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Therapeutic Perspectives in Neurology

Introduction

Pathogenesis of spinal muscular atrophy
Spinal muscular atrophy (SMA) is an autosomal 
recessive neuromuscular disorder caused by the 
degeneration of alpha motor neurons (MNs) in 
the spinal cord leading to muscle atrophy and 
weakness. Despite being recognized as a rare dis-
ease with an estimated worldwide incidence of 
~1/10,000 live births, SMA accounts for the sec-
ond most common autosomal recessive disease 
and the most common monogenic disorder caus-
ing early infant death.1,2 The carrier frequency 
varies from 1 in 38 to 1 in 72 among different eth-
nic groups, with a pan-ethnic average of 1 in 54.3,4

From a pathological viewpoint, SMA results from 
an insufficient level of a 38 kDa protein, called 
survival motor neuron (SMN), due to a homozy-
gous deletion or mutation of the Survival of Motor 
Neuron 1 (SMN1) gene. Studies indicate that two 
genes encode SMN protein in humans: SMN1 
and a 99% identical copy in sequence, SMN2, 
which is fundamentally differentiated by a single 
nucleotide change (C to T) in exon 7.1,4 Such a 
variant causes exon 7 exclusion in most tran-
scripts (90%) of SMN2, called SMN△7. 
Consequently, SMN2 can produce only 10% of 
full-length (FL) SMN mRNA and its product: 
functional SMN protein. Given that residual 
FL-SMN2 transcripts can compensate for the 
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defect in SMN1 to a limited extent, SMA severity 
is inversely related to SMN2 copy number; that 
is, the higher the copy number, the less severe the 
SMA phenotype. However, such SMN2 copy 
number-relevant phenotype–genotype correlation 
can be affected by other factors. Recent studies 
have shown that other cellular mechanisms, like 
positive or negative disease modifiers, may also 
involve modulation of SMA clinical severity. For 
example, rare SMN2 variants (c.859G > C), and 
several independent modifiers such as plastin 3 or 
neurocalcin delta, can modify phenotypic sever-
ity.4 Conclusively, the deficiency in SMN1 causes 
SMA, whose phenotype is partially compensated 
by retained SMN2 copy number.

SMN is a multifactorial protein, expressed ubiqui-
tously in both the cytoplasm and nucleus of cells. 
Notably, SMN is known to serve as a core compo-
nent in assembling ribonucleoprotein (RNP), 
which involves several essential cellular pathways, 
including DNA repair and pre-mRNA splicing.5,6 
The SMN complex, composed of SMN, Gemins 
2–8, and UNR-interacting protein (UNRIP), 
binds to the Sm proteins and uridine-rich small 
nuclear RNAs (snRNAs), thereby constructing 
small nuclear RNPs (snRNPs) that assemble into a 
spliceosome in the nucleus.7,8 Besides functioning 
in snRNP assembly, the SMN complex is known 
to play a role in regulating the pre-mRNA splicing 
machinery by facilitating arginine methylation of 
specific splicing-related proteins in the nucleus 
(Figure 1).6,9 SMN also functions in restoring 
damaged DNA and transporting mRNA along the 
axon of MNs.10,11 In animal models, a positive cor-
relation between snRNP production and SMA 
phenotypes has been demonstrated, and SMA 
severity can be even ameliorated by delivering a 
separate snRNP complex without an SMN com-
ponent.12–14 This finding suggests that an autoreg-
ulatory feedback loop exists, where SMN levels 
might influence the pre-mRNA splicing of SMN, 
probably through manipulating a common path-
way of snRNP biogenesis.15 Collectively, current 
evidence points out that the defective assembly of 
the SMN–RNP complex leads to the majority of 
pathognomonic features of SMA.

However, it is still unclear whether the pathogen-
esis of SMA is caused by a specific pattern or a 
combination of dysregulated effects. The cell-
autonomous effects due to SMN deficiency are 
the main causes of MNs degeneration; however, 
this does not explain the full SMA phenotype, 

implying the involvement of not only dysregu-
lated neural networks but other non-neuronal cell 
types in SMA pathology.16–18 Interestingly, recent 
studies of SMA animal and cell models suggest 
that MN survival and functionality relies highly 
on glial cells, which might play an essential role in 
neuronal communication and neuroinflamma-
tion.19 Moreover, three independent pieces of 
research also identified immune organ defects in 
SMA models.20 This evidence suggests that SMA 
could also be a disease of the neuroinflammatory 
pathway.

Biogenesis of non-coding RNAs and microRNAs
The interpretation of genetic data and genome-
wide analysis of gene regulatory networks have 
been traditionally protein-centric. However, new 
sequencing technology of mammalian transcrip-
tomes revealed that more than 50% of RNA tran-
scripts do not possess protein-coding elements, 
and are thus termed non-coding RNAs (ncR-
NAs).21,22 These pervasive ncRNAs are diverse in 
biogenesis, action mode, and functional features.23 
While well-studied “housekeeping” ncRNAs are 
known to be involved in the spliceosomal and 
translational machinery, increasing efforts are now 
being focused on the sophisticated class of “regu-
latory” ncRNAs that affect predominantly the 
expression or regulation of protein-coding genes.24 
Increasing evidence of biochemical and genetic 
pieces have suggested an essential role for regula-
tory ncRNAs in developmental and pathological 
contexts.25 Furthermore, a growing body of study 
also suggests that ncRNAs function as epigenetic 
modifiers, mediating fine-tuning of the process of 
neuronal development, differentiation, biochemi-
cal pathways, and synaptogenesis.26–28

The ncRNAs can be classified broadly based on 
their size. Regulatory ncRNAs can be further 
divided into two groups based on their lengths, as 
small or long ncRNAs. Small ncRNAs are shorter 
than 200 nucleotides (nt) in size, including micro-
RNA (miRNA, 22–25 nt), Piwi-interacting RNA 
(piRNA, 21–35 nt), small nucleolar RNA 
(snoRNA, 60–170 nt), and transfer RNA (tRNA, 
70–100 nt).29 Among various small ncRNAs, 
miRNAs are the most studied in regulating devel-
opments and pathology in humans. One of the 
main factors for this is that miRNA expression 
profiles usually demonstrate marked changes with 
regards to a pathological status, implying that 
miRNAs act as important disease modifiers.30,31
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Figure 2 illustrates the canonical pathway of 
miRNA biogenesis in detail. MiRNAs are endog-
enous single-chain RNA molecules transcribed 
initially by the intranuclear enzymes, RNA poly-
merase II or III, into hairpin-form primary tran-
scripts (pri-miRNA) of over 1 kb in length. 
These pri-miRNA transcripts are specially 
 recognized and then cleaved by the “micro-
processor complex” comprising RNAse IIII 
enzyme-Drosha ribonuclease and its cofactor, 
the DiGeorge syndrome critical region gene 
(DGCR8). The result of this cleavage is a 60–
70 nt precursor molecule (pre-miRNA) gener-
ated in the nucleus. Exportin5 then transports 
the pre-miRNA into the cytoplasm, where a sec-
ond cleavage by the Dicer ribonuclease occurs, 
which, acting in conjunction with other factors, 
gives rise to a miRNA/miRNA duplex of ~22–25 
nt nucleotides. One of the chains of this duplex, 
the so-called guide chain, is incorporated into 
the Argonauta (AGO) protein. Human-specific 

AGO protein 1–4, loaded with the guidewire, is 
then incorporated into the RNA-induced silenc-
ing complex (RISC), where, through compati-
bility through the 3′-untranslated region 
(3′UTR) region, it binds to the target mRNA, 
causing further translational repressions and/or 
modifications of target mRNAs.31,32 However, 
the stability of the mature miRNA molecule is 
controlled by many cis- and trans-acting factors, 
the formation of protein complexes, and expo-
sure to nucleases.33

Intriguingly, mature miRNAs in the nucleus sug-
gest that miRNAs can travel between the cyto-
plasm and nucleus. MiRNAs and AGO proteins 
are known to be translocated into the nucleus 
through some nuclear export receptors, as expor-
tin-1 and importin-8. In the nucleus, miRNAs 
can engage in gene activation or in an atypical 
approach to modify the metabolism and activities 
of miRNAs (Figure 2).34

Figure 1. The cellular functions of SMN complex. The SMN complex is composed of SMN, Gemins 2–8, and UNRIP. In the cytoplasm, 
the SMN complex functions to assemble Sm proteins onto the snRNAs to create an active snRNP. Then, the SMN–snRNP complex 
is imported into the nucleus to form a spliceosome that functions in transcriptional regulation, especially pre-mRNA splicing. In the 
cytoplasm, the SMN complex can assemble an mRNP that acts in mRNA transport along the neuronal axon.
mRNP, messenger ribonucleoprotein; SMN, survival motor neuron; snRNA, small nuclear RNA; snRNP, small nuclear ribonucleoprotein; UNRIP, 
UNR-interacting protein.
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The role of miRNAs in motor neuron 
development, survival, and degeneration
The developmental patterns of the central nervous 
system (CNS) depend largely on a sophisticated 
direction through the spatial and temporal expres-
sion of transcriptional modulators that gradually 
restrain cell potential to determine final neuronal 
identity and connectivity. It has recently been sug-
gested that miRNAs may play a pivotal role in 
defining spatial boundaries and temporal transi-
tions of developing neurons through their ability to 
epigenetic regulation.35,36 Currently, more than 
2000 miRNAs have been identified in humans, 

and it is believed that they collectively regulate 
more than one-third of the genes in the genome37; 
however, only a few known miRNA regulating 
embryonic patterning and development of neurons 
have been reported.38 This circumstance could 
have two main explanations: (1) a large number of 
miRNAs belong to diverse families, with solitary 
members working irrelevantly; and (2) as miRNAs 
might work primarily to fine-tune developmental 
transitions, their incapacity may not cause pre-
dominant deficits or phenotypic changes but 
instead more insidious defects affecting subgroups 
of cells observed at developmental boundaries.39

Figure 2. Canonical pathway of microRNA biogenesis. pri-miRNA is transcribed by RNA pol II/III and then 
cleaved by Drosha and its cofactor DGCR8 to form hairpin-form pre-miRNA. Pre-miRNA is then transported 
by Exportin5 into the cytoplasm and then cleaved by Dicer, producing an miRNA/miRNA duplex. One chain of 
miRNA duplex, called the guide chain, is incorporated into the AGO protein, while the transient chain will be 
degraded. The guiding chain of miRNA loaded with AGO 1–4 is then incorporated into the RISC, which induces 
translational repression and degradation of the mRNA targets. Furthermore, by integrating with exportin-1 
and importin-8, the miRNA-AGO complex can also be translocated into the nucleus, where miRNAs can 
function in gene activation or an unconventional manner, regulating intranuclear mRNA biogenesis.
AGO, Argonauta; DGCR8, DiGeorge syndrome chromosomal region 8; miRNA, microRNA; pre-miRNA, precursor miRNA;  
pri-miRNA, primary miRNA; RISC, RNA-induced silencing complex; RNA pol II/III, RNA polymerase II or III.
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Several mouse models with miRNA-knockouts 
have demonstrated significant neuropathological 
phenotypes,35 and miRNAs have shown to be able 
to promote reprogramming of human fibroblasts 
into neuronal cells as well as spinal MNs.40 
Emerging evidence also indicates specific miR-
NAs involved in a diverse of neurological disor-
ders; for example, miR-34b and miR-9 in 
Huntington’s disease, miR-128a/miR-24/let-7b in 
mood disorder, miR-206 and miR- 153 in 
Alzheimer’s disease, and miR-189 in Tourette’s 
syndrome.41–44 In the spinal cord, it has been sug-
gested that miRNAs might fine-tune neuronal 
progenitor patterning, cell fate determination, and 
vitality during MN development.39,40 The pro-
posed link between MNs and miRNA first came 
from the finding that miR-196 is involved in spinal 
MN patterning during embryogenesis by targeting 
Hoxb8.45 Subsequently, increasing numbers of 
miRNAs have been identified in diverse associa-
tions with MN developments, from neural pro-
genitor patterning to cell fate differentiation and 
regulation of postmitotic MNs development and 
survival.27,46–48 Given that miRNAs are a pivotal 
component of the genetic program regulating MN 
development and acquirement of subtype-specific 
characteristics, we can speculate how a subtle 
alteration in miRNA expression might affect MN 
development and survival.

Concerning the pathogenic role of miRNA in MN 
degeneration, previous research reported that 
deletion of Dicer – an enzyme responsible for 
miRNA biogenesis – in mice spinal MNs by apply-
ing Olig2-Cre or ChAT-Cre produced hallmark 
phenotypes mimicking motor neuron diseases 
(MND).49–51 These fundamental findings set up 
the critical role of miRNA participating in MN 
degeneration. Indeed, an increasing number of 
miRNAs, termed motomiRs, are proposed to be 
involved in the maintenance, regeneration, devel-
opment, and survival of MNs.34 With advances in 
molecular biology, researchers have extended the 
role of miRNAs to a diverse range of MN pro-
cesses, including subtype specification, cytoskele-
tal integrity, synapse plasticity, neurotransmitter 
release, and neurite (axon) growth.27,28,52

According to their tissue-specific properties, miR-
NAs can function with either neuroprotective or 
disease-promoting effects.53 Nevertheless, aber-
rant miRNA expression is increasingly identified as 
a culprit of degeneration in spinal MN. There are 
several commonalities of SMA with other MND, 

in particular amyotrophic lateral sclerosis (ALS). 
Both these two most common MND share a simi-
lar pathognomonic pathway, exhibiting aberrant 
RNA-mediated gene expression, including the 
processing of both pre-mRNA and miRNA.54 
Given the aforementioned multifaceted roles of 
miRNAs in controlling MN development, it is rea-
soned that the role of miRNA has been increas-
ingly associated with the pathogenesis of ALS and 
SMA. Accordingly, several neuronal developmen-
tally associated (i.e. miR-9, miR-124, and miR-133) 
and MN- enriched (i.e. miR-183, miR-218, and 
miR-17~92) miRNAs have been suggested as being 
pivotal to the pathomechanisms of SMA and 
ALS.46,48,51,52,55,56 Moreover, several neuronal-spe-
cific miRNAs have been proposed to be causal for 
other spinal diseases, including miR-196a in spinal 
and bulbar muscular atrophy (SBMA) and miR-
21/miR-431/miR-138 in axonal degeneration of 
sensory neurons.57–60

Associations between SMA and miRNAs
MiRNAs associated with the pathogenesis of ALS 
have been studied extensively and reviewed sys-
temically elsewhere.61–63 On the other hand, miR-
NAs have been linked to SMA pathogenesis 
increasingly in studies that suggest miRNAs 
might act as (1) an essential modulator of SMN-
mediated molecular pathways; (2) applicable bio-
markers representing SMA progress or treatment 
response; (3) potential therapeutic targets for 
SMA.39,55,64 The hypothesis for the link between 
miRNA and SMA might elucidate the diverse 
pathways affected by SMN deficiency. A single 
miRNA can modulate multiple genes concur-
rently, and might regulate whole genetic networks 
by modifying the expression of a specific protein. 
Nevertheless, whether aberrant expression of 
miRNAs is responsible for the direct pathogno-
monic cause, or just a consequence reflecting dis-
ease progression of SMA, is still unclear, and 
further investigations are continuing.

Interactions between SMN and RNA-binding 
proteins in modulating miRNA metabolism and 
activity
No direct evidence ties an SMN-miRNA signa-
ture because SMN protein per se does not pos-
sess any known binding domains for RNA or 
miRNA. Therefore, the SMN complex might 
instead interact with a specific RNA-binding 
protein (RBP) to affect miRNA biogenesis.65,66 
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Indeed, mounting research has reported the 
intersection of SMN with various RBPs involved 
in different modifications for mRNA transcrip-
tion and translation, among other aspects of 
RNA metabolism.39,67 Similar to the SMN pro-
tein complex, miRNAs can also participate in 
the formation of various RBP or RNP complexes 
affecting mRNAs functions.68 For example, two 
components of SMN complex, Gemin3 and 
Gemin4, are known to integrate with several 
miRNAs to create a novel miRNA-binding pro-
tein called miRNP.69,70 This miRNP complex 
can further integrate with AGO2, serving as a 
core component in RISC, which mediates 
miRNA biogenesis and mRNA post-transcrip-
tional regulation.71 However, it seems that SMN 
does not bind directly to the miRNP complex; 
therefore, whether the miRNP is functionally 
crucial in SMA pathogenesis requires further 
investigation.

Notably, besides the regulatory function of SMN in 
RNA processing, updated studies have deciphered 
potential associations of SMN and RBP in regulat-
ing miRNA biogenesis (Table 1), in particular TAR 
DNA-binding protein-43 (TDP-43), fused in sar-
coma/translocated in liposarcoma (FUS/TLS), 
fragile X mental retardation protein (FMRP), and 
KH-type splicing regulatory protein (KSRP).54,72–74 
SMN might participate in miRNA–RBP or miRNP 
complex formation, which further regulates miRNA 
biogenesis and metabolism. The defective SMN 
protein may dysregulate the MN-specific miRNA 
or miRNP complex, leading to MN death.71,75 
Collectively, the proposed mechanisms by which 
SMN-associated RBPs might participate in miRNA 
biogenesis include (1) promoting Drosha recruit-
ment onto specific miRNA loci; (2) engaging in 
components of the Drosha and Dicer complexes; 
(3) acting as regulators of the RISC complex.66,76,77 
As a consequence, a dysfunctional SMN–RBP 
complex related to defective SMN protein under 
the SMA pathological background might cause 
dysregulated processing of miRNAs and pre-
mRNA splicing. Identifying the interaction between 
SMN and its associated RBPs involved in miRNAs 
biogenesis can help to elucidate unknown patho-
genesis underlying SMA.

The SMN–MiRNA interaction in SMA 
pathogenesis
The potential ways that miRNAs are involved in 
the pathogenesis of SMA are just beginning to be 

identified. Recent studies have demonstrated 
aberrant miRNAs expression in SMA, and several 
of these experiments have proposed the SMA-
miRNA signature in different SMA models,39,64 
which we summarize in Table 2. Recent tran-
scriptome profiling has discovered a growing 
number of specific miRNAs linked to survival, 
synaptic plasticity/formation, endoplasmic reticu-
lum (ER) stress, and ribosomal RNA binding in 
different SMA animal and cell models.55,94,95 
Several potential molecular mechanisms underly-
ing an SMA-miRNA signature have been hypoth-
esized: (1) as the SMN complex functions in 
mRNA pre-splicing and editing, deficiency of 
SMN might also cause defects in proteins respon-
sible for miRNA biogenesis, leading to aberrant 
miRNA expression34; (2) the SMN complex is 
known to participate in miRNP complex forma-
tion, which further incorporates with RISC to 
regulate miRNA biogenesis69–71; (3) the SMN 
complex has been found in the stress granules 
(SGs), and a low level of SMN is known to pre-
vent SG formation.8,96 Furthermore, several 
SMN-associated RBPs, including TDP-43, FUS/
TLS, FMRP, and KSRP, are known to be 
involved in the SG formation (Table 1).66 Because 
these SG-related RBPs are also involved in 
miRNA biogenesis, such an indirect SMN-
miRNA signature may affect cellular stress 
responses, which could regulate MN sur-
vival11,62,94,97; (4) degradation of the SMN com-
plex might occur via the ubiquitin-proteasome 
pathway.98,99 Interestingly, some studies have 
demonstrated that miRNAs might modulate 
SMN expression by affecting the expression of 
ubiquitin enzymes.52,100,101

Roles of miRNAs in non-motor neuron tissues 
in SMA pathogenesis
Increasing evidence extends the pathogenic effect of 
SMN deficiency beyond MNs to include additional 
cells both within and outside the CNS, whereby 
numerous peripheral organs and tissues demonstrate 
pathological changes both in preclinical models and 
patients.17,18,114–116 Theoretically, these non-MN 
affections may be reflected by an altered level of cir-
culating miRNAs. It remains unclear whether dys-
regulated miRNAs and its target are cell-context 
dependent, given that compromised ubiquitously 
expressing SMN may just affect miRNA homeostasis 
selectively in different tissues.64,113,117 However, 
emerging studies show that alteration of specific 
miRNAs in non-MN tissues of muscle, glial cells, 
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and the neuromuscular junction (NMJ) might cor-
relate with SMA severity, which implies a non-auton-
omous effect of miRNAs on SMA pathogenesis.103,110 
For example, muscle-specific miRNAs (myomiRs) 
such as miR-1, miR-206, and miR-133 a/b, and astro-
cyte-produced miR-146a have been reported to be 
possibly implicated in SMA pathogenesis among dif-
ferent SMA models and human samples (Table 
2).102,104,108,110 Notably, several therapies targeting 
the SMN-independent pathway (non-SMN enhanc-
ing) are undergoing clinical or preclinical trials, 
including neuroprotective agents, skeletal muscle 

enhancers, and NMJ facilitators. In the future, enthu-
siastic identification of both MN-intrinsic motomiRs 
and none-MN-intrinsic miRNAs, for example, 
myomiRs and their targets, might provide authentic 
biomarkers as novel therapeutic approaches for 
SMA.

MiRNA as circulating biomarkers for SMA
While advances in developing therapeutic 
approaches for SMA are cautiously optimistic, 
they also raise new challenges, particularly about 

Figure 3. Hypothetical model of miRNA-mediated biomarkers detection in SMA pathological background. In a healthy individual, 
the various tissue-specific miRNAs, including motomiRs, myomiRs, and NMJ-specific miRNAs (indicated in red, blue, and green, 
respectively) are normally produced by the functional SMN complex integrating with various RBP that involve miRNA biogenesis. 
These miRNAs may maintain a normal development/function of MN, muscles, NMJ, or reciprocally; these tissues may secrete 
relative miRNAs with normal expression profiles. However, in an SMA patient with SMN deficiency, dysregulated expression profiles 
of miRNAs may be caused by the failure of SMN–RBP interaction or degenerations of SMN-dependent tissues as MN, muscles, 
and NMJ. Theoretically, changes of miRNA expression profiles in the SMA pathological background might be detected through 
extracellular circulating miRNAs.
miRNA, microRNA; MN, motor neurons; NMJ, neuromuscular junctions; RBP, RNA-binding protein; SMA, spinal muscular atrophy; SMN, survival 
motor neuron.
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identifying reliable outcome measures for preclin-
ical and clinical trials.2,118 Reliable molecular bio-
markers would not only help stratify SMA patients 
with heterogeneous phenotypes into homogene-
ous prognostic groups, but would also improve 
the statistical power of clinical trials, reduce trial 
durations and costs, and reveal therapeutic effects 
in specific types of SMA patients.53,95 Accordingly, 
researchers have been prompted to identify more 
authentic biomarkers of SMA to facilitate patient 
classification, follow disease progression, and bet-
ter monitor responses to therapeutic approaches 
using minimally invasive procedures.

Two approved SMA therapies either use anti-
sense oligonucleotides (ASO) or virus-mediated 
gene transfer exhibited promising outcomes.119,120 
However, not all treated SMA patients responded 
equally well to these novel therapies. The only 
identified factor influencing treatment response is 
the time, called the therapeutic window, between 
the first recorded symptoms of SMA patients and 
the initial administration of the therapeutic 
agent.121 However, this sole factor would not 
seem to satisfactorily explain the wide variation in 
patient outcomes, even those receiving early 
treatment.122,123 Any potential outcome measures 
to reflect the treatment response of these two 
novel therapies remain to be tested.124 Answering 
this question is imperative, as early identification 
of good patient responders through multiple sen-
sitive outcome measures can decrease the cost of 
innovative therapeutics.125,126

Until recently, the evaluation of therapeutic 
response for SMA relied primarily on clinical out-
comes, including motor function, electrophysio-
logical tests, and respiratory functions.119,120,128,129 
However, fluctuating inter-rater or intra-rater 
variabilities of motor function measurement is 
problematic, and usually confounded by diverse 
care methods and age groups. As disease progres-
sion in SMA is typically slow, clinical outcome 
measures may lack sensitivity to detect significant 
motor function improvements in 1–2 years of fol-
low up during a randomized clinical trial.130 It is 
conceivable that molecular biomarkers may rep-
resent more objective measures of treatment effi-
cacy. Identification of a set of reliable circulating 
biomarkers from biofluids such as serum or cere-
brospinal fluid (CSF) that can be correlated with 
the parameters of motor function, for example, 
the Hammersmith Functional Motor Scale – a 
commonly used clinical parameter in SMA trials 

– in SMA trials might help stratify the variability 
among patients.104,127,131

In the beginning, quantification of SMN mRNA 
or protein levels was the molecular biomarker 
applied most commonly in monitoring SMA 
patient therapeutic response. However, these do 
not necessarily correlate with disease severity and 
may not reliably reflect disease progression.132,133 
Recently, plasma phosphorylated neurofilament 
heavy chain (pNF-H) has been proposed as a 
promising molecular biomarker to reflect disease 
activity or treatment response in children with 
type 1 SMA.134,135 pNF-H is expressed exclusively 
in neurons and released into extracellular fluids 
upon axon degeneration. However, although 
pNF-H might efficiently monitor neurodegenera-
tion, there are still some limitations of its applica-
tion: (1) as pNF-H is highly neuron-specific,136 it 
may not reflect the health of extra-MN tissues like 
muscles and NMJ, which could also play a role in 
therapeutic response in SMA patients; (2) finding 
increased released pNF-H relies on the slower dis-
ease progression in SMA patients other than type 
1, which might interfere with the detection of 
changes in CSF composition in a short evaluation 
period131; (3) pNF-H levels, unfortunately, have 
not proven to be a reliable biomarker to correlate 
with motor function improvement in an elder 
group of adolescent and adult SMA type 2 and 
type 3 patients.137,138

Another potential candidate molecular biomarker 
for SMA is serum creatinine, which correlates 
with SMA type, SMN2 copy number, motor 
function, and denervation severity.139 However, 
creatinine production not only varies between 
individuals and over time in association with 
changes in muscle mass, liver function, and diet, 
but it has also been shown to undergo renal tubu-
lar secretion in addition to glomerular filtra-
tion.140 Moreover, two recent studies found liver 
damage in a mouse model of severe SMA,116 and 
kidney damage with renal tubular dysfunction in 
infants with type 1 SMA.141 In addition to 
decreased muscle mass, serum creatinine levels in 
SMA patients may also be affected by liver or 
renal tubular dysfunction, therefore reducing the 
reliability of using serum creatinine solely as an 
authentic SMA biomarker.

MiRNAs have gained attention as an easily acces-
sible biomarker due to their features of being clini-
cally detectable in many biofluids – such as CSF, 
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serum/plasma, saliva, and urine – using non-inva-
sive methods.95 MiRNAs can be secreted actively 
from a cell or by leaking through the membrane in 
response to various stimuli and insults, resulting in 
varying circulating miRNA levels in biofluids that 
are relatively stable, making the application of 
miRNAs biomarkers and therapeutic targets more 
attractive. Indeed, miRNAs are now being used as 
novel clinical biomarkers for the prognosis of sev-
eral diseases, including various solid or liquid 
malignancies, cardiovascular diseases, and neuro-
degenerative disorders.30,142,143 In ALS patients, 
altered miRNA expression has been reported in 
human specimens of spinal cord, brain, induced 
pluripotent stem cells (iPSC), muscle, serum, and 
CSF.63,144 Recently, miRNAs have also been pro-
posed as potential biomarkers in several clinical tri-
als for neuromuscular disorders.145–148 As SMN is 
known to be involved in miRNA expression, and it 
entails circulating miRNAs as diagnostic or prog-
nostic biomarkers to reflect the SMA pathology per 
se or therapeutic effects (Figure 3). Of importance, 
due to the versatile roles of miRNA in regulating 
generation/degeneration not only in MNs but in 
muscles and NMJ, researchers can detect level 
changes in different tissue-specific miRNAs simul-
taneously to monitor disease  progression or the ther-
apeutic response. Various tissue-specific miRNAs, 
such as miR-1, miR-9, miR-132, miR-206, miR-183, 
miR-375, and  miR-1331a/b, have been investigated 
further as potentially reliable SMA biomarkers 
(Table 2).102,104,109,112 An early discernment of good 
patient responders through multiple sensitive out-
come measures, including circulating miRNAs, 
may decrease the cost  burden of innovative thera-
peutics.125,126 However, several critical challenges 
remain, such as unraveling inconsistencies due to 
human subject variability and technical issues 
related to the relative fragility of miRNAs.30,95

Therapeutic potentials of miRNA for SMA
The ncRNAs may represent a unique therapeutic 
entry point for disease as it can regulate multiple 
signaling pathways rather than the classical one 
gene, one target approach. A recent study showed 
that treatment with ASO targeting SMN2 splicing 
is sufficient to restore miR-9, miR-132 and miR-
206 levels in SMA mice.104 Besides, another study 
showed that knockdown of a neuron-enriched 
long ncRNA, SMN-AS1, results in both tran-
scriptional activations of SMN promoter as well 
as modulation of SMN splicing by suppressing 
the epigenetic Polycomb repressive complex-2.149 

Interestingly, combining therapeutic ASO target-
ing SMN-AS1 with SMN2 splice-switching oligo-
nucleotides can synergically enhance SMN 
expression and ameliorate the phenotype of the 
SMA mice model. This evidence is of considera-
ble interest since specific miRNAs can modulate 
the expression of several target genes. It also 
implied that miRNA intervention might supple-
ment the effect of ASO therapy in SMA patients. 
Manipulating expression of target miRNA via 
ASO or decoy molecules, such as miRNA 
sponges, or overexpression of gain-of-function 
miRNA via viral vector delivery, may provide an 
alternative treatment strategy for SMA.

Delivering miR-196a via an adeno-associated 
virus (AAV) vector has been found to ameliorate 
phenotypes of the SBMA mice model, suggesting 
a promising strategy to apply a disease-specific 
miRNA for MND treatment.57 Notably, the miR-
206–HDAC4–FGFBP1 signaling pathway has 
been proposed to maintain NMJ integrity and 
plasticity, which is also postulated to be the patho-
genic mechanism occurring in SMA.110,150 In this 
context, it is intriguing that histone deacetylase 
inhibitors (HDACIs) have been proposed as a 
therapeutic candidate for SMA.151 The reinnerva-
tion property of miR-206 and its ability to repair 
NMJ following nerve injury need to be exploited 
in depth to develop potential therapeutic strate-
gies. Excitingly, a very recent study showed that 
injection of a self-complementary AAV9 viral vec-
tor to reintroduce miR-23a into the Smn2B/– SMA 
mouse model could increase MN size, reduce 
NMJ pathology, and extend survival.106 The 
detailed mechanisms underlying how miR-
23a-mediated target pathways lead to SMA 
pathology have yet to be characterized. However, 
these findings suggest that a specific cohort of 
miRNAs might cause MN vulnerability in SMA, 
and identification of those miRNA culprits and 
their targets could provide a new treatment strat-
egy for SMA.

Last but not least, not a few challenges must be 
overcome, making it complex to use miRNA for 
therapeutic purposes. One of these issues is the 
administration route: these molecules can be deliv-
ered naked to target tissues. Considering the capa-
bility of molecules to cross the blood–brain barrier, 
intrathecal injection represents the most effective 
administration route to date, but is more invasive; 
therefore, systemic administration should also be 
considered. Furthermore, it must be considered 
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that miRNAs often act through multiple pathways, 
which may pose a risk of off-target effects – a fre-
quently considerable side effect of molecular ther-
apy. According to their cellular developmental 
status, the timing of miRNA regulation must also 
be reckoned with, as miRNA levels should be 
manipulated at the correct development stage.

Conclusion
miRNAs play a crucial role in MN development, 
SMA pathogenesis and in determining selective 
MN vulnerability. The application of high-
throughput RNA sequencing technologies, sin-
gle-cell qRT-PCR, and proteomic approaches 
have allowed a comprehensive comparison of 
MNs generated via different strategies, providing 
additional insights into SMA pathogenesis. 
Furthermore, identification of potential SMA-
associated miRNA and their corresponding chap-
erone RBPs may not only provide biomarkers 
monitoring disease progression but also represent 
potential therapeutic targets. However, signifi-
cant challenges remain, for example, possible 
inconsistencies in results due to human subject 
variability and technical issues related to the rela-
tive fragility of miRNAs. Although recent pro-
gress in producing and understanding MNs has 
been remarkable, substantial challenges remain. 
The complex transcriptome networks regulated 
by miRNAs can be found in both health and dis-
ease. Recruiting a large cohort of SMA patients 
compared with healthy controls can increase the 
power of biomarker studies on miRNA and fur-
ther promote advancement of this field.
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