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Abstract: Whether type III secretion system (T3SS) effector proteins encoded by Gram-negative
bacterial pathogens have intra-bacterial activities is an important and emerging area of investigation.
Gram-negative bacteria interact with their mammalian hosts by using secretion systems to inject
virulence proteins directly into infected host cells. Many of these injected protein effectors are
enzymes that modify the structure and inhibit the function of mammalian proteins. The underlying
dogma is that T3SS effectors are inactive until they are injected into host cells, where they then fold
into their active conformations. We previously observed that the T3SS effectors NleB and SseK1
glycosylate Citrobacter rodentium and Salmonella enterica proteins, respectively, leading to enhanced
resistance to environmental stress. Here, we sought to extend these studies to determine whether
the T3SS effector protease NleC is also active within C. rodentium. To do this, we expressed the best-
characterized mammalian substrate of NleC, the NF-κB p65 subunit in C. rodentium and monitored its
proteolytic cleavage as a function of NleC activity. Intra-bacterial p65 cleavage was strictly dependent
upon NleC. A p65 mutant lacking the known CE cleavage motif was resistant to NleC. Thus, we
conclude that, in addition to NleB, NleC is also enzymatically active within C. rodentium.

Keywords: T3SS effector; NleC; Citrobacter rodentium; p65; NF-κB

1. Introduction

Gram-negative bacteria interact with host cells and inject virulence factors (effectors)
through type III secretion system (T3SS) machineries [1]. Many Escherichia coli and Cit-
robacter rodentium T3SS effectors inhibit pro-inflammatory pathways, including NleB [2],
NleH [3], EspL [4], NleD [5], and NleE [6].

NleC is a zinc metalloprotease T3SS effector that cleaves the NF-κB p65 subunit and
thus inhibits p65 nuclear translocation. This dampens the host innate immune response,
particularly the production of inflammatory cytokines [7–11]. NleC proteolytic activity
is lost upon mutagenesis of the consensus zinc metalloprotease motif 183HEIIH187 [11].
Although NleC is secreted through the T3SS machinery, it also has the capacity to behave
as a short-trip toxin and be internalized independently of the T3SS [12]. Other substrates
of NleC other than p65 have been described and include the Rel family member p50 [8]
and the acetyltransferase p300 [13]. It is thought that NleC specifically targets the NF-
κB pathway instead of the MAPK pathway since it shows no activity against STAT or
ERK [7,9].

Although two distinct p65 recognition and cleavage sites were initially described [7,11,14],
it is now established that the cleavage site is C38/E39 [15,16]. NleC recognition of its substrates
is also influenced by residues that are distant from the cleavage site [15,17].

The traditional view of T3SS effector secretion is that the effectors are inactive until
injected into host cells, where they then fold into their active conformations and interact
with host targets [18]. However, our recent work has challenged this dogma. We discovered
that the T3SS effector NleB is active not only within the host, but also within C. rodentium.
NleB activity with C. rodentium results in glycosylation of the glutathione synthetase
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(GshB) to enhance GshB activity and cause increased production of glutathione, leading
to protection from oxidative stress [19]. We also observed that the NleB ortholog SseK1
is active within Salmonella enterica, where it enhances methylglyoxal detoxification [20].
As these data suggested that T3SS effectors may be active within the bacterium, here we
desired to investigate the potential intra-bacterial effector of an effector with a different
enzymatic activity. To do so, we investigated whether this phenomenon also applied to the
C. rodentium zinc metalloprotease protease NleC.

2. Results

To investigate NleC activity inside C. rodentium, we cloned its known eukaryotic
substrate p65 into a prokaryotic expression vector. Since the NleC cleavage site of p65 is
near the N-terminus, we added a glutathione S-transferase (GST) tag to the N-terminus of
p65 to increase the size of cleavage products. We also added a FLAG tag to the N-terminus
to further aid detection of the cleavage product, as well as a C-terminal His-tag to aid with
purification. Thus, the final recombinant p65 construct has a His-tag at the C-terminus and
GST- and FLAG tags at the N-terminus. If cleavage by NleC occurs, the recombinant p65
protein is expected to be cleaved into two fragments: a 30 kDa N-terminal FLAG-tagged
fragment and 26 kDa C-terminal His-tagged fragment (Figure 1A).
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Figure 1. NleC cleaves p65 in C. rodentium. (A). Schematic. p65 (residues 19-325) was cloned and
expressed as a recombinant fusion to N-terminal FLAG (red)- and GST (grey)-tags and a C-terminal
His-tag (green). The cleavage site is indicated with an arrow; the N-terminal and C-terminal cleavage
products with epitope tags and their expected sizes are also shown. (B). p65 cleavage is dependent
upon NleC. p65 was expressed in WT, ∆nleC, or ∆nleD C. rodentium. Protein lysates were analyzed
using Western blotting. FLAG, His, and merged blot images are shown. Cartoons indicate the
expected full-length and cleavage products as depicted in panel A.

To investigate the NleC mediated cleavage of p65, p65 expression plasmids introduced
into wild-type (WT) C. rodentium, or into deletion strains lacking NleC or NleD (∆nleC),
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and (∆nleD) strains. We observed that p65 was cleaved into the two expected fragments of
appropriate molecular weights in the WT strain, but no such cleavage products were seen
in the ∆nleC strain. Additionally, the same cleavage products were also seen in the ∆nleD
strain, a strain lacking the T3SS effector NleD, a zinc metalloprotease that cleaves JNK [5]
(Figure 1B). Thus, p65 cleavage within C. rodentium appears to be dependent upon NleC.

NleC enzymatic activity is significantly reduced in the host cell when the critical
NleC residue E184 around the Zn2+ binding pocket is mutated to A184 [7]. To further
evaluate p65 cleavage specificity and its dependence upon NleC activity, we co-transformed
∆nleC C. rodentium with a p65 expression plasmid and either WT NleC or NleC E184A
complementation plasmids. The recombinant p65 was cleaved by WT NleC but not by
NleC E184A (Figure 2).
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Figure 2. Inactive NleC does not cleave p65. p65 was expressed in WT, ∆nleC, or ∆nleC complemented
with either WT NleC or NleC E184A C. rodentium. Experiments were conducted as described in
Figure 1 panel B. The 40 kDa protein band is the NleC protein produced via plasmid complementation.

p65 is cleaved by NleC between C38 and E39 [15]. To determine whether this cleavage
specificity was retained within C. rodentium, we mutated the p65 expression plasmid to
change C38/E39 to alanine residues. We expressed this plasmid in WT C. rodentium and
observed that the p65 C38A, E39A mutant was no longer cleaved by NleC (Figure 3). In
addition, we also purified the His-tagged (C-terminal) fragment of the cleavage product
(Figure 3, lane 1) and performed Edman degradation analyses. The five N-terminal amino
acids we identified corresponded to the expected sequence (EGRSA) of the C-terminal cleav-
age product (data not shown). Thus, we concluded that NleC is active within C. rodentium.
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Figure 3. NleC does not cleave the p65 (C38A/E39A) mutant. WT and mutant p65 were expressed in
WT C. rodentium. Experiments were conducted as described in Figure 1 panel B.

Salmonella enterica also induces p65 cleavage in host cells [21,22]. We tested whether
p65 is cleaved inside S. enterica in a similar fashion to C. rodentium. We expressed the
recombinant WT and C38A/E39A p65 constructs in S. enterica and observed cleavage of
only the WT p65 construct, similarly to what was observed for C. rodentium (Figure 4 and
Table S1). S. enterica harbors at least three distinct T3SS effectors, GogA, PipA, and GtgA,
that cleave p65 inside host cells [22]. At least one of these effectors may be active within
S. enterica.
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3. Discussion

NleC is a zinc metalloprotease that cleaves the NF-κB p65 subunit and dampens the
immune response of the host cell. Despite the traditional view of T3SS effectors being active
only after their translocation into the host, here we demonstrated that the C. rodentium
T3SS effector NleC is active inside the bacterium. The implication of this novel finding is
far-reaching. As demonstrated by our previous findings of the C. rodentium T3SS effector
NleB glycosylating the bacterial substrate GshB and therefore contributing to the increased
survival of C. rodentium under environmental stress [19], as well as S. enterica SseK1 glyco-
sylating multiple bacterial substrates involved in methylglyoxal (MGO) detoxification [20],
NleC may have its own endogenous bacterial targets. Compared with Locus of Enterocyte
Effacement (LEE)-encoded effectors, non-LEE-encoded effectors such as NleB and NleC
are potentially more recent acquisitions to the pathogens and their roles as effectors are still
evolving [23]. This indicates that non-LEE effectors potentially have a dual role in modu-
lating both pathogen and host cellular pathways. Therefore, NleC activity in C. rodentium
could play a significant role in modulating bacterial regulation of virulence, response to
environmental stress, and immune evasion.

The traditional model of T3SS effector translocation is that the effectors are chaperoned
within the bacterium until they are secreted. Indeed, chaperones for multiple effectors
have been identified and characterized [24–28]. To our knowledge, no chaperone for NleC
has been identified, indicating that NleC might not be chaperoned before its secretion,
potentially explaining its activity inside the bacteria. Similarly, no chaperone has been
identified for either NleB1 [19] or SseK1.

The potential intra-bacterial targets of NleC are currently unknown, and this absence
of knowledge potentially limits the biological impact of our findings. However, some
insight could be obtained from bioinformatics analyses. For example, we performed an
initial bioinformatics-based search for bacterial NleC substrates by using the known p65
cleavage site as a query. One potential hit is GrlR, a regulator of LEE expression [29] that
harbors both the conserved NleC cleavage site and a DNA-binding domain. In theory, NleC
could cleave GrlR and thus relieve the repression of LEE expression, which in turn could
increase the expression and/or secretion of NleC and other effectors. Another study found
that NleC recognizes and bind its target protein by DNA mimicry, which indicates that
some other targets of NleC may be proteins with nucleic acid binding capacity [16]. NleC
may thus indirectly regulate transcription and affect bacterial responses to environmental
changes. Proteomic techniques such as Terminal Amine Isotopic labeling of Substrates
(TAILS) [30] might also reasonably be employed to identify proteins whose abundance is
dependent upon NleC activity.

4. Materials and Methods
4.1. Strains and Molecular Cloning

Plasmids were constructed in pET15 and pET28 backgrounds by using ABC cloning [31].
p65 and NleC point mutants were created by using site-directed mutagenesis. C. roden-
tium ∆nleC and ∆nleD strains were constructed by using lambda red recombination [32]
with pKD3 and pKD119 plasmids. A recombination cassette harboring a selectable marker
flanked by ~50 bp of complementary sequences from the 5′ and 3′ ends of the gene to be
deleted was created by using PCR with pKD3 as a template. The nleC recombination cas-
sette was amplified by using forward (5′-GCTCCCATTGCTCCTAATCGTGCTGAAAATGC
CTATGCGGATGAAATCTAACAATGCGCT) and reverse (5′-GCCAATCCAGGAAAATCA
TGTTGCTGGATAAATCCGTATCGGTCGAGGTGGCCCGGCTCC) primers. The nleD re-
combination cassette was amplified by using forward (5′-GCTCAATGTCAGATACAGATA
TCGAGTCTCTTGTAAAAGCAAGCCACTGGAGCACCTCAA) and reverse (5′-CGGGTA
GGAGGTTCTACGGGGCATCCCAATCTCTTCGTGGACGGGGAGAGCCTGAGCAAA) pri-
mers. Plasmids were introduced into C. rodentium and S. enterica strains by using electroporation.
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4.2. Western Blotting

Strains were grown in LB media with appropriate antibiotics (kanamycin and/or
carbenicillin) for 4 h at 37 ◦C and then induced with 0.5 mM IPTG with growth for an
additional 4 h at 30 ◦C. Cell lysates were derived from 1 mL of bacterial cultures via
centrifugation and lysed in 100 µL SDS loading buffer by boiling for 5 min. Samples
(10 µL) were used in Western blot assays with anti-His (1:1000 dilution; H1029, Sigma-
Aldrich, St. Louis, SL, USA) and anti-FLAG (1:5000 dilution; F7425, Millipore, Burlington,
USA) primary antibodies. IRDye 800CW goat-anti-mouse IgG (926-32210, LI-COR) and
IRDye 680RD goat-anti-rabbit IgG (926-68071, LI-COR) secondary antibodies were used at
1:10,000 dilutions.

4.3. Edman Degradation

The C-terminal p65 cleavage product generated from WT C. rodentium was purified
using standard His-tagged protein purification methods and processed according to the
sample preparation guidelines for Edman degradation by the Protein Facility of the Iowa
State University Office of Biotechnology.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10050589/s1, Table S1: Edman degradation analysis of p65 C-terminal cleav-
age product.
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