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The pathogenesis of Systemic Sclerosis (SSc) is extremely complex, and despite extensive studies, the exactmechanisms involved are
not well understood. Numerous recent studies of early events in SSc pathogenesis have suggested that unknown etiologic factors in
a genetically receptive host trigger structural and functional microvascular endothelial cell abnormalities. These alterations result
in the attraction, transmigration, and accumulation of immune and inflammatory cells in the perivascular tissues, which in turn
induce the phenotypic conversion of endothelial cells and quiescent fibroblasts into activated myofibroblasts, a process known as
endothelial to mesenchymal transition or EndoMT. The activated myofibroblasts are the effector cells responsible for the severe
and frequently progressive fibrotic process and the fibroproliferative vasculopathy that are the hallmarks of SSc.Thus, according to
this hypothesis the endothelial and vascular alterations, which include the phenotypic conversion of endothelial cells into activated
myofibroblasts, play a crucial role in the development of the progressive fibrotic process affecting skin andmultiple internal organs.
The role of endothelial cell and vascular alterations, the potential contribution of endothelial to mesenchymal cell transition in the
pathogenesis of the tissue fibrosis, and fibroproliferative vasculopathy in SSc will be reviewed here.

1. Introduction

Scleroderma or Systemic Sclerosis (SSc) is an autoimmune
disease of unknown etiology characterized by progressive
fibrosis of skin and multiple internal organs and prominent
and often severe alterations in the microvasculature [1].
Although SSc is the third most common systemic inflamma-
tory autoimmune disease and has the highest case-specific
mortality among this group of idiopathic disorders, there
is currently no effective disease-modifying therapy for SSc.
Therefore, there is an urgent unmet need for the development
of effective disease-modifying therapies to improve the dev-
astating health consequences and high mortality caused by
the disease. The cells responsible for the severe fibroprolif-
erative process in SSc are activated myofibroblasts, a unique
population ofmesenchymal cells displaying unique biological
functions including increased production of fibrillar type l
and type lll collagens, initiation of expression of 𝛼-smooth
muscle actin (𝛼-SMA), a molecular marker of activated

myofibroblasts, and reduction in the expression of genes
encoding extracellular matrix (ECM)-degradative enzymes.
The accumulation of myofibroblasts in affected tissues and
the persistence of their elevated biosynthetic functions are
crucial determinants of the extent and rate of progression
of the fibrotic process in SSc, and of its clinical course,
response to therapy, prognosis, and overall mortality. The
origins of the myofibroblasts responsible for the exaggerated
and uncontrolled production of collagen and other ECM
proteins in SSc have not been completely elucidated. Exten-
sive research studies have shown that these cells originate
from several sources, including expansion of resident tissue
fibroblasts and migration and tissue accumulation of bone
marrow-derived circulating fibrocytes, or fromepithelial cells
which have undergone epithelial to mesenchymal transition
(EMT). More recent studies, however, have demonstrated
that endothelial cells are also capable of undergoing endothe-
lial to mesenchymal transition (EndoMT) and that this
transition might be an important source of the mesenchymal
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cells participating in the fibroproliferative vasculopathy and
the fibrotic process in SSc. Thus, this novel mechanism
of generation of activated myofibroblasts may represent an
important and currently unexplored target for the develop-
ment of disease-modifying therapeutic interventions for this
currently incurable disease.

2. SSc Pathogenesis: Overview

The pathogenesis of SSc is extremely complex, and despite
numerous studies that examined several aspects of its intri-
cate picture, the exact mechanisms involved are not well
understood. However, it is apparent that the clinical and
pathologicmanifestations of the disease are the result of three
distinct processes: (1) fibroproliferative vascular lesions of
small arteries and arterioles, (2) excessive and often progres-
sive deposition of collagen and other ECM macromolecules
in skin and various internal organs, and (3) alterations
of humoral and cellular immunity characterized by innate
immunity alterations, involvement of macrophages and T-
andB-lymphocytes, and the production of numerous disease-
specific autoantibodies [2–4]. It has not been established
which of these processes is of primary importance or how
they are temporally related during the development and
progression of the disease. However, numerous recent studies
have clarified some of the early events in SSc pathogenesis
[5–11]. A current hypothesis for SSc pathogenesis posits
that there is a sequence of pathogenetic events initiated
by unknown etiologic factors in a genetically receptive
host which trigger microvascular injury characterized by
structural and functional endothelial cell abnormalities. The
endothelial cell abnormalities result in the increased produc-
tion and release of numerous and potent mediators includ-
ing cytokines, chemokines, polypeptide growth factors, and
various other substances such as nitric oxide, prostaglandins,
reactive oxygen species (ROS), and thrombogenic and pro-
coagulant activities or in the reduction of important com-
pounds such as prostacyclin.The endothelial cell dysfunction
triggers the chemokine and cytokine-mediated attraction
of specific inflammatory cellular elements from the blood-
stream and bone marrow and their transmigration into the
surrounding tissues. These events lead to the establishment
of a chronic inflammatory process with participation of
macrophages and T- and B-lymphocytes, with further pro-
duction and secretion of cytokines and growth factors that
induce the tissue accumulation of activated myofibroblasts,
the effector cells responsible for the fibrotic process [12–
14]. This sequence of events, diagrammatically illustrated
in Figure 1, results in the development of a severe and
often progressive fibroproliferative vasculopathy and in the
exaggerated and widespread accumulation of fibrotic tissue
in the skin and multiple internal organs, which are the most
salient characteristics of the disease.

The purpose of this review is to discuss recent studies that
have substantially advanced the current understanding of
SSc pathogenesis regarding the endothelial cell and vascular
abnormalities and the role of endothelial to mesenchymal
transition (EndoMT) in the pathogenesis of this currently
incurable disease. However, the genetic, innate, and acquired

immunological abnormalities and the cytokine, chemokine,
and growth factor abnormalities, all of which play an ex-
tremely important role in SSc pathogenesis, will not be
reviewed here owing to the availability of numerous out-
standing reviews about these topics that have been recently
published [15–22].

3. Vascular Abnormalities in SSc

Vascular dysfunction is one of the earliest and most notice-
able manifestations of SSc as indicated by the occurrence
of Raynaud phenomenon, nailfold capillary microvascular
alterations, and digital ulcers almost universally in SSc
patients often preceding the appearance of clinical evidence
of tissue fibrosis [23, 24]. Furthermore, there is a remark-
able microvascular fibroproliferative vasculopathy present
in essentially all SSc affected organs that is responsible for
the most important symptoms and clinical manifestations
of SSc and often leads to serious and even fatal compli-
cations. Although the effects of vascular abnormalities and
dysfunction in patients with SSc are most dramatic when
they involve the pulmonary and renal arterioles, causing
renal crisis [25, 26] and pulmonary artery hypertension [27–
29], respectively, there are numerous other important clinical
manifestations of the disease that are caused or mediated by
the prominent fibroproliferative vasculopathy. These include
capillary rarefaction and capillary loop dilation in the nailfold
capillaries [30, 31], cutaneous and mucosal telangiectasias
[32–34], erectile dysfunction resulting from alterations in
penile blood flow [35–37], and cardiac dysfunction includ-
ing nonartherosclerotic myocardial infarcts [38, 39], gastric
antral vascular ectasia [40–42], central retinal artery occlu-
sion [43, 44], and involvement of larger vessels [45, 46].
Histopathologically, the affected vessels display marked nar-
rowing or even complete occlusion of the vessel lumen with
remarkable accumulation of mesenchymal cells and fibrous
tissue in the subendothelial compartment and associated
endothelial cell abnormalities, which include swelling and
apoptotic changes, as well as thickening of the basement
membrane. Occasionally, endothelial cell detachment and
intravascular platelet thrombi are found. On transmission,
electron microscopy universal morphological changes of
endothelial cells and basement membrane duplication and
lamellation are characteristic alterations.The histopathologi-
cal changes in the microvasculature of several affected organs
are illustrated in Figure 2.

4. Mechanisms of Vascular and Endothelial
Cell Injury in SSc

The initial events responsible for the vascular and endothe-
lial cell injury and their subsequent activation are not
known although numerous putative etiologic factors have
been suggested. Some of these include exogenous chemi-
cal substances, vasculotropic viral pathogens, antiendothe-
lial cell antibodies, cellular products from inflammatory
cells, tissue hypoxia, or ROS generated during episodes of
ischemia/reperfusion [8–10, 47–52]. The injured/activated
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Figure 1: Overall scheme illustrating a current understanding of SSc pathogenesis. Hypothetical sequence of events involved in tissue fibrosis
and fibroproliferative vasculopathy in SSc. An unknown causative agent induces activation of immune and inflammatory cells in genetically
predisposed hosts resulting in chronic inflammation. Activated inflammatory and immune cells secrete cytokines, chemokines, and growth
factors which cause fibroblast activation, differentiation of endothelial and epithelial cells into myofibroblasts, and recruitment of fibrocytes
from the bone marrow and the peripheral blood circulation.The activated myofibroblasts produce exaggerated amounts of ECM resulting in
tissue fibrosis.

endothelial cells may undergo apoptosis or may detach from
the vascular endothelium, leaving a denuded vascular lumen
which triggers the release of endothelial cell precursors
from the bone marrow in attempts to repair the endothelial
lining defects. Supporting this notion are the observations

of increased numbers of circulating endothelial cells and
endothelial cell precursors in SSc patients [53–55]. The
activation of endothelial cells also induces the expression of
cell adhesion molecules such as ICAM, VCAM-1, and E-
selectin [56, 57]. The induced expression of cell adhesion
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Figure 2: Histopathology of fibroproliferative vasculopathy in small vessels of various affected organs. Histopathology of microvascular
arterioles from SSc lung, kidney, and retinal vessels displaying prominent endothelial fibroproliferative alterations causing severe narrowing
of vessel lumen and thickening of vessel walls.

molecules by the endothelial cells leads to recruitment and
activation of chronic inflammatory cells, including T- and
B-lymphocytes and profibrotic macrophage populations and
their accumulation in the perivascular tissue and in the inter-
stitium of parenchymal organs.The activated chronic inflam-
matory cells are responsible for the increased production
of transforming growth factor-𝛽 (TGF-𝛽), connective tissue
growth factor (CTGF), and other profibrotic polypeptide
growth factors which together with the mediators released
by the endothelial cells, such as endothelin-1, induce sub-
sequent pathogenetic events leading to the severe tissue
fibrosis and fibroproliferative vasculopathy characteristic of
the disease [1–11]. Besides the endothelial cell abnormalities,
other vascular alterations include increased proliferation of
smooth muscle cells in the medial layer of affected vessels,
marked accumulation of fibrotic tissue in the subendothelial
compartment, and initiation of platelet aggregation and
intravascular thrombosis, eventually causing microvascular
occlusion [58, 59]. These multiple events result in tissue
hypoxia which can cause activation of hypoxia-dependent
profibrogenic processes, including further increases in pro-
duction of TGF-𝛽 and interstitial collagens as well as other
ECM macromolecules [60, 61]. In addition to the structural
vascular changes described above, there are also functional
vascular alterations which include a reduction in endothe-
lium dependent vasodilator molecules and dysfunction of
the neurovascular and neuroendothelial control of vasodi-
lation [62–65], as well as a relative deficiency of vasodilator
molecules such as prostacyclin and nitric oxide.

The injured or cytokine/growth factor-activated endothe-
lial cells also produce increased amounts of the potent profi-
brotic and vasoconstrictor polypeptide, endothelin-1 [66, 67],

and numerous other vasoactive and prothrombogenic com-
pounds that are capable of directly stimulating various target
cells such as vascular smooth muscle cells and fibroblasts [8–
10, 66, 67]. The important role of endothelin-1 in the devel-
opment of SSc-associated tissue fibrosis and fibroprolifera-
tive vasculopathy has received increasing attention recently.
Indeed, elevated levels of endothelin-1 have been found in
plasma and bronchoalveolar lavage of SSc patients [68–70]
and correlate with clinical parameters and subsets of the
disease [71, 72]. Numerous studies have demonstrated that
endothelin-1 is a potent inducer of proliferation and ECM
production by fibroblastic cells [73–76]. The exaggerated
vasoconstrictor response to the increased endothelin levels
causes vascular hypoxia and further endothelial injury, thus
establishing and maintaining a vicious cycle of endothelial
injury and fibrosis. The chronic inflammatory cells accu-
mulated in the perivascular environment also participate
in the maintenance of a powerful profibrotic cycle since
the numerous cytokines, chemokines, and growth factors
they produce can in turn induce further activation of the
endothelial cells and their production of profibrotic media-
tors [67]. The mutual interaction between inflammatory and
endothelial cells has been validated by a recent study describ-
ing the upregulation of endothelin-1 and TGF-𝛽 in human
microvascular endothelial cells induced by interferon-𝛾, one
of the potent cytokines released by the infiltrating inflam-
matory cells [77]. Additional alterations which contribute to
the severe vascular dysfunction and rarefaction in SSc are
the result of disordered angiogenesis [78–84] and impaired
differentiation of bone marrow stem cells into endothelial
cells [85].
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5. Endothelial to Mesenchymal Transition
(EndoMT) in the Pathogenesis of SSc

One of the most characteristic histopathologic alterations in
SSc is a severe fibroproliferative vasculopathy affecting the
microvasculature as well as some larger vessels [86]. The
proliferative vasculopathy of SSc has two distinct compo-
nents. The first one is a marked proliferation of smooth
muscle cells in the media of medium size and small size
arterioles, a process which plays a crucial role in SSc-
associated pulmonary hypertension. The second component
is most prominent in the small arterioles of parenchymal
organs, such as the lungs and kidneys, and is characterized
by the subendothelial accumulation of activated fibroblasts
or myofibroblasts and the production of abundant fibrotic
tissue. The origin of mesenchymal cells responsible for the
fibrotic microvascular occlusion in SSc is not known, but
recent studies have suggested that at least some of these
cells may result from EndoMT, that is, the transdifferentia-
tion of endothelial cells into subintimal fibroblasts induced
by locally-secreted cytokines and growth factors. During
EndoMT, endothelial cells lose their specific endothelial cell
markers, such as vascular endothelial cadherin (VE cadherin)
and von Willebrand factor, and acquire a mesenchymal or
myofibroblastic phenotype initiating expression of 𝛼-SMA,
vimentin, and type I collagen. In addition, these cells become
motile and are capable of migrating into surrounding tissues.
EndoMT has been described as an important process during
cardiac valve and pulmonary artery embryonic development
[87–89]. More recently, EndoMT has emerged as a possible
mechanism in the pathogenesis of tissue fibrosis in vari-
ous diseases, including diabetic nephropathy, cardiac fibro-
sis, intestinal fibrosis, portal hypertension, and pulmonary
hypertension [90–100]. Although there is some experimental
evidence supporting the participation of EndoMT in SSc, fur-
ther studies will be required to conclusively demonstrate that
EndoMT plays a role in the pathogenesis of SSc-associated
fibroproliferative vasculopathy andprogressive tissue fibrosis.
A firm demonstration of the occurrence of EndoMT in SSc
and a further understanding of the molecular mechanisms
involved may lead to the pharmacologic modulation or
abrogation of this pathway in SSc.

6. Molecular Mechanisms of EndoMT

Themolecular mechanisms involved in the EndoMT process
have not been fully elucidated, and despite the remarkable
importance of this process to normal development and to
various pathologic conditions including SSc, only a few stud-
ies have examined the molecular changes and the regulatory
events occurring in endothelial cells during their transdiffer-
entiation intomesenchymal cells ormyofibroblasts. However,
substantial recent evidence has accumulated demonstrating
the crucial role of TGF-𝛽 signaling [101–104] in the initiation
of EndoMT during normal development as well as in various
diseases.

6.1. Role of TGF-𝛽 in EndoMT. TGF-𝛽 is a pleiotropic growth
factor involved in numerous physiologic and pathologic pro-
cesses including embryogenesis, cellular development and
differentiation, immunologic system development, inflam-
matory response functions, and wound repair [105–107].
TGF-𝛽 plays a key role in the pathogenesis of fibrotic diseases
by stimulating the production of various collagens and other
ECMcomponents bymesenchymal cells and by inhibiting the
expression of various relevant metalloproteinases [103, 104,
108–114]. Although the precise mechanisms mediating the
potent profibrotic effects of TGF-𝛽 have not been completely
elucidated, it appears that TGF-𝛽 may cause the establish-
ment of an autocrine signaling cascade capable of continuous
activation of profibrotic gene expression in the target cells
[115]. However, extensive studies have shown that besides
causing a potent stimulation of the expression of genes par-
ticipating in the exaggerated production and accumulation of
ECM, TGF-𝛽 is also involved in the generation of myofibrob-
lasts through EndoMT [101–104, 116–121]. Indeed, studies
in experimentally induced cardiac hypertrophy showed that
TGF-𝛽 was a crucial mediator causing endothelial cells to
undergo EndoMT [96]. Although the detailed molecular
events and the intracellular cascades activated by TGF-𝛽 that
result in the remarkable phenotypic change of endothelial
cells to mesenchymal cells have not been entirely elucidated,
recent studies in cultured human cutaneous microvascular
endothelial cells [103], primary cultures ofmurine pulmonary
endothelial cells [116], and cultured pancreatic microvas-
cular endothelial cells [121] demonstrated that both Smad-
dependent and Smad-independent pathways are involved.
The intracellular signaling pathways that are likely to be
involved in EndoMT induction by TGF-𝛽 are illustrated in
Figure 3.

Given the crucial role of TGF-𝛽 in the development
of tissue fibrosis and its participation in the pathogene-
sis of numerous fibrotic diseases, we recently examined
the mechanisms involved in the induction of EndoMT by
this pleotropic growth factor and studied the intracellular
transduction pathways involved in this process employing
primary pulmonary endothelial cells in culture [116]. In
our study, we examined the transdifferentiation of murine
pulmonary endothelial cells into mesenchymal cells in vitro
and the signaling pathways involved in this process andmade
the following observations: (1) primary murine pulmonary
endothelial cells undergo EndoMT in response to TGF-𝛽
with initiation of expression of 𝛼-SMA, assembly of typical
intracellular 𝛼-SMA stress fibers, and loss of VE-cadherin in
vitro; (2) TGF-𝛽 induction of EndoMT was associated with a
strong upregulation in the expression of the transcriptional
repressor Snail-1 indicating that Snail-1 is directly involved
in TGF-𝛽-induced 𝛼-SMA expression; and (3) induction
of 𝛼-SMA expression in pulmonary endothelial cells was
mediated by the c-Abl kinase and by protein kinase c-
𝛿 (PKC-𝛿), as specific inhibition of their kinase activity
with imatinib mesylate and rottlerin, respectively, or by
knockdown of their corresponding transcripts with specific
siRNA abrogated the marked increase in TGF-𝛽 induced
𝛼-SMA and Snail-1 expression and protein levels. These
studies collectively showed that these effects are mediated
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Figure 3: Signaling pathways involved in EndoMT.The diagram shows the numerous putative pathways that may participate in the EndoMT
process andmay be involved in SSc pathogenesis. One central pathway initiated following ligand-binding activation of the Smad-independent
TGF-𝛽 pathway causes phosphorylation of GSK-3𝛽 mediated by PKC-𝛿 and the c-Abl nonreceptor kinase. Phosphorylation of GSK-3𝛽
at serine 9 (ser9) causes its inhibition which then allows Snail-1 to enter the nucleus. Nuclear accumulation of Snail-1 results in marked
stimulation of Snail-1 expression which then leads to acquisition of the myofibroblast phenotype with stimulation of 𝛼-SMA. The inhibition
of GSK-3𝛽 ser9 phosphorylation by specific inhibition of PKC-𝛿 or c-Abl activity allows GSK-3𝛽 to phosphorylate Snail-1 targeting it for
proteosomal degradation and thus effectively abolishes the acquisition of the myofibroblastic phenotype and the fibrotic response. Other
pathways such as those involving ET-1, Wnt, NOTCH, hypoxia, and cellular stress responses may also participate although the molecular
events have not been fully elucidated. Modified from Piera-Velazquez and Jimenez [101].

by the transcriptional repressor Snail-1 [103, 116]. Snail-1 is
a zinc-finger transcription factor that forms a complex with
Smad3/Smad4. The active Smad3/Smad4/Snail-1 complex
causes potent inhibition of the expression of E-cadherin
by directly binding to specific sequences within the gene
promoter and blocking its transcription. Besides inhibition of
E-cadherin, Snail-1 induces numerous transcriptional events
that lead to the expression of a mesenchymal-cell-specific
phenotype. Snail-1 levels are regulated by complex phospho-
rylation events mediated by intracellular kinases including
c-Abl kinase, PKC-𝛿, PI3K, p38 MAP kinase and glycogen
synthase kinase 3𝛽 (GSK-3𝛽). The role of PKC-𝛿 and c-Abl
kinases has been demonstrated employing specific kinase
inhibitors and/or specific knockdown with small interfering
RNAs [116], whereas the role of PI3K, p38 MAPK and GSK-
3𝛽 was demonstrated employing specific inhibitors of the
corresponding pathways [103].Numerous studies have shown
a crucial role of GSK-3𝛽 in the regulation of Snail-1 effects.
GSK-3𝛽 phosphorylation results in its inactivation which in
turn induces the nuclear accumulation of Snail-1 followed by
a profound increase in the expression of its corresponding
gene. In contrast, in the absence of GSK-3𝛽 phosphorylation,
the GSK-3𝛽 kinase is active and induces the proteosomal

degradation of Snail-1, thus abrogating the endothelial to
mesenchymal cellular phenotypic conversion. The role of
GSK-3𝛽 in the regulation of Snail-1 stability, and therefore, in
the expression of its potent transcriptional effects is illustrated
in Figure 3.

6.2. Regulation of EndoMT by the Wnt and NOTCH Signaling
Pathways. Although not extensively studied in EndoMT, it
has recently become apparent that several important regula-
tory pathways including the canonical Wnt pathway and the
NOTCH pathway may also participate in the regulation of
EndoMT as illustrated in Figure 3.

6.2.1. Wnt Signaling. TheWnt proteins comprise a large fam-
ily of secreted glycoproteins with complex canonical and
noncanonical intracellular signaling pathways that play cru-
cial roles during embryonic development and organogenesis
[122–124]. Wnt proteins and pathways have been recently
implicated in the pathogenesis of numerous diseases, includ-
ing SSc and other fibrotic diseases [125–129]. TGF-𝛽 appears
to be the major factor activating the canonical Wnt pathway
[130, 131]. This process is probably mediated by a decrease
of Dickkopf-related protein 1 (Dkk-1), a potent Wnt pathway
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inhibitor, as indicated by the observations that the addition of
recombinant Dkk-1 blocked the stimulatory effects of TGF-𝛽
on the canonical Wnt pathway in fibroblasts [132, 133].

Although there is extensive published literature regarding
the role of Wnt pathway activation in the phenotypic conver-
sion of epithelial cells into mesenchymal cells, also known
as EMT [134–137], the possibility that Wnt may participate
in EndoMT is just beginning to be explored. Indeed, a
recent study examined the role of Wnt7 and the Wnt7
antagonist Dkk-1 on EndoMT in primary aortic endothelial
cells in culture and in transgenic mice with an endothelial-
specificWnt-7b deletion [138].The results showed that Dkk-1
inhibition of the Wnt pathway enhanced EndoMT, whereas
Wnt-7b expression preserved the endothelial cell phenotype.

6.2.2. NOTCH Signaling. TheNOTCHproteins aremembers
of the group of proteins collectively known as morphogens
owing to their crucial roles in cell fate decisions during
morphogenesis and embryonic development, particularly in
relation to cardiovascular development and to regulation of
central nervous system polarity and vertebrate segmentation
[139, 140]. However, involvement of NOTCH proteins in
a broad spectrum of disorders is just becoming apparent
[141–147]. The role of NOTCH signaling in EndoMT was
first described by Noseda et al. [148], and it was suggested
that the NOTCH pathway may be crucial for heart valve
and cardiac cushion development and/or vascular smooth
muscle differentiation. Numerous subsequent studies have
confirmed and extended these observations and have exam-
ined the molecular mechanisms involved and the important
interactions with the TGF-𝛽 pathways [149–154]. Studies
to examine the participation of NOTCH proteins in the
EndoMT process in SSc have not been described, although
the demonstration of activation of NOTCH signaling in
affected SSc skin suggests that the NOTCH proteins may play
a role in SSc pathogenesis and thus may represent a potential
target for SSc disease modifying therapeutic approaches [155,
156].

6.3. Caveolin-1 Regulation of EndoMT. Another recently
identified mechanism of regulation and fine tuning of TGF-
𝛽 activity involves Caveolin-1 (Cav-1), the most important
member of a family of proteins found in lipid rafts. Cav-1
plays an important role in TGF-𝛽 signaling regulation owing
to its participation in TGF-𝛽 receptor (T𝛽R) internalization
[157–159]. T𝛽Rs are internalized both by Cav-1-associated
lipid rafts and by early endosome antigen 1 (EEA-1) non-
lipid raft pathways. Non-lipid raft associated internaliza-
tion increases TGF-𝛽 signaling, whereas caveolin-associated
internalization increases T𝛽Rdegradation, thereby effectively
decreasing or abolishing TGF-𝛽 signaling [157]. The local-
ization of the T𝛽Rs in the EEA-1 positive compartment
is responsible for downstream Smad activation, whereas
their localization in Cav-1 containing lipid rafts has been
shown to cause subsequent receptor ubiquitination and rapid
degradation and turnover [158, 159]. Despite the important
interactions between Cav-1 and TGF-𝛽 and the numerous
studies that supported the role of Cav-1 in the pathogenesis

of SSc [160–164], the possibility that Cav-1 may participate
in the regulation of EndoMT has not been explored in detail,
although a recent study examined the contribution ofCav-1 to
EndoMT employing Cav-1 knockout mice [165]. The results
indicated that Cav-1 may be a crucial regulator of EndoMT in
murine pulmonary endothelial cells. In these studies, it was
shown that pulmonary endothelial cells isolated from Cav-
1 knockout mice displayed spontaneous EndoMT and that
Cav-1 deficiency potentiated the EndoMT effect induced by
TGF-𝛽 [165].

6.4. Role of Other Growth Factors in EndoMT. The most se-
vere clinical and pathologic manifestations of SSc are the
result of a fibrotic process characterized by the excessive and
often progressive deposition of collagen and other connective
tissuemacromolecules in skin and numerous internal organs.
Numerous studies have shown that tissue fibrosis in SSc is the
result of an upregulated expression of genes encoding colla-
gen and other extracellularmatrix proteins in affected organs.
The exact mechanisms responsible for the establishment of
the fibrotic process in SSc have not been precisely determined
[2–6], although it has become very clear that several growth
factors play a crucial role [166].

Besides TGF-𝛽, the most important growth factor, in-
volved in SSc tissue fibrosis and inEndoMT, other growth fac-
tors and profibrogenic molecules, including platelet derived
growth factors [167], vascular endothelial growth factor [168],
and insulin-derived growth factor [169], may also participate
in EndoMT although their role in this process has not
been studied to our knowledge. However, some studies
that examined the role of other profibrotic growth factors
have been described. One of the profibrotic polypeptides
shown to participate in EndoMT is endothelin-1. One study
showed that endothelial cell-derived endothelin-1 promotes
cardiac fibrosis and heart failure in diabetic hearts through
stimulation of EndoMT as these effects did not occur in
hearts from transgenic mice with endothelial cell specific
endothelin-1 deletion [170].

Connective Tissue Growth Factor (CTGF), also known as
CCN2, is another pleotropic growth factor that has emerged
as an important mediator of normal and pathological tissue
fibrotic responses [171–174] and has been suggested to play
a crucial role in SSc tissue fibrosis. TGF-𝛽 causes potent
stimulation ofCTGF synthesis in fibroblasts, vascular smooth
muscle cells, and endothelial cells, and numerous studies
have shown that CTGF represents a downstream mediator
of TGF-𝛽 fibrogenic effects [175–177]. Despite the important
role of CTGF in the pathogenesis of tissue fibrosis and its
potential participation in SSc owing to the well-recognized
functional interactions with TGF-𝛽, its possible participation
in the EndoMT process has not been investigated, although a
very recent study showed that elevated levels of CTGF in SSc
microvascular endothelial cells were capable of stimulating
fibroblast activation and increased motility and invasion in
in vitro studies. Further investigation indicated that these
effectsweremediated byCTGF-induced increased expression
of TGF-𝛽 in the target fibroblasts [178]. Another very recent
study demonstrated that CTGF is one of the target genes of



8 ISRN Rheumatology

Snail-1 and showed a remarkable increase in CTGF expres-
sion in endothelial cells following experimentally-induced
overexpression of Snail-1 [179].

6.5. Role of MicroRNAs in the Regulation of EndoMT. Mic-
roRNAs (miRNAs) are small (∼22 nucleotides), evolutionar-
ily conserved noncoding RNAs which play important roles
in the regulation of the expression of a large number of
protein coding genes at the posttranscriptional level [180–
183]. The mechanisms involved in posttranscriptional reg-
ulation of gene expression by miRNAs are complex and
require the sequence-specific complementary binding to the
3 untranslated region (UTR) of target mRNAs suppressing
their expression by either inhibiting mRNA translation or
facilitating their degradation [184–186]. Recent interest has
been devoted to elucidating their participation in tissue
fibrosis and fibrotic diseases [187–190]. Indeed, several miR-
NAs have been shown to be involved in SSc tissue fibrosis
[191–197], displaying either profibrotic or antifibrotic effects.
Furthermore, it has been shown that numerous miRNAs dis-
play strong modulation of their expression by TGF-𝛽 [198],
although the implications of these TGF-𝛽-miRNA interac-
tions have not been fully elucidated.Moreover, several studies
have described potential modulatory effects of miRNA on
EMT [199], although their participation in EndoMT has not
been examined in detail. However, recent reports described
results indicating that miRNA21 partially mediated the TGF-
𝛽-induced EndoMT in human umbilical vein endothelial
cells [200] and that several miRNAs were either increased
or decreased during TGF-𝛽2-induced EndoMT in murine
cardiac endothelial cells [120].

7. Conclusions and Future Directions

Scleroderma or Systemic Sclerosis (SSc) is a systemic auto-
immune disease of unknown etiology characterized by
progressive fibrosis of skin and multiple internal organs
and severe alterations in the microvasculature [1]. SSc is
the third most common systemic inflammatory autoimmune
disease and has the highest case-specific mortality among
this group of idiopathic disorders. Whereas remarkable
therapeutic advances have recently been accomplished for
Rheumatoid Arthritis and Systemic Lupus Erythematosus,
there is currently no effective disease-modifying therapy
for SSc. Therefore, there is an urgent unmet need for
the development of effective disease-modifying therapies
to improve the devastating health consequences and high
mortality caused by the disease. The effector cells ultimately
responsible for the severe fibroproliferative process in SSc
are activated myofibroblasts. These cells display very active
protein synthesis producing increased amounts of ECM
proteins and acquiring a motile and contractile phenotype
expressing a high level of 𝛼-SMA [12–14]. Although it is
widely recognized that there are numerous inflammatory and
immunological events in the pathogenesis of SSc, myofibrob-
lasts have been recognized as the crucial determinant of the
fibrotic process in SSc and other fibrotic disorders [6, 11–13,
201–203]. Furthermore, their accumulation in affected tissues

and the persistence of their elevated biosynthetic functions
are the primary determinants of the extent and severity of
the clinical manifestations in SSc, and of its clinical course,
response to therapy, prognosis, and overall mortality. Thus,
activatedmyofibroblasts have become an important target for
SSc disease-modifying therapeutic approaches [204–206].

Extensive research studies have shown that these cells
originate from several sources [94, 207], including expansion
and phenotypic activation of resident tissue fibroblasts and
migration and tissue accumulation of bone marrow-derived
circulating fibrocytes, or from epithelial cells which have
undergone EMT. More recent studies, however, have demon-
strated that endothelial cells are also capable of undergoing
a phenotypic change to activated mesenchymal cells in a
complex process known as EndoMT. Although there are very
few studies that have examined the possible participation of
EndoMT in the initiation and progression of the fibrotic and
fibroproliferative processes in SSc, it is expected that given
its potential importance in the pathogenesis of this currently
incurable disease this area of investigationmay attract further
scientific attention.

Despite the relatively recent research interest in the role
of EndoMT in the SSc pathogenesis, important components
of the complex pathway of TGF-𝛽-induced EndoMT and
the molecular mechanisms involved in the generation of
activated tissue myofibroblasts have already been identified.
These observations suggest that targeting components of
these pathways may be a feasible therapeutic goal to modify
crucial steps in the development of SSc fibroproliferative
vasculopathy [208]. Furthermore, the important role that
miRNAs have been shown to play in the regulation of gene
expression has clearly opened the possibility of developing
a novel therapeutic approach for SSc by targeting these
extremely versatile noncoding RNA species. Obviously, sub-
sequent preclinical studies employing suitable animal models
will be required to further support the potential therapeutic
role of EndoMT and/or miRNA modulation for the fibrosis
and proliferative vasculopathy of SSc.
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