
tients are unaware of their condition (1,2). OSA diagnosis is very 
important to those whose sleep apnea is undetected. OSA epi-
sodes lead to oxygen de-saturation and subsequent arousals 
resulting in sleep fragmentation, fatigue, and excessive daytime 
sleepiness. According to several studies (3), a considerable per-
centage of patients with OSA remain unidentified. Undiagnosed 
OSA can significantly affect the quality of life and cause health 
complications including fatigue, daytime sleepiness, motor ve-
hicle crashes, reduced work performance, sudden death, and 
cardiovascular disease (4-6).
  Polysomnography (PSG) is a standard diagnostic tool for OSA 
that simultaneously performs electroencephalogram (EEG), 
electrocardiogram (ECG), electrooculogram (EOG), electromy-
ography (EMG), and oxygen saturation (SpO2) analyses, and 
also monitors mouth, nasal, abdominal, and thoracic breath-
ing; body position; and snoring. These signals can be supported 
objectively to assess and monitor OSA. However, PSG is expen-
sive, inconvenient, and labor-intensive, making it unwieldy for 
unattended OSA screening in home healthcare settings.
  To overcome these challenges, numerous alternative meth-
ods have been proposed based on various physiological signals 
(7,8). For instance, several studies (9) have investigated snoring 
sounds for OSA detection via spectral analyses. However, the 

highly sensitive microphones that these techniques employ are 
costly, and background noise can affect the quality of recording 
(10). ECG-based studies have considered heart rate variability 
(HRV) analyses for apnea detection. These methods reduce the 
issues associated with conventional PSG, but are limited by the 
inconvenience of attaching electrodes to the body (11). Pulse 
oximetry-based systems measure photoplethysmogram (PPG) 
and SpO2. Pulse rate variability (PRV) from PPG and oxygen 
desaturation index (ODI) from SpO2 is correlated well with the 
OSA severity. Depending on the patient group, pulse oximetry 
yields an over/underestimation of incidents for OSA detection. 
To the best of our knowledge, there are no reported studies based 
on a piezo-electric snoring sensor for OSA detection.
  A piezo-electric snoring sensor is a small, cost-effective sen-
sor that is widely used for monitoring snoring sounds in PSG 
studies. In addition, it is highly efficient under mechanical load-
ing conditions (12), and its signal-to-noise ratio makes it an ex-
cellent platform for tracking snoring episodes. In previous stud-
ies, a piezo-electric sensor was used for measuring bio-signals 
including snoring (13,14), respiration rate (15), and sleep activi-
ties (16). Because it can sense a mechanical load, it is less sensi-
tive to ambient noise than a microphone. It can be attached to 
the neck of a patient and detect heartbeats through the pulse 
waves originating from the carotid artery. It can not only pro-
vide data on snoring, but also on movement and heartbeat dur-
ing sleep. We, therefore, hypothesize that a piezo-electric sen-
sor can be used as an alternative tool for OSA diagnosis.
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  The aim of this study was to investigate a novel method for 
OSA classification using a piezo-electric sensor. All snoring epi-
sodes and heartbeats are identified in the form of piezo-electric 
signals during sleep. These vital signs are analyzed via time–fre-
quency domains, and features are extracted to differentiate be-
tween normal breathing and OSA during sleep. Finally, machine 
learning algorithm on a support vector machine (SVM) is em-
ployed to classify an event as OSA event or normal breathing.

MATERIALS AND METHODS

In this study, we propose a novel method for OSA classification 
using a piezo-electric sensor. Fig. 1 presents all the steps of the 
proposed method. First, all snoring episodes are detected and 
then the snoring index (SI) is calculated. Next, the SI is used to 
determine the suspected region of OSA for the PRV analysis. The 
PRV signal for extracting the temporal and spectral domain fea-
tures is identified using a piezo-electric sensor. Finally, OSA clas-
sification is performed via an SVM using the features obtained 
from the PRV analysis.

Subjects and data collection
We enrolled 98 patients suspected with OSA, and conducted a 
full-night PSG for these patients at the Samsung Medical Cen-
ter in Seoul, Korea as per standard clinical guidelines (1). The 
exclusion criteria in this study were as follows: patients with cen-
tral sleep apnea, mixed sleep apnea, and cardiovascular disor-
ders. A total of 45 subjects suffering from OSA were included in 
this study (Table 1). All patients were subjected to a full-night, 
attended diagnostic PSG using an Embla N7000 (Embla Systems 
Inc., Broomfield, CO, USA) device. The PSG studies were scored 
according to the standard criteria defined by the sleep special-
ists at American Academy of Sleep Medicine (AASM). All sub-
jects provided written informed consents, and the study proto-
col was approved by The Institutional Review Board of the Sam-
sung Medical Center. The piezo-electric sensor (REF 1420610; 
Embla Systems Inc.) was attached to the neck of a patient to mea-
sure vital signs during nocturnal PSG. Signals were recorded at 
a sampling rate of 200 Hz, which is the minimum acceptable 

sample rate for snoring according to the AASM guideline (1). 
Snoring episodes were traced via a sleep-specific program, Rem
Logic (Embla Systems Inc.) and footnoted by an experienced 
sleep specialist. Signal processing and analysis were performed 
using MATLAB (Mathworks Inc., Natick, MA, USA).

Snoring detection
In this study, snoring episodes were detected via a piezo-elec-
tric sensor as shown in Fig. 2. We used the method proposed 
previously by our research team for automatic snoring detec-
tion (13). This method was based on a short-time Fourier trans-
form analysis with a 100 ms hamming window. The snoring ep-
isodes so detected were interpreted using SIs, where SI repre-
sents the frequency of snoring episodes. The SI, which can be 
determined heuristically and demonstrates the incidence of 
snoring within a predetermined interval, was calculated as the 
number of snoring events occurring within 10 seconds. Snoring 
induces vibrations of the skin surface in the neck area. A piezo-
electric sensor can measure not only snoring vibrations, but also 
non-snoring vibrations related with breathing, body movements, 
and coughing during sleep. All non-snoring events were con-
sidered as normal breathing and thus, rejected in the elimina-
tion process.

Feature extraction
Features used for classification of OSA were extracted from the 
PRV analysis. The PRV signal was identified with a piezo-elec-

Table 1. Anthropometric and sleep characteristics of study subjects

Measures
Mild  

(AHI > 5)
Moderate  

(AHI > 15)
Severe  

(AHI > 30)
P value

Subject (male:female) 15 (11:4) 15 (11:4) 15 (12:3) -
Age, yr 55.9 ± 13.7 56.0 ± 11.2 54.1 ± 11.2 0.580
BMI, kg/m2 24.2 ± 2.1 24.1 ± 1.9 26.3 ± 3.2 0.141
AHI (per hr) 9.9 ± 3.1 20.3 ± 4.3 50.1 ± 12.1 0.012
Total sleep time, hr 6.1 ± 0.7 6.1 ± 0.8 5.5 ± 0.9 0.194
Sleep latency, min 12.8 ± 19.7 8.2 ± 6.1 13.8 ± 12.6 0.827
Sleep efficiency, % 81.0 ± 9.2 82.7 ± 11.2 75.6 ± 12.2 0.186

Data are shown as mean ± SD.
AHI = apnea-hypopnea index, BMI = body mass index, SD = standard deviation.

Fig. 1. Steps of the proposed method.
OSA = obstructive sleep apnea, PP = pulse-to-pulse interval, SDPP = standard deviation of the pulse-to-pulse interval, rMSSD = root mean square of successive differences, 
LF = low-frequency, HF = high-frequency, SI = snoring index, SVM = support vector machine. 
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tric sensor to extract temporal and spectral domain features. The 
pulse rate was obtained by detecting the pulse waves originat-
ing from the carotid artery using the piezo-electric sensor atta
ched to the neck. For recognizing the PRV signals, we used a self-
developed, sensor-customized algorithm based on an autocor-
relation method to detect the heartbeat peaks (Fig. 3). The pulse 
rate was calculated from the pulse-to-pulse interval (PP), and 
an unequal time interval signal was adjusted to an equal inter-

val signal via linear interpolation. The adjusted pulse rate signal 
was resampled at 4 Hz to analyze the extracted features in both 
the time and frequency domains. These features were extracted 
from the resampled pulse rate signal using a length of 2 minutes 
and a hamming window with 25% overlapping. In the time do-
main, we calculated the PP, its standard deviation (SDPP) and 
the root mean square of successive differences (rMSSD). In the 
frequency domain, we extracted the low-frequency power (LF) 

Fig. 2. Snoring detection process. (A) Piezo-electric sensor signal. (B) Filtered signal. (C) Energy signal. Dashed lines highlight the snoring threshold (10 dB). (D) Detected snor-
ing episodes.
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Fig. 3. Heartbeat detection process. (A) Piezo-electric sensor signal. (B) Filtered signal (+) in signal shows detected peak point. (C) Reference ECG signal.
ECG = electrocardiogram.
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range (0.04–0.15 Hz), high-frequency (HF) power range (0.15–
0.40 Hz), and LF/HF ratio. These features reflect the short-term 
HRV and parasympathetic nerve activity, and are known to be 
associated with sleep-disordered breathing. The values of PP, 
SDPP, and rMSSD increased during OSA; however, there was 
no significant difference between normal breathing and OSA. 
LF, HF, and LF/HF ratio decreased during OSA, also with no sig-
nificant differences between normal and OSA regions (Table 2). 
To classify an OSA event, an SVM was used as a classifier in this 
study.

OSA classification
Before classification, the SI was used to distinguish between 
normal and OSA suspected regions. Next, the OSA suspected 
region was analyzed via SVM using temporal and spectral fea-
tures (Fig. 1). Finally, OSA was classified using an SVM. The aim 
of SVM is to determine an optimal separating hyperplane that 
shows the maximum margin between the apneic and non-ap-
neic segments. First, the input data was transformed into a high-
er dimensional space by employing a kernel function, and then 
a linear optimal hyperplane was constructed between normal 
and OSA classes in the transformed space. These data vectors 
nearest to the constructed line in the transformed space are called 
support vectors. In this study, we applied a single binary SVM 
classifier with a radial basis function employed as the kernel func-
tion. The multiplier coefficient α and regularization parameter 
C were determined empirically (C = 1; α = 0.5). The extracted 
parameters of the PRV time series were used as input features 
in the SVM, and the output types were represented as follows: 
−1 = Normal and +1 = OSA. Then, the number of automatically 
detected apneic events was counted (per hour of recording) and 
compared with standard cutoffs (5, 15, and 30 events/hr) to des-
ignate the recording as a mild, moderate, or severe group. All 

SVMs were trained and tested on the SVM toolbox of MATLAB 
(Mathworks Inc.).

Data analysis
To test the performance of the proposed method, we used the 
piezo-electric signals from the sleep recordings of the 45 patients 
suffering from OSA (Table 1). These patients were divided into 
3 groups based on the severity of the regular apnea to validate 
the classification ability of the proposed algorithm. We used OSA 
and snoring footnotes of the PSG, while the pulse rates from the 
piezo-electric sensor were confirmed using reference ECGs in 
the PSG recordings. A cross-validation was performed to evalu-
ate the proposed method for each patient group.
  Five characteristics, namely, accuracy, sensitivity, specificity, 
positive predictive value, and kappa value were calculated to 
assess the performance of the proposed method. Accuracy in-
dicates the overall detection accuracy, sensitivity is interpreted 
as the ability of the algorithm to accurately classify OSA, and 
specificity indicates its ability to not generate a false negative 
(normal breathing). The kappa coefficient (κ) (17) was used to 
evaluate the agreement between the estimated apnea-hypop-
nea index (AHI) level of the proposed method and annotated 
AHI of the clinical diagnosis of PSG. The Kruskal-Wallis test was 
performed for comparing patient groups. P < 0.01 was accepted 
as significant.

Ethics statement
The protocol of this study was reviewed and approved by the 
Institutional Review Board of Samsung Medical Center (IRB No. 
2012-01-063). All patients provided written informed consent 
for participating.

Table 2. Statistical values of the features from the PRV analysis

Features
Time domain Frequency domain

PP SDPP rMSSD LF HF LF/HF

G1 Normal 78.4 ± 3.3 1,113.0 ± 49.1 1,557.0 ± 69.4 3.1 ± 11.3 16.8 ± 49.4 0.9 ± 0.4
OSA 88.5 ± 20.3 1,269.0 ± 248.5 1,799.0 ± 403.3 3.6 ± 15.8 7.1 ± 13.8 0.5 ± 0.3
P value 0.474 0.487 0.487 0.487 0.487 0.487

G2 Normal 118.0 ± 4.0 1,660.0 ± 43.0 2,354.0 ± 61.0 6.4 ± 38.6 4.0 ± 12.9 0.9 ± 0.3
OSA 99.4 ± 21.9 1,453.0 ± 292.6 2,060.0 ± 414.8 4.4 ± 21.6 8.6 ± 28.3 0.6 ± 0.4
P value 0.491 0.493 0.493 0.493 0.493 0.493

G3 Normal 85.1 ± 10.0 1,125.0 ± 149.0 1,596.0 ± 211.2 22.5 ± 445.0 48.5 ± 105.2 1.2 ± 0.5
OSA 101.2 ± 25.6 1,372.0 ± 379.9 1,945.0 ± 538.8 5.0 ± 42.0 8.6 ± 93.6 0.7 ± 0.3
P value 0.542 0.494 0.494 0.494 0.494 0.494

Total Normal 74.2 ± 11.2 1,113.0 ± 114.2 1,577.0 ± 162.6 47.2 ± 671.0 101.5 ± 1,611.1 0.8 ± 0.7
OSA 99.4 ± 24.1 1,392.0 ± 346.4 1,974.0 ± 491.1 4.7 ± 33.9 8.5 ± 71.1 0.6 ± 0.4
P value 0.616 0.664 0.665 0.544 0.620 0.573

Data are shown as mean ± SD.
G1 = mild (AHI > 5), G2 = moderate (AHI > 15), G3 = severe (AHI > 30), AHI = apnea-hypopnea index, PRV = pulse rate variability, OSA = obstructive sleep apnea, PP =  
pulse-to-pulse interval, SDPP = standard deviation of the pulse-to-pulse interval, rMSSD = root mean square of successive differences, LF = low-frequency, HF = high-fre-
quency, SD = standard deviation.
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RESULTS

We have obtained 3 major results through this study. First, the 
result of automatic snoring detection is presented in Table 3. The 
total mean sensitivity, specificity, and accuracy are determined 
as 88.5%, 96.1%, and 95.6%, respectively. The mean sensitivity, 
specificity, and accuracy are 81.8%, 96.5%, and 95.6%; 94.2%, 
95.9%, and 96.0%; and 89.5%, 95.9%, and 95.4% for groups with 
mild, moderate, and severe OSA, respectively. The above values 
reflect that there is no significant difference in these parameters 
for OSA detection in the 3 subject groups. This is indicative of 
the stability and reliability of the snoring detection algorithm. 
In addition, we report the heartbeat detection results of the pro-
posed algorithm in Table 4. It shows that the mean sensitivity 
and positive predictive value for all subjects is 94.3% and 87.1%, 
respectively. The average sensitivity and positive predictive val-
ue are 93.1% and 86.8% for the mild; 94.4% and 85.7% for the 
moderate; and 94.3% and 90.2% for severe OSA groups, respec-
tively. The results exhibit that there is no significant difference 
in the sensitivity and positive predictive value of the algorithm 
for the 3 subject groups.
  Finally, we classified OSA using an SVM. The performance of 
leave-one-out cross-validation tests based on specific charac-
teristics for the classification (overall accuracy, sensitivity, and 
specificity) is summarized in Table 5. The total mean sensitivity, 
specificity, and accuracy are 74.5%, 76.4%, and 74.3%, respec-

tively. The mean sensitivity, specificity, and accuracy are 72.5%, 
74.2%, and 71.5%; 85.8%, 80.5%, and 80.0%; and 70.3%, 77.1%, 
and 71.9% for the mild, moderate, and severe OSA groups, re-
spectively. Furthermore, in order to estimate the severity of ap-
nea for each individual, we counted the AHI manually and com-
pared with that of the annotated AHI obtained from PSG. Fig. 4 
shows the Bland-Altman plot of the estimated and AHI value. 
The correlation ratio between the 2 quantities values is found to 
be 0.94 (P < 0.001). The normalized mean and standard devia-
tion values are 26.83 and 18.77, respectively, and only 5 of 45 sub-
jects were outside the 95% confidence interval (CI) as expected 
statistically.

DISCUSSION

In this study, we investigated the feasibility of the OSA classifi-
cation method using a piezo-electric sensor-based SI and fea-

Table 3. Results of snoring detection

Measures
Mild  

(AHI > 5)
Moderate  

(AHI > 15)
Severe  

(AHI > 30)
Total P value

Sensitivity 81.8 ± 14.1 94.2 ± 4.1 89.5 ± 5.6 88.5 ± 10.1 0.015
Specificity 96.5 ± 1.0 95.9 ± 0.7 95.9 ± 1.1 96.1 ± 0.9 0.202
Accuracy 95.6 ± 1.7 96.0 ± 0.6 95.4 ± 1.3 95.6 ± 1.3 0.259

Data are shown as mean ± SD. 
AHI = apnea-hypopnea index, SD = standard deviation.

Table 4. Results of heartbeat detection

Measures Mild (AHI > 5) Moderate (AHI > 15) Severe (AHI > 30) Total P value

Sensitivity 93.1 ± 0.7 94.4 ± 0.5 95.1 ± 0.4 94.3 ± 0.3 0.968
Positive predictive value 86.8 ± 0.8 85.7 ± 0.8 90.2 ± 1.8 87.1 ± 0.6 0.616

Data are shown as mean ± SD. 
AHI = apnea-hypopnea index, SD = standard deviation.

Table 5. Results of OSA detection

Measures Mild (AHI > 5) Moderate (AHI > 15) Severe (AHI > 30) Total P value

Estimated AHI 7.2 ± 2.0 16.3 ± 3.3 37.1 ± 9.7 20.2 ± 13.9 0.013
Annotated AHI 9.9 ± 3.1 20.3 ± 4.3 50.1 ± 12.1 26.8 ± 18.5 0.014
Sensitivity 72.5 ± 4.3 85.8 ± 0.1 70.3 ± 6.2 74.5 ± 6.7 0.897
Specificity 74.2 ± 1.0 80.5 ± 2.5 77.1 ± 4.8 76.4 ± 0.9 0.120
Accuracy 71.5 ± 3.5 80.0 ± 3.2 71.9 ± 2.7 74.3 ± 5.1 0.017

Data are shown as mean ± SD. 
AHI = apnea-hypopnea index, OSA = obstructive sleep apnea, SD = standard deviation.

Fig. 4. Scatter plot of the estimated AHI and annotated AHI values. 
○ = mild OSA group, � = moderate OSA group, � = severe OSA group, AHI = 
apnea-hypopnea index, OSA = obstructive sleep apnea.
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Table 6. Comparison between the proposed method and previous studies

Authors Subjects Sensor location Method
Sensitivity/specificity (AHIPSG threshold)

5 10 15 20

Nakano et al. (20) 383 Tracheal microphone Disturbance index and ODI 96/76 - 79/95 -
Solà-Soler et al. (18)   16 Tracheal microphone Mean, SD, and density of pitch - 64.4/58.5 82/81 82/81
Azarbarzin and Moussavi (19)   57 Tracheal microphone TV norm of Fp and ZCR 74/82 83/91 85/96 92/98
Our method   45 Tracheal piezo snoring sensor Snore index, PRV 73/74 - 86/81 70/77

AHI = apnea-hypopnea index, PSG = polysomnography, ODI = oxygen desaturation index, SD = standard deviation, ZCR = zero-crossing rate, PRV = pulse rate variability.

tures obtained via PRV analysis. The performance test of the piezo-
electric sensor resulted in a mean sensitivity of 85.8%, specifici-
ty of 80.5% and accuracy of 80.0% for the group with moderate 
sleep apnea, demonstrating the usefulness of the piezo-electric 
sensor for OSA classification and screening.
  Several methods have been presented to detect OSA by ana-
lyzing snoring, the hallmark symptom of OSA. Most studies an-
alyzing snoring sounds used snoring signals recorded through 
high-performance microphones attached to different regions 
of the neck of the subject (Table 6). Solà-Soler (18) investigated 
the association between snoring and OSA by analyzing the in-
tensity and frequency of the OSA. Nakano et al. (20) reported 
that OSA screening based on snoring sound analysis using a high-
performance microphone had a higher sensitivity and specific-
ity compared with the method using blood SpO2 levels. Azar-
barzin and Moussavi (19) classified OSA by applying various 
features of the tracheal snoring sound to a machine-learning 
algorithm (9). In these studies, a microphone was attached to 
the neck of each subject to reduce background noise during 
sleep. Additionally, they employed a high-performance micro-
phone to permit detailed snoring analysis, which was costly and 
time consuming. The piezo-electric sensor used in this study is 
cost effective and relatively simple for detecting snoring. The 
piezo-electric sensor was not influenced by ambient noise, be-
cause of which our snoring detection results (Table 3) are found 
to be better and similar to the results of previous studies (13,14).
  The primary advantage of our method is that a piezo-electric 
sensor can simultaneously measure snoring and heartbeat. Fea-
tures extracted from 2 biological signals were used for OSA clas-
sification using an SVM and the performance was higher or com-
parable with previous studies. It showed our method could be a 
possible tool for OSA diagnosis. In particular, the rMSSD and 
HF features played an important role in accurate classification.
  The Bland-Altman test revealed that only 5 subjects out of 45 
were outside of the 95% CI. These 5 subjects had high BMI val-
ues (53.1, 59.1, 62.2, 63.2, and 79.6), which imply that the heart-
beat quality degrades because of a high concentration of fat and 
tissue around the neck. Three groups were classified as mild, mod-
erate, and severe OSA based on the estimated AHI and best de-
tection rate of OSA. The latter, which is found to be > 80%, was 
obtained for the moderate group as shown in Table 5. This was 
a result of the high-accuracy snoring and heartbeat detection in 

that group. Furthermore, our method was evaluated by the cor-
relation between the estimated AHI values with annotated AHI 
obtained from PSG and it showed a high correlation (0.94, P <  
0.001) between the 2 parameters.
  Our proposed method also has some limitations. First, the 
connection of the piezo-electric sensor to the necks of the sub-
jects may result in inconvenience and discomfort during sleep. 
Second, the data obtained in a lab setting may be qualitatively 
and spatially different from that obtained in a state of natural 
and comfortable sleep. Third, any cardiac abnormalities were 
excluded in our study, so that the proposed algorithm may not 
be as good if the subject suffers from certain types of cardiac 
abnormalities, in particular, arrhythmias. Fourth, central and 
mixed types of OSA are excluded. With an improved algorithm 
and piezo-electric sensor, OSA can be divided into different types 
of apnea. Fifth, it is assumed that all patients with OSA snore, so 
that if a patient does not snore then it would lead to an under-
estimation of the AHI. Finally, this study was not performed on 
a large population size or on the usage of the optimized piezo-
electric sensor because we focused on the possibility and po-
tential of sleep apnea monitoring using a piezo-electric sensor 
in this study. These issues will be addressed in a follow-up study.
  Finally, our results showed the potential for OSA classifica-
tion using a piezo-electric sensor. Thus, the proposed method 
may be considered as a reliable tool for screening the OSA level 
of a subject. 
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