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Abstract: Natural killer T cells (NKT cells) represent a
subset of T lymphocytes that express natural killer (NK)
cell surface markers. A subset of NKT cells, termed
invariant NKT cells (iNKT), express a highly restricted T
cell receptor (TCR) and respond to CD1d-restricted lipid
ligands. iNKT cells are now appreciated to play an
important role in linking innate and adaptive immune
responses and have been implicated in infectious disease,
allergy, asthma, autoimmunity, and tumor surveillance.
Advances in iNKT identification and purification have
allowed for the detailed study of iNKT activity in both
humans and mice during a variety of chronic and acute
infections. Comparison of iNKT function between non-
pathogenic simian immunodeficiency virus (SIV) infection
models and chronic HIV-infected patients implies a role
for iNKT activity in controlling immune activation. In vitro
studies of influenza infection have revealed novel
effector functions of iNKT cells including IL-22 production
and modulation of myeloid-derived suppressor cells, but
ex vivo characterization of human iNKT cells during
influenza infection are lacking. Similarly, as recent
evidence suggests iNKT involvement in dengue virus
pathogenesis, iNKT cells may modulate responses to a
number of emerging pathogens. This Review will
summarize current knowledge of iNKT involvement in
responses to viral infections in both human and mouse
models and will identify critical gaps in knowledge and
opportunities for future study. We will also highlight
recent efforts to harness iNKT ligands as vaccine
adjuvants capable of improving vaccination-induced
cellular immune responses.

Introduction

The immune response to invading pathogens requires the

successful activation of innate immunity, which informs the

development of the subsequent adaptive immune response. A

small subset of T lymphocytes expressing surface markers

characteristic of both T cells and natural killer (NK) cells are

now appreciated to form an important link between the innate

and adaptive immune responses. These NKT cells can be

activated in both antigen-dependent and independent manners

and respond with robust Th1 and Th2 cytokine production,

allowing them to exhibit remarkable functional plasticity with

both pro-inflammatory and immunoregulatory characteristics.

NKT cells can be grouped into several subsets (Table 1), but the

most commonly described group is the Type 1 or invariant NKT

(iNKT) subset, which is the focus of this Review. iNKTs are

highly conserved among mouse, non-human primate (NHP)

species, and humans [1–4] and are so named due to the

expression of a highly restricted T cell receptor (TCR) repertoire.

In humans and NHPs, iNKT cells are characterized by

expression of a TCR comprised of Va24-Ja18 paired with

Vb11 (reviewed in Porcelli [5]), while mouse iNKTs express

Va14-Ja18 paired with one of Vb8.2, Vb7, or Vb2 [6]. The

majority of iNKTs express CD161 (NK1.1 in mice) and all

respond to lipid ligands through CD1d restriction. Despite the

low frequency of the iNKT population in the periphery (0.01%–

1% of CD3+ lymphocytes in humans), iNKT activity is now

appreciated to play important roles in infectious disease, allergy,

autoimmunity, and tumor surveillance. This review will focus on

the current understanding and gaps in knowledge regarding

iNKT function during human viral infection. A description of

iNKT function during viral infection in mouse models has

previously been reviewed by Diana et al. [7].

iNKT Thymic Selection and Development
Current knowledge regarding iNKT thymic selection has

recently been thoroughly reviewed by Hu et al. [8]. Like

conventional T cells, iNKTs develop in the thymus from

CD4+CD8+ thymocytes. Expression of the iNKT TCR is

selected by reactivity with CD1d-presented endogenous lipid,

which directs cells to the iNKT lineage; the contribution of high-

affinity ligand negative selection to iNKT development is still

unclear but may also play a role [9,10]. Signaling from both the

TCR and signaling lymphocyte-activation molecule (SLAM)

receptors is required for iNKT development. Maturation and

proliferation of iNKT cells can occur either in the periphery or

the thymus, with mature iNKT cells requiring IL-15 for

maintenance [11]. Determinants of iNKT maturation are not

fully understood, but were recently shown to involve microRNA-

150 expression in mice [12,13].
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iNKT Activation by Ligand-Dependent and Independent
Mechanisms

iNKT TCR–mediated responses are restricted by CD1d, a

member of the non-polymorphic CD1 antigen presenting protein

family [5], which promotes the presentation of endogenous [14]

and pathogen-derived [15–26] lipid antigens to the TCR [27].

Although no viral-associated lipid iNKT antigens have been

described, iNKT activation in the absence of a pathogen-derived

lipid antigen can occur in a CD1d-dependent or independent

manner (reviewed in Brigl et al. [22] and Matsuda et al. [28]).

iNKT activation by antigen presenting cell (APC)-mediated lipid

antigen presentation involves IL-12 production and is strongly

dependent on CD40/CD40L interactions [29], with low levels of

CD40L being detectible ex vivo on the surface of iNKT cells

[30,31] and intracellular, pre-formed CD40L mobilized upon

activation [32]. Numerous pathogen-derived lipid antigens have

now been identified from bacterial species (reviewed in [33]) and

the endogenous lipid b-D-glucopyranosylceramide was recently

shown to accumulate in APCs following infection and to activate

mouse and human iNKTs [14]. Additionally, both gram negative

and gram positive bacteria are capable of activating iNKT cells via

TLR stimulation of, and IL-12/IFNa/b production by, APCs

[26,34–37]. This mechanism appears to require CD1d-restricted

presentation of endogenous lipid. Finally, non-specific CD1d-

independent iNKT activation can occur in the context of

lipopolysaccharide (LPS)-induced APC production of IL-12 and

IL-18 [38]. Given the lack of viral lipid antigens available for

CD1d presentation, the capacity to be activated by APC cytokine

production allows the iNKT subset to respond to viral infections as

well as bacterial and parasitic infections. Indeed, new evidence

demonstrates that weak TCR stimulation by endogenous lipids

temporarily ‘‘primes’’ iNKT cells to rapidly respond to cytokine

activation signals, emphasizing the broad, innate responsiveness of

the iNKT subset during infection [39].

iNKT Subsets and Functional Capacity
Human iNKTs express CD4 and CD8a [40,41], allowing

iNKT subsets to be defined as CD4+, CD42CD82 (DN), or

CD8+. Subset-specific differences in surface marker expression

have been described (Figure 1) [30], with CD4+ iNKTs exhibiting

lower expression of CCR5 but increased expression of CCR4

compared to the CD42 subset, which characteristically expresses

CCR1, CCR6, CXCR6, and NKG2D (reviewed in Kim et al.

[42]). All iNKTs express high levels of CXCR3 and CXCR4 and

typically exhibit an effector/memory phenotype [43,44]. The

CD42 subset tends to express low levels of CD62L but higher

levels of CD11a, suggesting a tissue-infiltrating phenotype, while

the CD4+ subset preferentially expresses CD62L and therefore

exhibits a lymph node homing phenotype [45]. CD4 and CD8 are

both expressed on thymic iNKT cells, but the CD4+ subset

predominates. Expansion in the periphery therefore appears to

account for the increased proportion of CD8+/DN iNKTs

observed outside the thymus [46]. While CD4 expression has

known functional consequences during iNKT activation [47,48], a

similar functional impact for CD8 expression has not been

described.

A hallmark of iNKT activation is the rapid production of a vast

array of cytokines and chemokines [49,50] including IFNc, TNFa,

TGFb, GM-CSF, IL-2, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, IL-

21, RANTES, Eotaxin, MIP-1a, and MIP-1b (reviewed in

Matsuda et al. and Tessmer et al. [28,49]). CD4+ iNKTs produce

both Th1 and Th2 cytokines, while CD42 iNKTs generally

produce only Th1 cytokines [30,51] (reviewed in Kim et al. [42]).

Other iNKT effector functions include perforin/granzyme release

[28,51,52], and Fas/FasL-mediated cytotoxicity [28,49]. iNKTs

can play an important role in the activation and regulation of

multiple immune cell subsets (Figure 2), including NK, T cell,

regulatory T cell, and B cell activation [53–55]. Stimulation of

iNKT cells in conjunction with soluble T cell antigen enhances

both CD4+ and CD8+ antigen-specific responses via a mechanism

involving CD40 signaling [56]. Similarly, iNKT activation

improves antibody titres, substitutes for CD4+ T cell help to B

cells, and enhances B cell memory in mice [57].

The functional plasticity of iNKT cells, combined with their

ability to modulate activation of other immune cell subsets,

suggests that they may play both a protective role in controlling

viral infection and a detrimental role in enhancing viral

pathogenesis. Here, we review the current understanding of the

roles of iNKT cells in human viral infections, with particular focus

on HIV and influenza infection (summarized in Table 2).

Chronic Viral Infections

Human Immunodeficiency Virus
CD4+ iNKT depletion. iNKT cell frequency is significantly

reduced among HIV-1 positive individuals [45,58], with a specific

depletion of the CD4+ iNKT subset compared to the CD42

subset [45]. Longitudinal analysis of pre-seroconversion and 1 year

and 5 year post-seroconversion samples demonstrated significant

Table 1. Human and mouse CD1d-restricted NKT cell subsets [130–134].

NKT Cell Subset Mouse Human

Type I TCR Va14-Ja18; Vb8.2/7/2 Va24-Ja18; Vb11

Subsets CD4+, DN CD4+, CD8+, DN

Ligand aGalCer aGalCer

Restriction CD1d CD1d

NK receptors NK1.1+/2 CD161+/2

Type II TCR Va3.2-Ja9 or Va8; Vb8 Diverse

Subsets CD4+, DN CD4+, CD8+

Ligand Sulfatide, lysosulfatide, lysophosphatidylcholine Sulfatide, lysosulfatide, lysophosphatidylcholine

Restriction CD1d CD1d

NK receptors NK1.1+/2 CD161+

doi:10.1371/journal.ppat.1002838.t001
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iNKT loss within the first year of infection, with continual declines

by 5 years [58]. Expression of CCR5 and CXCR4 on CD4+
iNKTs [43,45,59] makes them susceptible to infection with R5-

tropic, X4-tropic, and primary isolate viruses [43,45,59], resulting

in the preferential depletion of CD4+ iNKT cells during in vitro

infection [45]. The lack of change in CD42 iNKT populations

during in vitro infection suggests that loss of the CD4+ subset is not

largely due to CD4 downregulation. Replication of similar studies

in a number of cohorts has largely confirmed these initial

observations [60–63], although the impact of highly active

antiretroviral therapy (HAART) on iNKT cell reconstitution

remains controversial [58,64–66] and the kinetics of iNKT

reconstitution appear to be slower than that of conventional

CD4+ T cells [62,67].

Although it is now agreed that iNKT cells, particularly CD4+
iNKTs, are depleted during HIV-1 infection, less data is

available to clarify the impact of this depletion on disease

progression and viral pathogenesis. While it appears that the

iNKT subset is involved in the host response to viral infection, it

is unknown whether iNKT activation could control HIV

replication and immune activation, or what role the iNKT

subset might play in anti-tumor responses and prevention of

opportunistic infections in immunocompromised hosts [68].

One study to date has demonstrated iNKT cell culture

supernatant inhibition of HIV p24 production during in vitro

CD4+ T cell infection, which was shown to be IFNc-dependent

[61]. In a study of risk factors involved in developing cancer

among HIV-1 positive women, NKT cell frequency was

associated with a reduced risk of cancer [69]. While further

studies are required to assess the increased risk of progression or

co-infection, if any, associated with iNKT decline, it is clear that

both iNKT number and function are affected by HIV infection,

as discussed below.

iNKT dysfunction. Even among individuals with minimal

iNKT depletion during HIV-1 infection, the iNKT subset displays

functional impairment [61,64,70]. Both CD4+ and CD42 iNKTs

exhibit reduced proliferation and IFNc, TNFa, and IL-4 secretion

in response to aGalCer/IL-2/PMA stimulation [61,64,70], with

variable restoration among HAART recipients. Increased iNKT

expression of exhaustion marker programmed death (PD)-1 was

reported among HIV-1 positive individuals in one study [64], but

PD-1 levels did not significantly correlate with IFNc production or

proliferative capacity and PD-1 blockade did not restore iNKT

function. While Moll et al. suggest that this implies an irreversibly

exhausted phenotype, the expression and functional impact of

other inhibitory receptors such as 2B4, Tim-3, and LAG-3 on the

iNKT subset during HIV-1 infection remains unknown. As

evidence now suggests that the function of Tim-3 differs between

T cell and NK cell subsets [71,72], the precise impact of

exhaustion marker regulation on iNKT cells during infection

must be determined. Additionally, in the Vasan et al. study,

stimulations were carried out on iNKT-enriched PBMC cultures

that were B cell– and CD8+ T cell–depleted [61]. Given that the

unique functional properties of CD8+ iNKT cells and the ability of

B cells to present lipid antigen via CD1d are now appreciated, the

depletion of these subsets could influence the cytokine production

of the iNKT population. More data is also required to address the

dysfunction of CD8+ versus DN iNKT subsets during HIV

infection, as studies to date have often failed to differentiate these

subsets.

Non-human primates and SIV infection. Other clues as to

the importance of iNKT activation during HIV-1 infection may

come from NHP studies of SIV infection. In vivo infection of

macaques with SHIVmn229 and SIVmac251 resulted in CD4+ iNKT

depletion similar to human HIV-1 infection, and iNKT depletion

was tightly correlated to CD4 decline [73]. Animals capable of

Figure 1. Surface marker and cytokine expression of human iNKT cell subsets. Both subsets express CD161, a4b7, and high levels of
CXCR4. CD4+ iNKTs preferentially express CCR4 and CD62L, and produce both Th1 and Th2 cytokines. CD42 iNKTs preferentially express chemokine
receptors CCR1, CCR6, and CXCR6, as well as CD11a and NKG2D. This subset secretes predominately Th1 cytokines and more quickly secretes perforin
than the CD4+ subset.
doi:10.1371/journal.ppat.1002838.g001
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viral control exhibited reduced CD4+ iNKT decline, and iNKT

levels were inversely correlated with viral load. The similarities in

iNKT depletion between HIV and SIV infection provide a model

to investigate iNKT activation during natural control of infection.

Unlike macaques, Sooty mangabeys (SM) control immune

activation during chronic SIV infection and do not exhibit

progressive immunodeficiency. SM iNKT cells are either CD8+ or

CD42CD82 and express neither CD4 nor CCR5 [74]. As a

result, the iNKT subset is maintained following infection and

exhibits no impairment in IFNc production. Given the capacity of

SM iNKTs to produce IFNc, TNFa, IL-2, IL-13, and IL-10 and

to degranulate in response to aGalCer stimulation, the authors

speculate that iNKTs may play a role in controlling immune

activation in this model of natural infection. As murine iNKT IL-4

and IL-10 production can induce regulatory T cell (Treg)

development [75], the production of IL-10 by SM iNKTs is of

particular interest. Additionally, iNKT-pDC cross-talk during

mouse viral infection can induce naı̈ve T cell differentiation into

Tregs, suggesting another potential mechanism of iNKT-mediated

Treg activation [76]. Maintenance of Tregs during SIV infection

is a characteristic of natural SIV control [77], and despite the low

frequency of peripheral iNKT cells, the role of iNKT activation in

promoting Treg maintenance and controlling immune activation

during infection should be further examined [74].

CD1d downregulation. While iNKT cells are depleted and

exhausted during HIV infection, CD1d expression is also

modulated by the virus itself. The HIV-1 protein Nef, responsible

for the downregulation of MHC-I A and B alleles [78], also

downregulates CD1d via a common tyrosine-based motif [79,80].

This downregulation was shown in vitro to reduce NKT activation

and IFNc secretion after aGalCer stimulation [79,80].

Hepatitis
Murine NKT cells are highly enriched in the liver (comprising

10%–30% of T cells) [81,82], and murine models have clearly

demonstrated a crucial role for NKT cell activation in mediating

Figure 2. iNKT regulation of NK, T cell, and B cell activation. Presentation of lipid antigen to iNKT cells by DCs leads to iNKT activation and
upregulation of CD40L. CD40–CD40L interactions and iNKT cytokine secretion promotes DC activation and maturation, which in turn leads to antigen
cross-presentation and augmentation of CD4+ and CD8+ T cell responses. iNKT IFNc secretion rapidly activates NK cells and induces further IFNc
secretion. iNKTs can substitute for CD4+ T cell help in B cell activation through CD40–CD40L interactions, and iNKT activation improves antibody
titres and B cell memory responses. Finally, iNKT production of IL-2 induces regulatory T cell (Treg) proliferation, while Tregs can also inhibit iNKT
proliferation and functional responses.
doi:10.1371/journal.ppat.1002838.g002
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liver pathology in viral- and ConA-induced hepatitis [83]. While

many studies have focused on aGalCer-mediated iNKT activation

and autoimmune-like models of hepatitis, less is known about the

role of NKT and iNKT cells in control of acute and chronic

hepatitis B virus (HBV) and hepatitis C virus (HCV) infection in

humans. Although human iNKTs do not appear to be highly

enriched in the liver compared to peripheral blood, further

characterization of human hepatic iNKT subsets is required [84].

Unlike studies of stringently defined iNKT cells in HIV infection,

mouse hepatitis studies include a range of NKT subsets and

definitions, making it more difficult to draw comparisons from

study to study.

Hepatitis B virus. Transgenic mouse models of HBV

infection have suggested iNKT control of HBV replication

through hepatic IFNa/b/c induction and NK activation

[85,86]. aGalCer-activated Va14+ iNKT cells also enhance the

generation of HBV-specific cytotoxic T lymphocytes (CTLs)

following HBsAg-immunization [87], suggesting a potential

mechanism by which to promote viral clearance during chronic

infection. Studies of NKT function in human HBV infection are

currently lacking. Injection of aGalCer in a clinical trial resulted in

a significant decrease in iNKT (Va24+Vb11+) frequency following

treatment, but only one patient exhibited a sustained decrease in

HBV DNA levels [88]. Other HBV literature reports only on

NKT cells (defined as CD3+CD56+), a cell subset that does not

necessarily overlap with the iNKT subset. One group reported a

significant drop in NKT (CD3+CD56+) frequency in the first

weeks after hospital admission among acute hepatitis B patients,

and suggested trafficking of NKT cells to the liver as a potential

explanation [89], while a study in India reported significantly

increased NKT (CD3+CD56+/CD16+) frequency among acute,

but not fulminant, HBV cases [90]. Further characterization of

human NKT cells, including more specific delineation of iNKT/

NKT subsets, during acute and chronic HBV infection will be

required to understand their role in innate immune control of the

virus.

Hepatitis C virus. Description of peripheral and hepatic

iNKT cells during human HCV infection has been highly

inconsistent. One study reported significantly lower peripheral

blood iNKT (Va24+Vb11+) frequency among viremic compared

to aviremic HCV seropositive individuals and healthy controls

[91]. A similar depletion of hepatic Va24+ iNKTs was observed

among cirrhotic HCV disease patients [92]. Conversely, other

studies reported no change in peripheral iNKT frequency between

healthy and seropositive individuals [93,94], nor any correlation

with serum HCV RNA titre [94]. Longitudinal analysis showed no

change in iNKT frequency following antiviral therapy, or

differences between responders and nonresponders [93].

Functional data suggests that iNKT cells may traffic to the liver

during HCV infection and acquire a fibrogenic cytokine

producing profile. CXCR3 is upregulated on iNKT cells among

HCV+ patients [94], possibly due to the increased hepatic levels of

IP-10 and MIG during infection [95,96]. Following expansion of

iNKTs derived from HCV+ individuals, IFNc production

negatively correlated and IL-4 positively correlated with serum

RNA titre, indicating a potential role for iNKTs in control of

HCV replication. Interestingly, iNKTs from HCV+ patients

produced more IL-13 and tended toward greater Th2 cytokine

production [94]. Given that iNKT cells contribute to liver fibrosis

during chronic viral hepatitis via production of IL-4 and IL-13

[97–100], this data supports the idea of iNKT functional

modification toward a pathogenic cytokine secretion profile.

Latent/relapsing viruses. HSV. In the context of herpes

virus infections, evidence is emerging to support viral interference

of iNKT function. Kaposi’s sarcoma-associated herpesvirus

(KSHV) was the first to be shown to possess the ability to

downregulate CD1d expression, an effect mediated by the viral

modulation of immune recognition proteins MIR1 and MIR2

[101]. Similarly, herpes simplex virus type I (HSV-1) infection of

human peripheral monocytes and immature dendritic cells results

in rapid downregulation of CD1d expression via glycoprotein B

and US3 [102,103]. This downregulation results in decreased DC-

mediated activation of human NKT cell lines and is thought to

facilitate viral evasion of the iNKT-mediated immune response.

Interestingly, HSV infection of keratinoctyes does not induce

CD1d downregulation, but, through a contact-dependent mech-

anism, inhibits iNKT cytokine secretion and induces an anergic-

like iNKT phenotype [104]. The mechanism of inhibition was not

determined, but was not mediated by iNKT PD-1 or Tim-3

expression, suggesting the involvement of an additional, dominant

inhibitory pathway. Given the lack of effect of PD-1 or Tim-3

blocking in restoring iNKT function during viral infection (HSV

Table 2. Summary of iNKT studies in viral pathogenesis.

Mouse Human

Frequency Function Frequency Function

HIV N/A N/A Depletion of total and CD4+
subset [45,58]; variable recovery
after HAART [58,60,64–66]

Inhibition of IFNc, IL-4 and proliferation
[61,64,70]; iNKT cells demonstrate
anti-HIV activity [61]

HBV Increase in hepatic
type II NKT cells during
acute hepatitis [135]

Activation enhances HBV-specific
T cell responses [87]; promote IFNc-
dependent viral inhibition [85]

N/A N/A

HCV N/A N/A Variable depletion following
infection in viremic individuals
[91–94]

CXCR3 upregulation [94]; greater
Th2 cytokine production after
expansion [94]

HSV N/A Required for viral load control,
protection from mortality [105,106]

N/A CD1d downregulation reduces
iNKT activation [102]

Influenza N/A Activation promotes effective NK and
CD8+ response [113]; control of viral
titre [111]

N/A Activation reduces the suppressive
capacity of MDSCs, improves
antigen-specific responses [110]

HAART, highly active antiretroviral therapy; MDSC, myeloid-derived suppressor cell.
doi:10.1371/journal.ppat.1002838.t002
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and HIV), it remains to be seen whether multiple inhibitory

receptors contribute in each case. The effect of NKT cells in the

early response to infection has been studied using a zosteriform

model of HSV-1 infection. iNKT-deficient mice have been shown

to suffer increased morbidity, enhanced spread of the virus in the

nervous system, and diminished ability to clear the virus [105].

In murine models, CD1d2/2 mice exhibit significantly higher

HSV-1 viral load within dorsal root ganglia, larger skin lesions,

and greater neuronal death than wild-type mice, indicating that

efficient early viral control requires intact iNKT cells [106]. These

results could not, however, be replicated by another group using a

different viral strain [107], although the differences in virulence

between the viruses used in these studies is worth noting [108].

Similarly, susceptibility of mice to intravaginal challenge with

HSV-2 has been studied in several naı̈ve knockout mouse strains.

The NKT-deficient mice exhibited intermediate mortality and a

10-fold lower lethal dose compared to wild-type mice [109].

Acute Viral Infection

Influenza
iNKT cells in host response to influenza infection. A

novel role for iNKT cells in modulating immune activity was

discovered when De Santo et al. reported the identification of

myeloid-derived suppressor cells (MDSCs) that could inhibit

influenza-specific immune responses and result in increased viral

titres and mortality [110]. The group demonstrated that in both

mice and humans, iNKT cells functioned to reduce the

suppressive capacity of the MDSCs and improved influenza-

specific responses (Figure 3). Similarly, activation of iNKT cells

boosted early innate immune responses and reduced viral titre

[111]. Although iNKTs have not previously been reported to

produce IL-22, Paget et al. recently reported that activation of DC

TLR7 and RIG-I during murine H3N2 infection results in IL-1b-

and IL-23-mediated signals that induce iNKT IL-22 secretion

[112]. While IL-22 production was not found to affect viral

replication, it did protect epithelial cells from damage in vitro.

Influenza infection of CD1d-deficient mice also suggests that

iNKT-mediated IFNc production is required for full NK and

CD8+ T cell activation and antiviral activity [113], although these

results are inconsistent with other studies of CD12/2 mice [114].

In a high pathogenicity model of murine influenza infection,

iNKT cells were implicated in the control of infiltrating

inflammatory monocytes. Activated iNKT cells were also shown

to directly lyse infected monocytes in vitro [115]. Increased

consistency in the virulence of strains used in challenge

experiments and the genetic background of mouse strains will be

required in order to conclusively determine the effects of iNKT

activation during influenza infection. To our knowledge, only one

study has examined iNKT frequency during human influenza

infection, but did report a 20% decrease in absolute NKT counts

among severe cases of pandemic H1N1 infection [116].

Figure 3. iNKT modulation of myeloid-derived suppressor cells (MDSCs) elicited during influenza A infection. Influenza infection leads
to the expansion of the MDSC population (comprised of immature dendritic cells, immature macrophages, and granulocytes), which can inhibit T cell
proliferation in vivo and in vitro. iNKT cells suppress both the expansion of the MDSCs and the suppressive effect of MDSCs in a CD40-CD40L-
dependent manner [110].
doi:10.1371/journal.ppat.1002838.g003
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Use of aGalCer as a vaccine adjuvant to activate iNKT

cells. The vast majority of literature on iNKT cells in influenza

infection focuses on the role of aGalCer and iNKT activation as a

vaccine adjuvant in mouse models. Initially, it was shown that

nasal administration of aGalCer with the antigen PR8 HA

(influenza virus A/PR/8/34 (PR8, H1N1)) induced high levels of

systemic IgG and mucosal S-IgA Abs, high levels of IFN-c and IL-

4 both locally and systemically, and Ag-specific CTLs. These

responses were associated with complete protection against an

influenza viral challenge [117]. Subsequent studies documented

augmented influenza antibody responses induced by co-adminis-

tration of vaccine with aGalCer [57,118]. The study by Galli et al.

reported an increased influenza-specific CD4+ T cell response

after co-administration of vaccine with the adjuvant. They

demonstrated that the adjuvant led to activation of iNKT cells,

which in turn resulted in antibody responses even in the absence of

CD4+ T cells (MHC class II knockout mice), an effect not

reproduced by T cell adjuvants such as alum. The authors

concluded that iNKT cells can compensate for the absence of

CD4+ T cell help [57].

Several lines of evidence also suggest that the stimulation of

iNKT cells influences the subsequent cell mediated response to

influenza. Administration of aGalCer with a high dose of an

inactivated, non-replicating virus had a strong iNKT activating

effect; however, this was accompanied by diminished peak CD8+
response to the immunodominant nucleoprotein epitope (NP366).

Interestingly, increased NP366-specific memory CD8+ responses

were demonstrated after 6 weeks in the group that received the

adjuvant. Taken together, this study indicates a blunted antigen-

specific effector CTL response that is followed by an enhanced

CD8+ recall [119]. Similarly, injection of aGalCer during murine

cytomegalovirus infection also resulted in increased CD8+ central

memory cell frequency, further supporting a role for iNKT

activation in antigen-specific memory responses [120].

The potential for boosting of both antibody responses and

CD8+ memory by stimulation of iNKT cells is appealing in the

context of providing cross-protection against emerging strains of

influenza. Use of aGalCer as an adjuvant for a live attenuated

NS1truncated vaccine has been shown to increase IgG, IgG1, and

IgG2a antibodies as well as IFN-c secreting CD8+ T cells, in an

iNKT-dependent manner [121]. Indeed, cross-protection induced

by mucosal influenza vaccine along with iNKT cell adjuvant was

illustrated by high levels of nasal IgA and cross-protection against

a challenge with a non-vaccine strain [122]. Similarly, Lee et al.

used two aGalCer analogues with different cytokine release

profiles along with inactivated influenza vaccine and were able

to induce antibody responses and achieve better cellular immune

responses; however, the ability to induce cross-protection was not

directly studied [123]. Overall, the use of aGalCer as a vaccine

adjuvant to stimulate iNKT cell activation may result in an

enhanced mucosal antibody response, improved generation of

CD8+ memory, and greater responses to recall antigen. aGalCer

may be a particularly useful adjuvant for mucosal immunizations,

as mucosal iNKT cells do not become anergic following activation,

in contrast to some cases of peripheral iNKT activation [124].

Biochemical modifications of CD1d ligands to produce aGalCer

analogues that elicit specific iNKT cytokine secretion profiles will

further enhance the utility of iNKT activation as immunotherapy

[125,126]. The fine-tuning of this technique to induce robust

memory and cross-protection against emerging influenza strains is

promising, and provides a new avenue for vaccine research.

Conclusions and Future Directions

Since the identification of iNKT cells just over a decade ago,

better characterization of CD4+ and CD8+ subsets and descrip-

tion of the growing list of roles they play in bridging innate and

adaptive responses has led to appreciation of their importance in

the orchestrated response to viral infections (summarized in

Table 2). Perhaps most impressive is the amount of information

that has been collected in the HIV field with ample evidence of the

targeting of these cells by the virus and specific viral effects on

CD1d expression, leading to early depletion and dysfunction of the

iNKT population. Many questions remain, however, with regards

to the kinetics of these changes immediately after acquisition of

HIV and the true potential of antiretroviral therapy to reverse

dysfunction. NHP studies may play an important role in

illuminating whether iNKT cells can contribute to protection

from infection at mucosal surfaces or to the control of immune

activation and disease progression. Determining whether iNKT

cells play a similar role in chronic HBV and HCV infections will

require a focus on studies of human infection and improved

consistency in the detection and definition of iNKT populations.

In contrast to the plethora of research in the context of HIV as

well as other chronic and persistent infections, a paucity of data is

available in the context of acute, resolving infections. The vast

majority of studies are based on murine models with obvious

limitations in their applicability to humans. An accumulation of

excellent studies focused on the ability of adjuvants directed at

activation of iNKT cells, and co-administered with influenza

vaccine formulations, to lead to the generation of a robust humoral

and cell mediated immunity is intriguing. Most of these studies use

mouse models but hold promise by demonstrating a mechanism

that may improve influenza vaccine’s ability to result in long

lasting CD8+ memory and potentially lead to better cross-

protection against newly arising viral strains. As an appreciation

of the impact of iNKT activity on viral immunity continues to

increase, iNKT cells will likely be found to contribute to host

defence in a number of other viral infections. CD1d downregu-

lation appears to be a common immune evasion tactic among

viruses, and has also been identified in human papillomavirus

(HPV) infection [127]. Some evidence suggests the mast cell–

mediated recruitment of NKT cells to sites of dengue virus

infection [128] and a potentially detrimental role during patho-

genesis in mouse models of infection [129]. As we better

understand the mechanisms by which iNKT cells contribute to

viral immunity, the therapeutic potential of modulating their

activation and function will drive new research avenues.
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