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How important foveal, parafoveal, and peripheral vision
are depends on the task. For object search and letter
search in static images of real-world scenes, peripheral
vision is crucial for efficient search guidance, whereas
foveal vision is relatively unimportant. Extending this
research, we used gaze-contingent Blindspots and
Spotlights to investigate visual search in complex
dynamic and static naturalistic scenes. In Experiment 1,
we used dynamic scenes only, whereas in Experiments 2
and 3, we directly compared dynamic and static scenes.
Each scene contained a static, contextually irrelevant
target (i.e., a gray annulus). Scene motion was not
predictive of target location. For dynamic scenes, the
search-time results from all three experiments converge
on the novel finding that neither foveal nor central
vision was necessary to attain normal search proficiency.
Since motion is known to attract attention and gaze, we
explored whether guidance to the target was equally
efficient in dynamic as compared to static scenes. We
found that the very first saccade was guided by motion
in the scene. This was not the case for subsequent
saccades made during the scanning epoch, representing
the actual search process. Thus, effects of task-irrelevant
motion were fast-acting and short-lived. Furthermore,
when motion was potentially present (Spotlights) or
absent (Blindspots) in foveal or central vision only, we
observed differences in verification times for dynamic
and static scenes (Experiment 2). When using scenes
with greater visual complexity and more motion
(Experiment 3), however, the differences between
dynamic and static scenes were much reduced.

Introduction
Visual search, a task relevant to everyday life, has

been studied for decades (J. M. Wolfe, 2020; J. M.
Wolfe & Horowitz, 2017). In the vast majority of
studies, observers searched arbitrary static displays
without moving their eyes. More recently, researchers
have begun to study visual search with eye movements
using photographs of real-world scenes as stimuli
(e.g., Castelhano & Heaven, 2010; Foulsham &
Underwood, 2011; Malcolm & Henderson, 2009).
Given that the visual world across our field of view
is full of information, some of these studies have
investigated how important the different regions of
the visual field are to the search process (Clayden et
al., 2020; Nuthmann, 2013, 2014; Nuthmann et al.,
2021). Here, we report three experiments in which we
extend this research by investigating visual search for a
nonmoving target embedded in complex dynamic and
static real-world scenes.

The resolution of the visual system drops off from
the fovea into the periphery gradually rather than
with sudden transitions (Loschky et al., 2005), but
for descriptive convenience, researchers commonly
divide the visual field into three major regions: foveal,
parafoveal, and peripheral. In visual-cognition research,
the foveal region is considered to extend from 0° to
1° eccentricity and the parafoveal region from 1° to
4–5°, whereas the peripheral region encompasses the
remainder of the visual field (Larson & Loschky, 2009;
Loschky et al., 2019). The fovea and parafovea together
are oftentimes referred to as central vision, whereas
extrafoveal vision comprises the parafovea and the
periphery. Figure 1 provides a visualization.
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Figure 1. The drop-off in visual resolution with eccentricity and the different regions of the visual field. For the image of a British living
room scene on the right, the foveated image on the left shows a reconstruction of the image on the retina, assuming an eye fixation
on the vase. The image becomes more blurred away from the fixation point (black dot), which mimics the way our vision gradually
loses the ability to see fine detail away from the center of vision. Superimposed are the different regions of the visual field, as defined
in the text; the calculation of the extensions of the fovea and parafovea was based on the settings in which the reported experiments
were conducted (size of the scene stimuli on the monitor, viewing distance). The foveated image was created with the Space Variant
Imaging Toolbox by Geisler and Perry, http://svi.cps.utexas.edu/software.shtml.

As does visual acuity, motion sensitivity declines at
greater eccentricities (Basler, 1906). Thus, central vision
is more sensitive to motion than the periphery (Finlay,
1982). However, the decrease in sensitivity from center
to periphery is proportionately less than the similar
decrease in visual acuity (Post & Johnson, 1986), which
is consistent with the commonly held assumption that
peripheral vision is relatively specialized for motion
perception.

In the real world, we move our eyes all the time to
direct the high-resolution fovea to points of interest
in the environment. This situation is different from
basic laboratory search tasks, where observers often
search simple displays covertly while holding fixation.
In these experiments, the spatial limits of search are
defined by the useful field of view (UFOV; Mackworth,
1965) or functional visual field (FVF; Sanders, 1970);
see Hulleman and Olivers (2017) and B. Wolfe et al.
(2017) for recent reviews. Ball et al. (1988) defined the
UFOV as “the total visual field area in which useful
information can be acquired without eye and head
movements” (p. 2210). In commonly used laboratory
search tasks, observers are able to decide about the
presence or absence of the target without foveation
of the display items (J. M. Wolfe, 2015). This is an
interesting finding in itself, as it implies that targets can
be discriminated outside foveal vision.

In contrast, visual-cognition researchers study visual
search with eye movements and images of naturalistic
scenes as stimuli. In the experiments, observers are
oftentimes asked to acquire a target with their eyes,
whereby the target is always present in the scene
(Zelinsky, 2008). In this literature, the counterpart to
the UFOV or FVF is the perceptual span, defined as the
area of the visual field from which useful information
is extracted during each eye fixation (see Rayner, 2014,

for a review). Using the same equipment that was used
for the present experiments (including stimulus size
and viewing distance), Nuthmann (2013) used circular
moving windows to measure the size of the perceptual
span during the acquisition of a verbally cued target
object in each of the scenes (e.g., a briefcase in an
office scene). The span size was about 8° (radius), with
the critical window capturing 44% of the entire scene
(Nuthmann, 2013). Thus, the span was found to be
large, highlighting the importance of parafoveal and
peripheral vision to the search process.

However, active search also involves foveal analysis
of the stimulus. On the way to the target, observers
foveate potential target candidates and, ultimately, the
target itself. This raises the question of how important
foveal, parafoveal, and peripheral vision are for
different subprocesses of visual search. The importance
of the different regions of the visual field for the
localization and recognition of objects in scenes can
be directly tested by selectively denying high-resolution
(or any) information in a selected region using the
gaze-contingent Moving Mask and Moving Window
techniques (see van Diepen et al., 1998, for a review of
early scene-viewing studies).

Nuthmann (2014) applied this logic to the same
object-in-scene search task that was used by Nuthmann
(2013). One of her Blindspot or Moving Mask
conditions simulated the absence of central vision,
whereas the corresponding Spotlight orMoving Window
condition simulated the absence of peripheral vision. In
both conditions, search times were elevated compared
to a natural vision baseline condition. At the same
time, search times suggested an equal performance
level for search without central vision and search
without peripheral vision. Interestingly, decomposing
search times into temporal epochs that are associated
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with particular subprocesses of search (Malcolm &
Henderson, 2009) revealed a clear dissociation in
behavior. When searching the scene with a central
scotoma, participants were selectively impaired
at verifying the identity of the target (prolonged
verification time) but not in locating it. In contrast,
when searching with a peripheral scotoma, participants
were selectively impaired in locating the target
(prolonged scanning time) but not at identifying it. This
pattern of results (see also Nuthmann et al., 2021) is
consistent with the assumption of a central-peripheral
dichotomy, according to which peripheral vision is
mainly for looking or selecting and central vision is
mainly for seeing or recognizing (Zhaoping, 2019).

In the study by Nuthmann (2014), foveal vision was
not necessary at all to attain normal search performance
(see also McIlreavy et al., 2012). This latter finding
was surprising, given the importance of foveal vision
to visual search within alphanumeric displays (Bertera
& Rayner, 2000) and for sentence reading (Rayner &
Bertera, 1979).

Scene-viewing studies using variable-size Moving
Windows and/or Moving Masks have reported
systematic effects of Moving Window/Mask size on
saccade amplitudes and fixation durations. It is a
well-known effect that shrinking the moving window
leads to shorter saccade amplitudes (e.g., Loschky &
McConkie, 2002; Nuthmann, 2013, 2014; Reingold et
al., 2003; Saida & Ikeda, 1979; Shioiri & Ikeda, 1989).
The opposite effect is observed when variable-size
moving masks are used: As the moving mask radius
increases, saccade amplitudes increase (Miellet et
al., 2010; Nuthmann, 2014). More generally put,
observers have a tendency to fixate more locations in the
undegraded scene area and fewer in the degraded area
(Laubrock et al., 2013; Nuthmann, 2014). Furthermore,
reducing the radius of the high-resolution moving
window increases fixation durations (Loschky &
McConkie, 2002; Nuthmann, 2013, 2014; Parkhurst et
al., 2000).

Research using static images is neglecting the fact
that naturalistic scenes change dynamically. In the
real world, objects, such as people, animals, vehicles,
and environmental elements (e.g., wind-generated
waves), move relative to a static background. Therefore,
researchers have begun to use moving images (i.e.,
videos) as stimuli in laboratory experiments, ranging
from unedited videos of real-world scenes (e.g., Cristino
& Baddeley, 2009; Smith & Mital, 2013) to segments
from feature films (e.g., Hinde et al., 2017; Loschky et
al., 2015; Valuch & Ansorge, 2015).

The results from several studies suggest that the
presence of motion in dynamic scenes leads to different
viewing patterns. During free viewing, motion and
flicker are the strongest independent predictors of gaze
location (Carmi & Itti, 2006; Itti, 2005; Mital et al.,
2011). Moreover, when viewing dynamic scenes, the

gaze of multiple viewers exhibits a much higher degree
of clustering in space and time (e.g., Dorr et al., 2010;
Goldstein et al., 2007; Smith & Mital, 2013), although
this attentional synchrony (Smith & Henderson, 2008)
is modulated by the specific task demands (Smith,
2013, for review). In comparison with the free viewing
of dynamic scenes, during a spot-the-location task,
observers’ gaze exhibited less attentional synchrony
(Smith & Mital, 2013).

To directly compare dynamic and static scene
viewing, one frame is extracted from the original
video and serves as the static scene (Açik et al., 2014;
Smith & Mital, 2013). While the static scene does not
include motion, its semantic content is almost identical
to the original video, as long as the video does not
include editorial cuts. Mean saccade amplitudes and
mean fixation durations were both found to be longer
for dynamic scenes than for static scenes, both for
free-viewing and spot-the-location tasks (Smith &
Mital, 2013).

To date, research on visual search and/or target
acquisition in naturalistic dynamic scenes is still rare.
One exception is the study by Reingold and Loschky
(2002). In one of their experiments, observers were
asked to acquire salient ring targets that moved in a
straight line over video clips shot from a helicopter
flying over landscapes. In an additional experiment,
still images and nonmoving targets were used. In
both experiments, scenes were degraded outside a
gaze-contingent moving window, which was found
to delay target acquisition. This “windowing effect”
was larger for dynamic as compared to static scenes.
However, it is not clear whether this was due to the
scene type factor, because of other differences between
the experiments (e.g., helicopter videos vs. residential
interiors, moving target vs. nonmoving target, 3°-radius
circular window vs. 12° square window).

In the present study, we used moving windows
(Spotlights) and masks (Blindspots) of different sizes
to investigate the importance of the different regions
of the visual field to target acquisition in dynamic and
static scenes. To allow for a direct comparison between
dynamic and static scenes, we used videos of real-world
scenes with no cuts. Moreover, we used nonmoving
targets that, in most cases, did not interact with moving
objects in the scene.

When using more ecologically valid stimuli like
images of real-world scenes, using contextually relevant
scene objects as targets seems like a natural choice
(e.g., Miellet et al., 2010; Nuthmann, 2014). However,
such targets are likely to show natural variation in, for
example, their size and visual salience (Nuthmann et al.,
2021). Moreover, scene context has a strong influence
on object search (Torralba et al., 2006). To alleviate
these issues, the use of (predefined) contextually
irrelevant targets has proven to be useful, ranging
from single letters (Clayden et al., 2020) to spatial



Journal of Vision (2022) 22(1):10, 1–31 Nuthmann & Canas-Bajo 4

distortions (McIlreavy et al., 2012). Importantly, scene
processing and object identification also take place
when observers are asked to search for a contextually
irrelevant target (T. H. W. Cornelissen & Võ, 2017).
For the present dynamic and static scenes, identifying
suitable contextually relevant target objects proved to
be very difficult. Therefore, we used ring targets (cf.
Reingold & Loschky, 2002) that were inserted at the
same location for the dynamic and static versions of a
given scene.

Search for dynamic targets in stationary displays
and search for stationary targets in dynamic displays
have previously been investigated using simple displays
in which a prespecified target is arrayed among
distractors. This research has shown that a moving
target can be found efficiently among static distractors
(e.g., Hillstrom & Yantis, 1994). Moreover, the onset
of uninformative motion captures attention (e.g.,
Abrams & Christ, 2003), and motion per se (i.e., in the
absence of a motion onset) may also attract attention
under certain circumstances (Abrams & Christ, 2006;
Franconeri & Simons, 2003, 2005). Thus, dynamic
items can attract attention in an automatic manner.
Interestingly, Pinto, Olivers, and Theeuwes (2006)
found that the inverse can also be true: When all items
were blinking or moving except one, the dynamic
items could be largely ignored and attention could be
efficiently directed to the static target (see also Pinto et
al., 2008). However, this was not the case when a more
complex multielement asynchronous dynamic search
task was used (Kunar & Watson, 2014, Experiment 8).

Of course, our experiments are different again as
the search target was not the only stationary object in
the scene. Moreover, using naturalistic scenes implied
that there were different types of dynamic distractors in
a given scene. Motion in scenes includes objects that
move systematically (e.g., cars) but also elements that
move in an irregular manner (e.g., tree leaves in the
wind). A defining feature of moving objects is that they
change position. Oftentimes, dynamic scenes not only
depict object motion per se but also the onset and offset
of motion. Some scenes also include abrupt onsets and
offsets, that is, abrupt appearances and disappearances
of nonmoving objects (e.g., traffic lights).

Research using static scenes has shown that the
purpose of inspection can provide a cognitive override
that renders stimulus-driven salience secondary
(Underwood et al., 2006). During visual search,
cognitive override of large-scale dynamic distractors in
static scenes takes a couple of saccades after stimulus
onset, while similar static distractors can be overridden
immediately (Einhäuser et al., 2008). During free
viewing of MTV-style videos, motion contrast predicted
gaze location best for the first saccade after a jump cut,
followed by a slow decrease over the next couple of
saccades (Carmi & Itti, 2006). In a spot-the-location
task, however, participants were able to direct their

attention away from dynamic-scene features, that is,
areas of flicker and people (Smith & Mital, 2013).

In our experiments, the target itself did not move
and scene motion was not predictive of target location.
Therefore, if motion attracts attention and gaze,
guidance to the target may be less efficient in dynamic
as compared to static scenes. Given that scene features
in extrafoveal and peripheral vision are relevant for the
selection of the next saccade target, search guidance
may only be affected when searching dynamic scenes
with a moving Blindspot or without a scotoma but not
with a moving Spotlight. If, however, task-irrelevant
motion can be overridden, search guidance should be
equally efficient in dynamic and static scenes. During
fixations, observers are thought to make accept/reject
decisions about whether the fixated region contains the
target (Malcolm & Henderson, 2009). When searching
with a Blindspot, scene motion that is associated with
the currently fixated location is covered by the Blindspot
but may have been visible on the previous fixation.
Conversely, Spotlights prevent motion from being
processed in extrafoveal or peripheral vision. Therefore,
the obstruction of motion by a Blindspot and the
sudden appearance of motion within a Spotlight could
differentially affect the fixation-based accept/reject
decisions, in particular during the process of target
verification.

To investigate these issues, three experiments
were conducted. Experiment 1 was a conceptual
replication in that we transferred the experimental
design of Nuthmann (2014) from static to dynamic
scenes. In the experiment, we included all six scotoma
conditions (small, medium, and large Blindspots and
Spotlights) that were used in the reference study. The
goal of Experiment 2 was to compare dynamic and
static scenes in a more direct manner. Including a
manipulation of scene type required us to reduce the
number of scotoma conditions. Based on the results
observed in Experiment 1, the large Blindspots and
the large Spotlights were dropped in Experiment 2.
Experiment 3 was designed to follow up on the results
from Experiment 2. Specifically, we tested the Blindspot
but not the Spotlight conditions from Experiment 2 and
included scenes that had a higher visual complexity and
contained more motion.

General method

Participants

All participants had normal or corrected-to-normal
vision by self-report. The Psychology Department at
the University of Edinburgh granted ethics approval
for the study, which conformed to the Declaration of
Helsinki.
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Figure 2. Search targets, one of which was present in each scene. (a) The circular search target and the square area of interest used
for gaze scoring. (b) Positions of search targets in the 120 scenes used in Experiments 1 and 2. (c) Search target positions for the 60
scenes used in Experiment 3; the blue dots represent scenes that were also used in Experiments 1 and 2, whereas the red dots
represent new scenes. In panels (b) and (c), the cross is the central fixation cross, and the circle with solid perimeter represents the
central viewing area (radius 5°). (d) Frequency of occurrence of the different gray values in which the targets were displayed in
Experiments 1 and 2, with target colors on the x-axis ranging from dark gray to light gray.

Apparatus

Stimuli were presented with a 140-Hz refresh rate on
a 21-in. ViewSonic cathode-ray tube (CRT) monitor
positioned 90 cm from participants, taking up a 24.8°
× 18.6° (width × height) field of view. A chin and
forehead rest was used to keep the participants’ head
position stable. During stimulus presentation, the
eye movements of the participants were recorded
binocularly with an SR Research EyeLink 1000
Desktop mount system with high accuracy (0.15° best,
0.25–0.5° typical) and high precision (0.01° RMS).
The Eyelink 1000 was equipped with the 2,000-Hz
camera upgrade, allowing for binocular recordings at a
sampling rate of 1,000 Hz per eye. The experiments were
programmed in MATLAB (The MathWorks, Natick,
MA, USA) using the OpenGL-based Psychophysics
Toolbox 3 (PTB-3; Brainard, 1997; Kleiner et al., 2007),
which incorporates the EyeLink Toolbox extensions
(F. W. Cornelissen et al., 2002). A game controller was
used to record participants’ behavioral responses.

Stimulus materials: scenes and search target

The stimulus material consisted of colored silent
videos. Most of the 120 videos used in Experiments 1
and 2 were shot at various locations around Edinburgh
and Fife (Scotland, United Kingdom); a few scenes
were recorded in Berlin (Germany). In Experiment 3,
45 real-world videos shot in London (England, United
Kingdom) were used along with 15 scenes from the
previous experiments. The majority of videos showed
outdoor scenes (e.g., roads, bridges, city streets,
or parks). A few scenes were recorded in indoor
environments (e.g., shopping malls). All scenes had

to contain moving objects (typically people, means of
transportation, or animals) or weather elements (e.g.,
waves); see https://youtu.be/Lkwvg8Jf_1s for three
example scenes. During most recordings, the camera
was fixed to a tripod for stability. The shooting speed
(frame rate) was 25 frames per second (fps).

The original video clips were edited to create
experimental scenes that were 20 s long and had a 4:3
aspect ratio and a 1,024 × 768 resolution. The videos
did not include any editorial cuts, that is, abrupt image
changes from one frame to the next. Experiments 2
and 3 included a manipulation of scene type such that
dynamic scenes were compared to static counterparts.
Static scenes were created by randomly choosing a
frame from the original video and exporting the frame
in PNG file format (cf. Smith & Mital, 2013).

In the experiments, a gray annulus was superimposed
on each scene as the search target (Figure 2a). The
annulus had a radius of 0.36° (15 pixels) and was drawn
with the PTB function argument penWidth set to 2.
When using images of real-world scenes as stimuli
in visual-search experiments, unintended effects can
arise due to the individual characteristics of these
scenes. To control for item effects, we manipulated the
experimental factors within scenes, without repeating
scenes within participants. In a given experiment,
each participant viewed each scene exactly once. By
counterbalancing scene items across experimental
conditions, we ensured that, across participants, each
scene appeared in each condition an equal number of
times. In this case, the target can be placed randomly
in the respective scene (cf. McIlreavy et al., 2012),
as long as the chosen position is the same for all
experimental conditions. However, random placement
would inevitably lead to considerable differences in
target salience between scenes, that is, the degree to

https://youtu.be/Lkwvg8Jf_1s
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which the target stands out from its environment
(Clayden et al., 2020). To reduce this variability, we
positioned the target at an individually determined
location in each scene. The location and color (shades
of gray, Figure 2d) of the target were chosen such that
the target was not highly salient, as this would make
the search task very easy. Moreover, the target was
placed away from the center of the scene (Figure 2b,c),
because this is where observers began their search. In
Experiments 1 and 2, locations within 5° of visual angle
from the center were excluded (Figure 2b), whereas this
was reduced to 3° in Experiment 3 (Figure 2c, circle
with dashed perimeter), following Clayden et al. (2020).
In addition, the target was placed at a location where
there was no or very little motion throughout the video.
In one of the videos used in Experiments 1 and 2, the
target collided with a moving car for a short period of
time, as revealed by post hoc motion analysis. In a few
other videos, there was some motion in the background
of the target (e.g., due to trees moving in the wind).
For the London videos used in Experiment 3, the
“no-motion criterion” was less strictly applied. In any
case, since the target was superimposed on the video,
it was not occluded by moving objects at any time.
In summary, it is fair to say that scene motion was
not predictive of target location. For the scenes used
in Experiments 1 and 2, pilot studies (three people)
allowed locations and color to be revised and finalized.
For the 45 scenes shot in London that were used in
Experiment 3, the gray value of the target was always
set to 90.

Creation of gaze-contingent Blindspots and
Spotlights

To implement the visual-field manipulations,
gaze-contingent display change techniques were used
(Reder, 1973). On the one hand, we utilized the moving
mask technique, which was first used in the context
of sentence reading (Rayner & Bertera, 1979). When
applied to scene viewing, the moving mask paradigm
is analogous to viewing the scene with a “blindspot”:
Information in the center of vision is blocked from
view, while information outside the window is unaltered
(Miellet et al., 2010; Nuthmann, 2014). On the other
hand, we used the gaze-contingent moving window
technique (McConkie & Rayner, 1975, for reading).
Applied to scene viewing, the moving window paradigm
is analogous to viewing the scene through a “spotlight”:
A defined region in the center of vision contains
unaltered scene content, while the scene content outside
the window is blocked from view (Caldara et al., 2010;
Nuthmann, 2014). In this article, we use the terms
Blindspots and Spotlights; when referring to Blindspots
and Spotlights simultaneously, we call them scotomas.

By manipulating the radius of the gaze-contingent
Blindspots and Spotlights, we created different types
of scotomas, ranging from foveal scotomas (or small
Blindspots) and central scotomas (or large Blindspots)
to extrafoveal scotomas (or small Spotlights) and
peripheral scotomas (or large Spotlights). To record
baseline behavior, we implemented natural vision
control conditions in which the radius of the scotoma
was either 0 (Blindspots) or infinitely large (Spotlights).
In that sense, the control conditions are part of our
experimental manipulations of scotoma size.

The general idea underlying our scotoma
implementation is to mix a foreground image and a
background image via a mask image (van Diepen
et al., 1994). The foreground image is formed by the
experimental stimulus, that is, by the current video
frame. The background image defines the content
of the masked area. In the present experiments,
the background image was a monochrome image
(gray, RGB-value: 128, 128, 128), which implies
that the moving scotomas were drawn in that color
(Clayden et al., 2020). Using a uniform background
image is different from Nuthmann (2014), in which
low-resolution images were used instead. In this
previous study, a low-resolution image was generated
for each scene by applying strong spatial blurring to the
original high-resolution image. However, this method
is not readily applicable to dynamic scenes because
residual motion remains when applying spatial blurring
to individual frames.

The mask image defines the shape and size of
the moving scotoma. In Experiment 1, symmetric
Gaussian mask images were used, and the size of the
scotoma was defined as the standard deviation of the
two-dimensional Gaussian distribution (Nuthmann,
2014). The rationale for using Gaussian masks was
to avoid perceptual problems that may result from
sharp-boundary circular windows (see Reingold &
Loschky, 2002). In Experiments 2 and 3, we improved
our method by using smooth-boundary circular mask
images instead of Gaussian mask images (Clayden
et al., 2020; Nuthmann, 2013). When investigating
the importance of the different regions of the visual
field—in particular small central regions—it appears to
be more appropriate to define the size of the scotoma as
the radius of a circle rather than the standard deviation
of a Gaussian. To avoid sharp-boundary scotomas, the
perimeter of the circular mask or window was slightly
faded through low-pass filtering (Clayden et al., 2020).

Working with gaze-contingent displays requires
minimizing the latency of the system (Loschky &
Wolverton, 2007; Saunders & Woods, 2014). For the
present experiments, we used an eye tracker with a
binocular sampling rate of 1,000 Hz and fast online
access of new gaze samples. More precisely, the eye
tracker computed a new gaze position every millisecond
and made it available in less than 3 ms. The experiments
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were programmed using PTB-3 for MATLAB, which
offers fast creation of gaze-contingent scotomas
using texture mapping and OpenGL (Open Graphics
Library). Gaze contingency was realized by moving
the mask image across the stimulus, thereby avoiding
the need for computationally expensive real-time image
synthesis. Since scene images typically occupy the
entire monitor space, a full refresh cycle is required to
update the screen. In the experiments, the stimuli were
displayed on a 140-Hz CRT monitor, which means
that it took 7.14 ms for one refresh cycle to complete.
Throughout the experimental trial, gaze position was
continuously evaluated online. The algorithm first
checked whether new valid binocular gaze samples
were available. If that was the case, the center of the
mask was realigned with the average horizontal and
vertical position of the two eyes (Nuthmann, 2013, for
discussion). If a new video frame was available, it was
used as the current foreground image. The screen was
updated to show the current video frame along with
the scotoma at the last available gaze position. More
details about the implementation, with reference to
static images, are provided in Nuthmann (2013, 2014).

Procedure

In all three experiments, participants performed a
visual search task in which they had to look for a gray
annulus in a series of complex real-world scenes. At
the beginning of the experiment, participants were
informed about the gaze-contingent manipulations.
In Experiments 2 and 3, participants were also told
that the experiment had two parts, one in which videos
were presented and another in which still images were
displayed, and that their task was the same for both
parts.

After instructions, a 9-point calibration, followed
by a 9-point calibration accuracy test, was performed.
A trial sequence began with the presentation of a
black cross in the center of a gray screen on which
participants were instructed to fixate. The fixation check
was judged successful if gaze position, averaged across
both eyes, continuously remained within an area of 40
× 40 pixels (0.97° × 0.97°) for 200 ms. If this condition
was not met, the fixation check timed out after 500 ms.
In this case, the fixation check procedure was either
repeated or replaced by another calibration procedure.
If the fixation check was successful, the scene image or
video was displayed on the screen. Once subjects had
found the target, they were instructed to fixate their
gaze on it and press a button on the controller to end
the trial (cf. Clayden et al., 2020; Glaholt et al., 2012;
Nuthmann, 2014). Trials timed out 20 s after stimulus
presentation if no response was made. There was an
intertrial interval of 1 s before the next fixation cross
was presented.

Data analysis

The raw data obtained by the eye tracker were
converted into a fixation sequence matrix using the SR
Research Data Viewer software. The default settings
were used; in particular, the right eye was used as the
reference eye. In dynamic scenes, due to the movement
of (task-irrelevant) objects, it is possible that observers’
gaze traces include smooth pursuit movements (SPMs).
The SR Research EyeLink eye-movement event parser
does not include a specific SPM detector, as it is difficult
to reliably distinguish smooth pursuit movements from
saccades and fixations in dynamic scenes algorithmically
(but see Larsson et al., 2016; Startsev et al., 2019).

Typically, smooth pursuit movements exhibit lower
velocity and acceleration than saccadic eye movements
(Orban de Xivry & Lefèvre, 2007). For detection of
eye-movement events during static and dynamic-scene
search, we used the EyeLink’s standard settings for
cognitive research. Thus, saccades were detected
using a 50°/s velocity threshold combined with an
8,000°/s2 acceleration threshold. The acceleration
threshold ensured that smooth pursuit movements
were not misclassified as saccades (Mital et al., 2011).
At the same time, this implies that the fixations in the
dynamic-scene conditions may contain proportions of
smooth pursuit movements.

Previous research suggests that spontaneous smooth
pursuit eye movements are infrequent when viewing
dynamic scenes (Smith & Mital, 2013). Nevertheless,
we performed a smooth pursuit check following the
procedure suggested by Hutson et al. (2017). These
authors evaluated the change in gaze position during
a given intersaccadic interval and removed individual
intervals for which the displacement exceeded 1° from
their data. The intersaccadic cleaning was applied to
ensure that group differences in fixation durations were
not affected by the presence of smooth pursuit.

The analysis conducted by Hutson et al. (2017)
requires one to calculate the Euclidean distance between
the two-dimensional gaze position at the end of the
previous saccade and the one at the start of the next
saccade (with the current fixation in between). Due to
fixational eye movements, the eyes are never completely
still (Martinez-Conde et al., 2009). Therefore, linear
displacements during intersaccadic intervals also occur
in the absence of smooth pursuit. In the presence of
smooth pursuit, however, the displacement during
the intersaccadic interval is expected to be larger
than without smooth pursuit. Our analyses focused
on Experiments 2 and 3, in which the data obtained
for static scenes provided a baseline to which the
data for dynamic scenes could be compared. The
analyses considered all valid fixations and saccades
from correct trials (see below). For Experiment 2,
the mean displacement values did not differ between
dynamic scenes (M = 0.443°, SD = 0.069°) and static
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scenes (M = 0.436°, SD = 0.075°), t(39) = 0.98, p =
0.167 (one-sided test). For Experiment 3, there was
also no difference between dynamic (M = 0.410°,
SD = 0.038°) and static (M = 0.406°, SD = 0.041°)
scenes, t(23) = 0.42, p = 0.340. Of course, this does
not mean that smooth pursuit never occurred during
intersaccadic intervals. Instead, the results suggest
that the proportion of potential smooth pursuits was
low, which is consistent with previous findings (Smith
& Mital, 2013). Therefore, we decided not to remove
individual intersaccadic intervals from the data.

The behavioral and eye-movement data were further
processed and analyzed using the R system for statistical
computing (R Development Core Team, Vienna,
Austria). Analyses of saccade amplitudes and fixation
durations excluded fixations that were interrupted
with blinks. Analysis of fixation durations disregarded
fixations that were the first or last fixation in a trial.
Fixation durations that are very short or very long
are typically discarded, based on the assumption that
they are not determined by online cognitive processes
(Inhoff & Radach, 1998). This precaution was not
followed here because the presence of a simulated
scotoma may affect eye movements (e.g., fixations were
predicted to be longer than normal).

Distributions of continuous response variables were
positively skewed. In this case, variables are oftentimes
transformed to produce model residuals that are more
normally distributed. To find a suitable transformation,
we estimated the optimal λ-coefficient for the Box–Cox
power transformation (Box & Cox, 1964) using the
boxcox function of the R package MASS (Venables
& Ripley, 2002) with y(λ) = (yλ – 1)/λ if λ �= 0
and log(y) if λ = 0. For all continuous dependent
variables, the optimal λ was different from 1, making
transformations appropriate. Whenever λ was close to
0, a log transformation was chosen. We analyzed both
untransformed and transformed data. As a default, we
report the results for the raw untransformed data and
additionally supply the results for the transformed data
when they differ from the analysis of the untransformed
data.

Statistical analysis using mixed models

Search accuracy was analyzed using binomial
generalized linear mixed-effects models (GLMMs) with
a logit link function. Continuous response variables
(search times, fixation durations, saccade amplitudes)
were analyzed using linear mixed-effects models
(LMMs). The analyses were conducted with the R
package lme4 (version 1.1.-23; Bates et al., 2015), using
the bobyqa optimizer for LMMs and a combination
of Nelder–Mead and bobyqa for GLMMs. Separate
(G)LMMs were estimated for each dependent variable.

A mixed-effects model contains both fixed effect
and random-effect terms. Fixed effect parameters were

estimated via contrast coding (Schad et al., 2020).
Subjects and scene items were included as crossed
random factors. The overall mean for each subject
and scene item was estimated as a random intercept.
In principle, the variance–covariance matrix of the
random effects not only includes random intercepts
but also random slopes as well as correlations between
intercepts and slopes. Random slopes estimate the
degree to which each main effect and/or interaction
varies across subjects and/or scene items.

To select an optimal random-effects structure for
(G)LMMs, we pursued a data-driven approach using
backward model selection. To minimize the risk of Type
I error, we started with the maximal random-effects
structure justified by the design (Barr et al., 2013).
This maximal structure was backward reduced using
the step function of the R package lmerTest (version
3.1–2; Kuznetsova et al., 2017). If the final fitted model
returned by the algorithm had convergence issues,
we proceeded to fit zero-correlation parameter (zcp)
models in which the random slopes are retained but the
correlation parameters are set to zero (Matuschek et
al., 2017; Seedorff et al., 2019). The full random-effects
structure of the zcpLMM was backward reduced to
arrive at a model that was justified by the data. For
GLMMs, we report random intercept models because
random slope models did not converge.

LMMs were estimated using the restricted maximum
likelihood criterion. GLMMs were fit by Laplace
approximation. For the coded contrasts, coefficient
estimates (b) and their standard errors (SE) along with
the corresponding t values (LMM: t = b/SE) or z values
(GLMM: z = b/SE) are reported. For GLMMs, p values
are additionally provided. For LMMs, a two-tailed
criterion (|t| > 1.96) was used to determine significance
at the alpha level of .05 (Baayen et al., 2008).

In the (G)LMM analyses, data from individual trials
(subject–item combinations) were considered. For data
figures, means were calculated for each subject, and
these were then averaged across subjects. Figures were
created using MATLAB. During stimulus preparation,
one of the videos that was used in Experiments 1 and 2
was erroneously edited to be 10 s long only. One of the
London videos used in Experiment 3 included minor
viewpoint changes and zooms; another London video
included image manipulations, making it less suitable
as a search scene. These scenes were removed from all
analyses.

Experiment 1: dynamic scenes only

In Experiment 1, participants searched for a target
in dynamic real-world scenes. In the majority of trials,
different types of gaze-contingent moving scotomas
obstructed different regions of the participant’s visual
field to assess their importance to the task at hand.
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The small Blindspot was meant to obscure foveal
vision. Conversely, the small Spotlight left foveal
vision intact but obscured extrafoveal vision. The
medium Blindspot covered foveal and part of parafoveal
vision, with the medium Spotlight being the inverse
manipulation. Finally, the large Blindspot obstructed
both foveal and parafoveal vision (i.e., central vision).
Conversely, the large Spotlight left central vision intact
but obstructed peripheral vision. We wanted to explore
whether and how the presence of a gaze-contingent
Blindspot or Spotlight and its size affected behavioral
and oculomotor measures when visual search took
place in dynamic scenes. If participants are able to
preset their attentional biases to ignore motion, then
the qualitative pattern of results should be similar to
the one observed for static scenes (Nuthmann, 2014).
Alternatively, if such presetting is difficult—given the
complexity of natural scenes and the unpredictability
of knowing where motion will occur—search efficiency
may be adversely affected by the motion in the scene.

Methods: Participants, stimulus materials, and
design

Thirty-two participants (19 women, 13 men) between
18 and 39 years of age (M = 22.8 years) took part in the
experiment. Figure 3 displays still images from eight out
of 120 dynamic scenes that were used in the experiment.

In Experiment 1, the visual field manipulation
(Blindspot vs. Spotlight) was crossed with three different
scotoma sizes. The specific radii used to create the
small (radius: 1.6°), medium (2.9°), and large (4.1°)
scotomas were adopted from previous studies (Loschky
& McConkie, 2002; Nuthmann, 2014). The visual

field manipulation was blocked such that participants
completed two blocks of trials: In one block, observers’
vision was impaired by a moving Blindspot, and
in the other block, it was obstructed by a moving
Spotlight. Each block included a separate normal-vision
control condition. In sum, we implemented a 2 ×
4 within-participants design, which is visualized
in Figure 4. There were 15 trials in each of the eight
experimental conditions. Each block started with four
practice trials, one for each scotoma size condition. The
order of blocks was counterbalanced across subjects.
Within a block, scenes were presented randomly. A
demo visualizing the gaze data for an exemplary trial
from search with a small Spotlight is available on
https://youtu.be/e8S8C2OWNWE.

Results

We analyzed behavioral indices reflecting search
efficiency, in particular search accuracy and search
time. Moreover, we analyzed saccade amplitudes and
fixation durations across the viewing period as global
visuo-oculomotor indices. For a given dependent
variable, the four Blindspot conditions and the four
Spotlight conditions were examined in separate analyses
(Nuthmann, 2014). To test the effect of scotoma size,
backward difference coding (also known as sliding
differences or repeated contrasts) was used to compare
the mean of the dependent variable for one level of the
ordered factor with the mean of the dependent variable
for the prior adjacent level (Venables & Ripley, 2002).
The factor scotoma size was ordered according to
expected task difficulty; for Blindspots, the ordering was
No-Small-Medium-Large (see lower legend in Figure 5,

Figure 3. Still images from dynamic scenes included in Experiments 1 and 2. For eight dynamic scenes, the frame that was used as a
static image in Experiment 2 is shown. In the lower right panel, the face of the person was blurred to protect their identity.

https://youtu.be/e8S8C2OWNWE
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Figure 4. Experimental design for Experiment 1. In Experiment 1, observers were shown dynamic scenes only. For visualization
purposes, the first frame from one of the dynamic scenes was used. In the top row, the Blindspots are shown along with the
normal-vision control condition. The bottom row shows the Spotlight conditions and their control condition. The size of the
Blindspots and Spotlights increases from left to right, resulting in different types of scotomas. The red circles, which were not present
in the experiment, denote the standard deviation of the two-dimensional Gaussian distribution that was used to manipulate the
radius of the moving Blindspots and Spotlights; the radius value is provided in the panel title. The search target is located inside the
Spotlight. To increase its visibility to the reader, it is highlighted in green; in the experiment, it was presented in gray.

Figure 5. Mean search accuracy (a) and search time (b) for Experiment 1. The boxes represent the different experimental conditions,
that is, the sizes of the gaze-contingent moving Blindspots (red) and Spotlights (blue). A line with an asterisk indicates a significant
difference between adjacent conditions. Error bars are 95% within-subjects confidence intervals, using the Cousineau-Morey method
(Cousineau, 2005; Morey, 2008).

from left to right), whereas for Spotlights, it was
No-Large-Medium-Small (see upper legend in Figure 5,
from right to left).

Behavioral measures: search accuracy and search times
Search accuracy was analyzed as the probability of

correctly locating and accepting the target. A response
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was scored as correct (“hit”) if the participant indicated
to have located the target by button press and his or her
gaze was within the area of interest (AOI) comprising
the target (see Figure 2a). To accommodate the spatial
accuracy and precision of the eye tracker, a margin was
added to the search target (Holmqvist & Andersson,
2017), with the resulting AOI being 2.2° × 2.2° in
size. If the participant had not responded within 20 s,
the trial was coded as a “timeout.” If the participant
responded, but his or her gaze was not within the
AOI, the response was scored as a “miss.” For a given
experimental condition, hits, timeouts, and misses
add up to 100%. Figure 5a shows the hit probabilities
for Experiment 1; the complementary timeout and
miss probabilities are depicted in Supplementary
Figure S1.

Overall, search accuracy was high (Figure 5a). For
Blindspots, there was neither a significant difference
between S-Blindspots and the control condition, b
= −0.44, SE = 0.24, z = −1.83, p = 0.067, nor was
there a significant difference between M-Blindspots
and S-Blindspots, b = −0.18, SE = 0.21, z = −0.87, p
= 0.386. However, search accuracy was significantly
reduced for L-Blindspots as compared to M-Blindspots,
b = −0.51, SE = 0.19, z = −2.63, p = 0.008.
The reduced search accuracy for L-Blindspots was
accompanied by more miss trials and more timed-out
trials than in the control condition (Supplementary
Figure S1).

For Spotlights, there was no significant difference
between L-Spotlights and the control condition,
b = 0.23, SE = 0.28, z = 0.83, p = 0.409. There
was also no significant difference between M-
Spotlights and L-Spotlights, b = −0.04, SE =
0.29, z = −0.13, p = 0.896. However, search
accuracy was significantly reduced for S-Spotlights
compared to M-Spotlights, b = −1.26, SE =
0.25, z = −5.07, p < 0.001. This was due to
an increase in timed-out trials (Supplementary
Figure S1b).

Search time was defined as the time from scene
onset to successful target acquisition as indicated by
the button press. Only trials with correct responses
were analyzed. For Blindspots, none of the repeated
contrasts were significant (Table 1), which means
that search proficiency did not suffer when foveal
(S-Blindspot) or even central vision (L-Blindspot) was
not available (Figure 5b). For Spotlights, all of the
repeated contrasts were significant, that is, search time
was significantly longer for L-Spotlights compared
to the control condition, for M-Spotlights compared
to L-Spotlights, and for S-Spotlights compared
to M-Spotlights (Table 1). Thus, any reduction in
extrafoveal search space, even the L-Spotlight, increased
search times, and systematically so as Spotlights became
smaller.

Oculomotor measures: saccade amplitudes and fixation
durations

Saccade amplitudes and fixation durations were
analyzed as global indicators of eye-movement behavior
during target acquisition (Figure 6). Relative to the
respective control condition, saccade amplitudes were
longer when the smallest Blindspot was present, S–No:
b = 0.36, SE = 0.13, t = 2.73, and shorter when the
largest Spotlight was present, L–No: b = −1.14, SE =
0.11, t = −10.65. Saccade amplitudes were significantly
longer for M-Blindspots compared to S-Blindspots,
b = 0.38, SE = 0.13, t = 2.81, and for L-Blindspots
compared to M-Blindspots, b = 0.49, SE = 0.14, t
= 3.64. Thus, the lengthening of saccade amplitudes
increased with the size of the Blindspot. Conversely,
smaller Spotlights were associated with progressively
shorter saccade amplitudes (Table 1).

Fixation durations were significantly increased for
S-Blindspots as compared to the control condition, b =
16.17, SE = 4.66, t = 3.47. There were no significant
differences between M- and S-Blindspots and L- and
M-Blindspots, respectively (Table 1). For Spotlights,
all of the repeated contrasts were significant, that
is, fixation durations were significantly longer for
L-Spotlights compared to the control condition,
for M-Spotlights compared to L-Spotlights, and for
S-Spotlights compared to M-Spotlights (Table 1). Thus,
fixation durations systematically increased as Spotlights
became smaller.

Discussion

In Experiment 1, we adopted the design from
Nuthmann (2014) but used dynamic rather than
static scenes and different search targets. Perhaps the
most striking and novel finding from Experiment 1
arose from the Blindspot conditions where the search
times suggest that neither foveal nor central vision
was necessary to attain normal search proficiency.
To provide some context for the present results, we
proceed by informally comparing them to the results
reported by Nuthmann (2014), focusing on search times
for correct trials (see Supplementary Figure S2). In
the no-scotoma control condition, search times were
shorter in our Experiment 1 than in the experiment
by Nuthmann (2014). Compared with the modest
positive slope of the Blindspot function observed in
Nuthmann (2014), the current Blindspot function
effectively had a slope of 0. On the other hand, the
Spotlight function had a steeper slope for dynamic
than for static scenes. For static scenes and objects as
targets, the large scotomas formed a crossover point
where both Spotlights and Blindspots produced similar
search times (Nuthmann, 2014); this was not the case
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Blindspots

Dependent variable Parameter Intercept Scotoma size S–no Scotoma size M–S Scotoma size L–M Random effects

Probability correct b 2.34 −0.44 −0.18 −0.51 1
SE 0.18 0.24 0.21 0.19
z 12.8 −1.83 −0.87 −2.63
p <0.001 0.067 0.386 0.008

Search time b 2,135.9 104.56 126.48 91.46 3
SE 180.16 99.33 125 103.47
t 11.86 1.05 1.01 0.88

Saccade amplitude b 5.47 0.36 0.38 0.49 2
SE 0.12 0.13 0.13 0.14
t 43.89 2.73 2.81 3.64

Fixation duration b 207.17 16.17 2.19 2.66 4
SE 4.88 4.66 6.56 4.88
t 42.49 3.47 0.33 0.55

Spotlights

Dependent variable Parameter Intercept Scotoma size L–no Scotoma size M–L Scotoma size S–M Random effects

Probability correct b 2.95 0.23 −0.04 −1.26 2
SE 0.23 0.28 0.29 0.25
z 13.07 0.83 −0.13 −5.07
p <0.001 0.409 0.896 <0.001

Search time b 3,989.51 1,448.04 1,106.45 2,544.99 4
SE 122.88 166.2 166.07 299.28
t 32.47 8.71 6.66 8.5

Saccade amplitude b 3.91 −1.14 −0.35 −0.69 4
SE 0.08 0.11 0.06 0.04
t 49.04 −10.65 −6.38 −17.83

Fixation duration b 220.99 30.25 10.67 29.73 7
SE 4.82 4.24 3.07 3.67
t 45.82 7.13 3.48 8.09

Table 1. Linear and generalized linear mixed models (LLM and GLMM, respectively) for Experiment 1: means (b), standard errors (SE),
and test statistics (LLMs: t values; GLMMs: z values and p values) for fixed effects. Note: Nonsignificant coefficients are set in bold
(LLMs: |t| < 1.96; GLMMs: p > .05). See text for further details.

Figure 6. Mean saccade amplitudes (a) and fixation durations (b) for Experiment 1. Asterisks indicate statistically significant
differences. Error bars are 95% within-subjects confidence intervals.
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in Experiment 1. In summary, the availability of foveal
vision (S-Blindspot) was equally unimportant in both
experiments. Central vision was just as unimportant
when searching for a contextually irrelevant target in
dynamic scenes. By contrast, when searching for a
contextually relevant object in static scenes without
central vision being available, search times were
prolonged due to longer verification times (Nuthmann,
2014). Finally, the availability of peripheral vision
(L-Spotlight) and/or extrafoveal vision (S-Spotlight)
was more important in the present experiment than
in the one reported in Nuthmann (2014). A limiting
factor of this comparison is that our observers searched
for gray annuli rather than contextually relevant
objects (Nuthmann, 2014) and that the scene stimuli
differed. Therefore, the data from Experiment 1
alone cannot tell us conclusively whether any of the
differences described above are indeed related to scene
motion.

The present data indicate that the “windowing
effect” on saccade amplitudes extends from visual
search in static scenes (e.g., Loschky & McConkie,
2002; Miellet et al., 2010; Nuthmann, 2014) to dynamic
scenes, that is, shrinking the moving Spotlight led to
shorter saccade amplitudes, whereas increasing the
moving Blindspot led to longer saccade amplitudes.
In addition, the presence of a moving Blindspot was
associated with elevated fixation durations, whereas
this increase was not influenced by the size of the
Blindspot (cf. Nuthmann, 2014, for static scenes). The
presence of a moving Spotlight was also associated with
increased fixation durations, and fixation durations
increased as the size of the Spotlight decreased, thereby
replicating previous results obtained with static scenes
(e.g., Loschky & McConkie, 2002; Nuthmann, 2013,
2014).

Experiment 2: direct comparison of
dynamic and static scenes

A limitation of Experiment 1 was that only dynamic
scenes were used. The goal of Experiment 2 was
therefore to directly compare visual search in dynamic
and static scenes. Adding a manipulation of scene type
to the design used in Experiment 1 would increase
the number of experimental conditions considerably.
Therefore, we dropped the large Blindspots and
Spotlights for two reasons. On the one hand, the data
from Experiment 1 revealed that they did not form a
crossover point where both conditions produced similar
search performance. On the other hand, we wanted
to establish design similarities to the experiments in
Nuthmann et al. (2021) where observers searched for
contextually irrelevant targets in static scenes.

Methods: Participants, stimulus materials, and
design

Forty-two participants were tested. The data from
two participants were excluded because of their poor
task performance across all experimental conditions (<
50% search accuracy, high number of timed-out trials).
Included participants (n = 40) had a mean age of 25.5
years. The same 120 dynamic scenes as in Experiment 1
were used. The within-participant manipulations
in Experiment 2 were as follows: 2 (scotoma type:
Blindspot vs. Spotlight) × 2 (size: small vs. medium) × 2
(scene type: dynamic vs. static) + 2 control conditions
(dynamic vs. static). Thus, Experiment 2 allowed for a
direct comparison between dynamic and static scenes.
The size of the scotoma was defined as the radius of a
circle (small: 1.25°, medium: 2.5°). For one of the scenes
used in the experiment, Figure 7 provides a visualization
of the five experimental conditions that were tested for
a given scene type. A demo visualizing the gaze data for
an exemplary trial from search with a medium Blindspot
is available on https://youtu.be/zOhgan5ah5w.

The scene-type manipulation was blocked such that
participants completed one block of trials with dynamic
scenes and another one with static scenes. The order
of blocks was counterbalanced across subjects. Within
each scene-type block, the visual-field manipulation
was presented in three blocks. To minimize the impact
of order effects, the subblock with the control trials
was always presented in the middle, whereas the two
scotoma subblocks were presented first or last, using
counterbalancing. Within each subblock, scenes with
different scotoma sizes were presented randomly. Each
subblock started with a practice trial. Participants
completed 12 experimental trials in each of the 10
experimental conditions.

Results

We begin by reporting measures of search efficiency
and global oculomotor measures. The three Blindspot
conditions and the three Spotlight conditions were
analyzed separately. Unless otherwise stated, the
contrast coding was as follows: For the two-level
factor scene type, simple coding (−0.5/+0.5) with
“dynamic scenes” as reference level was used, and for
the three-level factor scotoma size, backward difference
coding was used. For the dynamic-scene conditions, we
additionally present analyses of fixation-based motion.

Search accuracy
One scene was excluded from the analysis of

search accuracy because none of the participants
were able to find the target in any of the experimental

https://youtu.be/zOhgan5ah5w
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Small Blindspot (1.25°-radius) Medium Blindspot (2.5°-radius)

Small Spotlight (1.25°-radius) Medium Spotlight (2.5°-radius)

Control

Figure 7. Experimental design for Experiment 2. In Experiment 2, both dynamic and static scenes were used as stimuli. For
visualization purposes, the five experimental conditions pertaining to static scenes are shown. The example scene is the same as
in Figure 4, but this time the frame that was used as a static image in Experiment 2 is shown. A demo showing the corresponding
dynamic conditions is available at https://youtu.be/b5NXnaCZqeU.

conditions. Figure 8a shows the results for hit
probabilities; the complementary timeout and miss
probabilities are depicted in Supplementary Figure S3.

For Blindspots, the main effect of scene type was
significant, b = −0.23, SE = 0.1, z = −2.19, p =
0.029; search accuracy was reduced for static scenes as
compared to dynamic scenes (Figure 8a). With regard
to blindspot size, search accuracy was significantly
reduced for S-Blindspots compared to the control
condition, b = −0.44, SE = 0.14, z = −3.26, p = 0.001.
Moreover, search accuracy was significantly smaller
for M-Blindspots than for S-Blindspots, b = −1.05,
SE = 0.12, z = −8.58, p < 0.001. This difference was
significantly larger for static than for dynamic scenes,
interaction: b = −0.57, SE = 0.24, z = −2.35, p = 0.019;
the reduction in search accuracy for M-Blindspots in
static scenes was accompanied by more miss trials and
also more timed-out trials (Supplementary Figure S3).
The other interaction term (scene type × S–No
Blindspot) was not significant (Table 2).

For Spotlights, the significant main effect of scene
type, b = 0.23, SE = 0.1, z = 2.32, p = 0.02, was in
the opposite direction such that search accuracy was

increased for static scenes as compared to dynamic
scenes (Figure 8a). With regard to spotlight size, search
accuracy was significantly reduced for M-Spotlights
compared to the control condition, b = −0.54, SE
= 0.13, z = −4.29, p < 0.001. Moreover, search
accuracy was significantly lower for S-Spotlights than
for M-Spotlights, b = −1.49, SE = 0.11, z = −13.22,
p < 0.001. The low search accuracy for S-Spotlights
was mirrored by a massive increase in timed-out trials
(Supplementary Figure S3b); when only foveal vision
was available, visual search proved to be very difficult.
Scene type and spotlight size did not interact (Table 2).

Search time and its epochs: Blindspots
The results for search times are depicted in Figure 8b.

For Blindspots, the data are suggestive of a crossover
interaction: For static scenes, search times were
numerically shorter in the control condition and
longer when a M-Blindspot was present. To test this
explicitly, we specified a mixed model using dummy
coding and “dynamic scenes” and “no scotoma” as
reference levels. The simple effect for scene type was

https://youtu.be/b5NXnaCZqeU
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Figure 8. Mean search accuracy (a) and search time (b) for Experiment 2. Two Blindspot sizes (red tones) and two Spotlight sizes (blue
tones) are compared with a no-scotoma control condition for both dynamic scenes (bold lines, darker colors) and static scenes
(normal-weight lines, lighter colors). Error bars are 95% within-subjects confidence intervals.

Blindspots

Dependent variable Parameter Intercept Scene type
Scotoma size

S–No
Scotoma size

M–S

Scene type ×
Scotoma
size S–No

Scene type ×
Scotoma
size M–S Random effects

Probability correct b 1.49 −0.23 −0.44 −1.05 −0.43 −0.57 2
SE 0.18 0.1 0.14 0.12 0.27 0.24
z 8.28 −2.19 −3.26 −8.58 −1.6 −2.35
p <0.001 0.029 0.001 <0.001 0.109 0.019

Search time b 2,909.33 60.39 453.77 323.08 439.25 357.36 8
SE 243.15 134.04 116.19 156.71 193.52 281.91
t 11.97 0.45 3.91 2.06 2.27 1.27

Saccade amplitude b 5.95 0.17 0.9 0.93 0.15 0.72 7
SE 0.12 0.11 0.1 0.13 0.18 0.24
t 51.55 1.53 8.63 7.04 0.85 3.06

Fixation duration b 219.53 −6.34 22.35 −4.68 6.71 −6.17 8
SE 4.42 3.81 4.81 3.45 7.73 6.07
t 49.66 −1.66 4.65 −1.36 0.87 −1.02

Spotlights

Scene type × Scene type ×
Scotoma size Scotoma size Scotoma Scotoma

Dependent variable Parameter Intercept Scene type M–No S–M size M–No size S–M Random effects

Probability correct b 1.07 0.23 −0.54 −1.49 0.12 −0.23 2
SE 0.13 0.1 0.13 0.11 0.25 0.22
z 8.4 2.32 −4.29 −13.22 0.49 −1.03
p <0.001 0.02 <0.001 <0.001 0.622 0.304

Search time b 5,597.18 −237.58 3,434.56 3,109.09 −94.24 420.99 6
SE 163.81 217.92 169.52 337.78 339.77 520.17
t 34.17 −1.09 20.26 9.2 −0.28 0.81

Saccade amplitude b 3.45 −0.03 −2.27 −0.34 0.16 −0.03 8
SE 0.08 0.09 0.13 0.05 0.14 0.06
t 40.88 −0.35 −17.33 −7.27 1.15 −0.55

Fixation duration b 243.57 −19.46 34.4 45 −15.74 −1.03 11
SE 3.47 4 5.09 2.69 5.18 5.41
t 70.13 −4.87 6.76 16.72 −3.04 −0.19

Table 2. Linear and generalized linear mixed models (LLM and GLMM, respectively) for Experiment 2: means (b), standard errors (SE),
and test statistics (LLMs: t values; GLMMs: z values and p values) for fixed effects. Note: Nonsignificant coefficients are set in bold
(LLMs: |t| < 1.96; GLMMs: p > .05). See text for further details.
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Figure 9. Mean verification times in Experiment 2 (Spotlights: panel a, Blindspots: panel b) and Experiment 3 (c). Experimental
conditions are ordered according to expected task difficulty. The data points for the no-scotoma conditions are the same in panels (a)
and (b) as they represent the shared control condition. Error bars are within-subject standard errors.

significant, b = −335.67, SE = 134.27, t = −2.5,
indicating that search times were shorter for static than
for dynamic scenes when no scotoma was present.
Importantly, for dynamic scenes, there was neither a
significant difference between S-Blindspots and the
control condition, b = 217.54, SE = 136.7, t = 1.59,
nor between M-Blindspots and the control condition,
b = 343.39, SE = 182.55, t = 1.88. The scene type ×
S–No Blindspot was not significant, b = 433.6, SE =
238.73, t = 1.82, but the scene type × M–No Blindspot
interaction was, b = 792.27, SE = 282.19, t = 2.81. To
directly test the effect blindspot size had on search times
for static scenes, we reran the analysis with static rather
than dynamic scenes as the reference level. For static
scenes, the search-time difference between S-Blindspots
and the control condition was significant, b = 662.96,
SE = 150.67, t = 4.4, and so was the difference between
M-Blindspots and the control condition, b = 1,112.26,
SE = 197.81, t = 5.62. Taken together, Blindspots had
no significant effect on search times for dynamic scenes,
but they did for static scenes.

In additional analyses, we tested whether these
search-time costs were due to increased verification
times, as suggested by previous research (Clayden et al.,
2020; Nuthmann, 2014; Nuthmann et al., 2021). To this
end, search time was split into three subcomponents:
search initiation time, scanning time, and verification
time (e.g., Clayden et al., 2020; Malcolm & Henderson,
2009; Nuthmann, 2014; Nuthmann & Malcolm, 2016);
see https://youtu.be/zOhgan5ah5w for a demo.

Search initiation time is the latency of the first
saccade, which equates to the duration of observers’
initial fixation at the center of the screen (Malcolm &
Henderson, 2009). This epoch reflects the time it took
to process the gist of the scene and to prepare the first
saccade. Scanning time is the time between the first
saccade and the first fixation on the target. Verification
time indexes the elapsed time between the beginning of

the first fixation on the target and search termination.
This component of search reflects the time needed
to decide that the target is in fact the target. Short
verification times typically arise if subjects make no
more than one fixation within the AOI comprising the
target before pressing the button (see demo). In cases
where the initial fixation is followed by one or more
immediate refixations, verification time is equivalent to
first-pass gaze duration1 on the target. Particularly long
verification times include instances in which observers
fixated the target but then continued searching before
returning to it (Castelhano et al., 2008; Clayden et
al., 2020). If foveal or central vision is masked, it can
happen that the eyes move off the target to unmask it
and then process it in parafoveal or peripheral vision,
thereby increasing verification time (Clayden et al.,
2020; Nuthmann, 2014).

Figure 9b depicts the pattern of verification times for
the Blindspot and control conditions. Verification times
were subjected to a mixed model using dummy coding
and “static scenes” and “no scotoma”as reference levels.
The simple effect for scene type was not significant, b
= 165.27, SE = 94.98, t = 1.74. For the transformed
data, however, the effect was significant, b = 0.15, SE
= 0.06, t = 2.43, suggesting that verification times
were longer for dynamic than for static scenes when no
scotoma was present. For static scenes, the difference in
verification times between S-Blindspots and the control
condition was significant, b = 432.97, SE = 122.47, t =
3.54, and so was the difference between M-Blindspots
and the control condition, b = 703.12, SE = 148.99, t =
4.72. The scene type × S–No Blindspot interaction was
significant, b = −380.66, SE = 135.93, t = −2.8, and so
was the scene type × M–No Blindspot interaction, b =
−675.13, SE = 146.93, t = −4.59.

For completeness, Supplementary Figure S4 and
Supplementary Table S1 additionally provide the results
for search initiation and scanning times, using the

https://youtu.be/zOhgan5ah5w
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Figure 10. Mean saccade amplitudes (a) and fixation durations (b) for Experiment 2. Two Blindspot sizes (red tones) and two Spotlight
sizes (blue tones) are compared with a no-scotoma control condition for both dynamic scenes (bold lines, darker colors) and static
scenes (normal-weight lines, lighter colors). Error bars are 95% within-subjects confidence intervals.

default contrast coding. In brief, search initiation times
were significantly shorter for static as compared to
dynamic scenes, b = −60.22, SE = 7.77, t = −7.75.
For scanning times, there was no significant difference
between dynamic and static scenes, b = −69.95, SE =
90.68, t = −0.77.

Search time and its epochs: Spotlights
For Spotlights, the data depicted in Figure 8b

indicate numerically shorter search times for static as
compared to dynamic scenes. This difference was not
significant for the untransformed data, b = −237.58,
SE = 217.92, t = −1.09; for the transformed data,
however, it was significant, b = −0.01, SE = 0.004, t =
−2.61. Moreover, search time was significantly longer
for M-Spotlights compared to the control condition
and for S-Spotlights compared to M-Spotlights
(Table 2). Spotlight size and scene type did not interact
(Table 2).

A decomposition of search times into three epochs
revealed that the numerically shorter search times
for static as compared to dynamic scenes were due
to shorter search initiation times, b = −53.27, SE =
7.22, t = −7.38, and shorter verification times, b =
−132.13, SE = 43.69, t = −3.02; scanning times did
not differ for dynamic and static scenes, b = −49.5, SE
= 200.62, t = −0.25. Moreover, smaller Spotlights were
associated with progressively longer search initiation
and scanning times. The complete results are provided
in Supplementary Figure S4 and Supplementary
Table S1. Figure 9a depicts the pattern of verification
times for the Spotlight and control conditions.

In the above analyses, the normal-vision control
conditions were included as part of the experimental
manipulations of scotoma size. Therefore, additional
LMMs were run on the search-time data from the
control conditions only. The maximal model included
the fixed effect scene type (simple coding) along with
four random effects. When no scotoma was present,
search times were significantly shorter for static than for
dynamic scenes, b = −424.52, SE = 153.05, t = −2.77.

Saccade amplitudes and fixation durations
Mean saccade amplitudes for the experimental

conditions tested in Experiment 2 are depicted
in Figure 10a. For Blindspots, the main effect of scene
type was not significant, b = 0.17, SE = 0.11, t = 1.53.
With regard to blindspot size, saccade amplitudes
were significantly larger for S-Blindspots compared
to the control condition, b = 0.9, SE = 0.1, t = 8.63.
Moreover, saccade amplitudes were significantly larger
for M-Blindspots than for S-Blindspots, b = 0.93, SE =
0.13, t = 7.04. This difference was significantly larger
for static than for dynamic scenes, interaction: b = 0.72,
SE = 0.24, t = 3.06. The other interaction term (scene
type × S–No Blindspot) was not significant (Table 2).

For Spotlights, the main effect of scene type was
not significant, b = −0.03, SE = 0.09, t = −0.35.
However, saccade amplitudes were significantly shorter
for M-Spotlights compared to the control condition,
b = −2.27, SE = 0.13, t = −17.33, and significantly
shorter for S-Spotlights compared to M-Spotlights, b =
−0.34, SE = 0.05, t = −7.27. There were no significant
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interactions between scene type and spotlight size
(Table 2).

For Blindspots, the data depicted in Figure 10b
indicate somewhat shorter fixation durations for static
as compared to dynamic scenes. This difference was
not significant for the untransformed data, b = −6.34,
SE = 3.81, t = −1.66; for the transformed data,
however, it was significant, b = −0.13, SE = 0.05, t =
−2.39. Fixation durations were significantly longer for
S-Blindspots as compared to the control condition, b =
22.35, SE = 4.81, t = 4.65, but not for M-Blindspots as
compared to S-Blindspots, b = −4.68, SE = 3.45, t =
−1.36. There were no significant interactions between
scene type and blindspot size (Table 2).

For Spotlights, fixation durations were significantly
shorter for static as compared to dynamic scenes, b =
−19.46, SE = 4, t = −4.87. Fixation durations were
significantly longer for M-Spotlights as compared to
the control condition, b = 34.4, SE = 5.09, t = 6.76,
whereby this difference was significantly smaller for
static as compared to dynamic scenes (scene type ×
M–No interaction: b = −15.74, SE = 5.18, t = −3.04).
Moreover, fixation durations were significantly longer
for S-Spotlights as compared to M-Spotlights, b = 45,
SE = 2.69, t = 16.72; the scene type × S–M interaction
was not significant (Table 2).

Analysis of fixation-based motion
If scene motion had an influence on saccade target

selection in our task, the search-time costs for dynamic
scenes that we observed in the control condition should
be reduced in the Spotlight conditions, in which much
less motion was visible. However, this does not appear
to be the case as the search-time analysis for Spotlights
did not reveal an interaction between scene type and
scotoma size. Note that this does not imply that motion
did not play any role at all as effects of scene motion
could be fast-acting and short-lived.

To test this, each video was transformed to a motion
energy video by computing optical flow by means of
the Lucas–Kanade derivative of Gaussian method
(Lucas & Kanade, 1981). The implementation offered
by MATLAB’s Computer Vision Toolbox was used
with default settings. The algorithm estimates the
displacement of each pixel between the current frame
n and the previous frame n – 1. Each video consisted
of 500 individual fames (25 fps * 20 s), yielding
499 pairwise comparisons. The motion between two
consecutive video frames is described by four 1,024
× 768 matrices describing (a) the x component of
velocity, (b) the y component of velocity, (c) the
orientation of optical flow, and (d) the magnitude of
optical flow. For our purposes, we used the magnitude
of optical flow. For illustration, Figure 11a shows
a frame from a high-motion video in which trees
and plants were seen to move during windy Scottish

weather. The corresponding motion map is depicted
in Figure 11b, where brighter colors correspond to
higher optical flow magnitudes. The actual video
and the corresponding motion magnitude video are
available on https://youtu.be/cgIGYINIKOU.

To determine motion around fixations, circular
patches were centered on the fixation points. The
patch radius was equal to the scotoma radius; for the
no-scotoma control condition, both radii (1.25 and
2.5°) were used. Fixation-based motion was quantified
as the sum of optical flow magnitudes within the patch.
Three types of fixations were considered separately: (a)
the first fixation following search initiation (i.e., the first
fixation during the scanning epoch), (b) all remaining
fixations during the scanning epoch, and (c) all fixation
during the verification epoch.

In the experiments, observers started searching the
scene from a central fixation position. At the end of
the search initiation epoch, the eyes moved to the
location of the first fixation. For illustration, the yellow
arrows in the top-row panels of Figure 11 represent
an imaginary saccade from the central fixation (yellow
circle with dashed perimeter) to the first fixation (yellow
circle with solid perimeter) in the scene.

Logically, the location for the first fixation must have
been selected toward the end of the central fixation
already. For our calculations, we assumed that the
decision about where to fixate next was made 100 ms
prior to the start of the first fixation, thereby taking the
duration of the saccade as well as the duration of an
assumed nonlabile stage of saccade programming into
account (Walshe & Nuthmann, 2015). Accordingly, we
evaluated motion at 100 ms prior to the start of the first
fixation (right-pointing triangle symbols in Figure 11).
Interestingly, Vig et al. (2011) reported that when
participants free viewed dynamic natural scenes, there
was a near-zero average lag between changes in the
scene and the responding eye movements, suggesting
that gaze anticipated motion peaks. To account for this
possibility, we also evaluated motion at the start of the
first fixation by using the first frame that appeared in
this fixation (circle symbols in Figure 11).

Using a patch radius that equals the scotoma radius
yields two informative special cases. For the Spotlight
conditions, the motion at 100 ms prior to the start of
the fixation is invisible due to the scotoma (Figure 11c).
Therefore, the Spotlight conditions provide a baseline
to which to compare the motion values from conditions
where extrafoveal and peripheral vision are intact (i.e.,
the control condition and the Blindspot conditions).
Conversely, for the Blindspot conditions, the motion
measured at the start of fixation is invisible due to the
scotoma, while the motion at the selected location was
visible during the previous fixation (Figure 11d).2

First-fixation analyses included all trials, whether
target acquisition was successful or not. Fixations
during the scanning and verification epochs were from

https://youtu.be/cgIGYINIKOU
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Figure 11. Analysis of motion around fixation. For a high-motion video used in Experiment 2, panel (a) shows the frame that was used
as the static scene, and panel (b) shows the map depicting the motion between this frame and the previous one. In the top-row
panels, the left-pointing yellow arrow represents an imaginary saccade from the central fixation (yellow circle with dashed perimeter)
to the first fixation (yellow circle with solid perimeter) in the scene. Panel (c) depicts a central fixation with a small Spotlight (radius:
1.25°), whereas panel (d) depicts a first fixation with a medium Blindspot (radius: 2.5°). Fixation-based motion was determined for
fixation patches that had a radius equal to the scotoma radius (middle row: radius 1.25°, bottom row: radius: 2.5°), whereby both
scotoma radii were applied to the no-scotoma control condition. A given row depicts results for three different types of fixations; see
text for details. Motion was calculated as the summed magnitudes of optical flow in the patch. This was done 100 ms prior to the
start of fixation (right-pointing triangle symbols) and at the start of fixation (circle symbols) for the no-scotoma control condition
(black), Blindspots (BS, red), and Spotlights (SL, blue). For a given radius, the y-axis was scaled to be the same for all three data panels.
Error bars are within-subject standard errors.

correct trials only. Fixations that were contaminated by
blinks and fixations for which the previous fixation was
too short (i.e., sum of its duration and the duration of
the incoming saccade ≤ 100 ms) were excluded from
analyses. Regarding the results, we emphasize overall

data patterns rather than significance of individual data
points.

If motion guides early fixations in particular, motion
values should be largest for the first fixation (Carmi &
Itti, 2006). Moreover, we expected motion values during
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the verification epoch to be relatively low because there
was little to no motion in the target region. Indeed, for
the control condition, motion values were largest for
first fixations (Figure 11e,h) and lowest for fixations
made during the verification epoch (Figure 11g,j).

The critical question was whether motion values for
moving Spotlights and Blindspots were significantly
different from the control condition. To account for all
combinations of radii (2), types of fixations (3), and
temporal reference points (2), 12 separate mixed-model
analyses were conducted. For the three-level factor
scotoma type, simple coding was used. The no-scotoma
control condition served as the reference level, which
allowed us to test whether there were any differences
between Blindspots and the control condition or
between Spotlights and the control condition. The
LMMs were random intercept models that included
random intercepts for subjects and scene items. To
facilitate the interpretation of results, we additionally
computed mean motion values (a) within circular
patches at the center of the video during the first couple
of frames (horizontal dashed line in Figure 11e,h) and
(b) for patches centered on the target throughout the
entire duration of the video (horizontal dashed line
in Figure 11g,j).

For the first fixation, motion was significantly
reduced when searching with a moving Spotlight, both
at the beginning of the fixation (radius 1.25°: b =
−4.61, SE = 1.26, t = −3.67, see Figure 11e; radius
2.5°: b = −10.31, SE = 3.38, t = −3.05, see Figure 11h)
and 100 ms before (radius 1.25°: b = −4.83, SE =
1.36, t = −3.55, radius 2.5°: b = −9.46, SE = 3.75,
t = −2.52). By contrast, there were no significant
differences between Blindspot fixations and control
fixations in any of the first-fixation analyses.

For scanning-epoch fixations with the 2.5° radius,
there were no significant differences between Blindspot
fixations and control fixations or Spotlight fixations
and control fixations (see Figure 11i). For the 1.25°
radius, however, compared to the control condition,
motion was significantly reduced for both Blindspots
and Spotlights, both 100 ms prior to the start of
fixation (Blindspots: b = −2.11, SE = 0.81, t = −2.59,
Spotlights: b = −1.58, SE = 0.76, t = −2.08) and
at the start of fixation (Blindspots: b = −2.54, SE =
0.80, t = −3.17, Spotlights: b = −1.60, SE = 0.75, t =
−2.13). Interestingly, the effects were not significant
when the mixed model included by-subject random
intercepts only. For verification-epoch fixations, all
analyses yielded nonsignificant fixed effects contrasts
(see Figure 11g,j).

Discussion

For the no-scotoma control condition for dynamic
scenes, search accuracy was lower in Experiment 2 than

in Experiment 1, and search times for correct trials were
longer. For the no-scotoma conditions in Experiment 2,
search accuracy was at comparable levels for dynamic
and static scenes. In the scotoma conditions, however,
there were subtle differences in search accuracy for
dynamic and static scenes: For Blindspots, search was
more accurate for dynamic than for static scenes,
whereas for Spotlights, it was less accurate for dynamic
than for static scenes.

For the natural vision control conditions, there was
evidence for longer search times for dynamic than
for static scenes. This was due to significantly longer
initiation times along with longer verification times for
dynamic scenes. Search times were not elevated when
searching dynamic scenes with S- and M-Blindspots,
which agrees with the results from Experiment 1. For
static scenes, however, search times systematically
increased as less information was available in the center
of vision. A gaze-based decomposition of search
times suggested that the observed search-time costs
were due to increased verification times. Finally, the
Spotlight analyses revealed both longer search initiation
and verification times for dynamic scenes, leading to
numerically longer search times for dynamic than for
static scenes.

The saccade-amplitude data showed the well-known
“windowing effect” for both types of scenes. For
both dynamic and static scenes, fixation durations
were prolonged when a moving Blindspot was present
compared with the no-scotoma control condition.
For Spotlights, fixation durations were longer for
dynamic than for static scenes. Moreover, for both types
of scenes, fixation durations increased as Spotlights
decreased.

Motion in extrafoveal and peripheral vision affected
the selection of the target for the very first saccade.
For the subsequent scanning epoch, however, the
data suggest that the task-irrelevant motion could be
overridden.

Experiment 3: partial replication of
Experiment 2 with different scenes
The results obtained in Experiment 2 showed subtle

differences between dynamic and static scenes, in
particular for the Blindspot conditions. For further
investigation, we conducted a third experiment that
included the Blindspot and control conditions but not
the Spotlight conditions from Experiment 2. Going
beyond a pure replication, Experiment 3 included
scenes with more motion and greater visual complexity
than in the previous experiments.

More motion could lead to more peripheral capture
and therefore exacerbate the differences between
dynamic and static scenes. Scenes with more motion
tended to be more visually complex too (see below).
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Figure 12. Still images from dynamic scenes used in Experiment 3. For six of the new scenes, the frame that was used as a static image
is shown. In the figure, faces were blurred for identity protection.

For a difficult letter-in-scene search task, Henderson
et al. (2009) found that more cluttered static scenes
were associated with longer search times. Moreover,
visual complexity generally worsens peripheral vision
(see Rosenholtz, 2016, for a review). Therefore, and
alternatively, search in more complex scenes could
reduce or negate the differences between dynamic and
static scenes.

Methods: Participants, stimulus materials, and
design

Twenty-four participants (15 women, 9 men, M
= 26 years, age range: 18–40 years) were tested in
Experiment 3. The new scenes were 45 real-world
videos that were recorded in London (England, United
Kingdom). Most of the scenes were shot in outdoor
environments. For six of the new dynamic real-world
scenes, Figure 12 shows the frame that was used as a
static image in the experiment.

For the static images, we assessed their visual
complexity by using the Feature Congestion measure
of visual clutter introduced by Rosenholtz, Li, and
Nakano (2007). For each image, a scalar representing
the clutter of the entire image was computed, with
larger values indicating more visual clutter. For the
static images from the London videos, mean Feature
Congestion clutter was higher (M = 4.37, SD = 1)

than for the videos used in the other experiments (M =
2.74, SD = 0.64), t(54.84) = 9.93, p < .001. In a second
analysis, we did not consider the entire image but only
the AOI comprising the target. Again, the clutter values
were significantly higher for the London images (M =
5.3, SD = 2.23) than for the other images (M = 2.82,
SD = 1.23), t(51.58) = 6.94, p < .001.

To estimate motion in the videos, we used the
optical flow estimation method described above.
For each original video, a motion energy video was
created by using the magnitude of optical flow (cf.
Mayer et al., 2015). For a given frame (or matrix) of
the motion video, the optical flow magnitudes were
summed up. Then, for a given video, the mean across
the summed magnitudes was calculated, yielding
one aggregate motion value per video. These motion
values were significantly higher for the 43 London
videos as compared to the 119 videos used in the
previous experiments, t(65.31) = 4.55, p < .001. For the
AOI comprising the target, motion values were also
significantly higher for the London videos than for the
other videos, t(52.27) = 2.85, p = .006.

To increase the number of stimuli, 15 scenes from
Experiments 1 and 2 were additionally included.
Therefore, 58 scenes entered the analysis stage. For a
given scene, the motion in the video and the visual
clutter in the static frame were correlated such that
scenes with more motion were also more visually
complex, r(56) = 0.594, p < .001.
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Figure 13. Mean search accuracy (a) and search time (b) for Experiment 3. Two different Blindspot sizes are compared with a
no-scotoma control condition for both dynamic scenes (color: crimson, bold line, large marker) and static scenes (color: salmon,
normal-weight line, normal-size marker). Error bars are 95% within-subjects confidence intervals. A line with an asterisk indicates a
significant difference between adjacent conditions.

In Experiment 3, there were no Spotlight conditions.
Apart from that, the design was identical to
Experiment 2. Thus, we implemented a 2 (scene type:
static vs. dynamic) × 3 (Blindspot size: none vs. small
vs. medium) design. There were 10 trials in each of the
six conditions.

Results

Unless otherwise stated, the contrast coding was
as follows: For the two-level factor scene type, simple
coding with the reference level “dynamic scenes” was
used; for the three-level factor blindspot size, backward
difference coding was used.

Search accuracy
For four of the scenes, none of the participants

were able to find the target in any of the experimental
conditions because it was not sufficiently salient. These
scenes were excluded from the analysis of search
accuracy. Figure 13a shows the hit probabilities; the
complementary timeout and miss probabilities are
depicted in Supplementary Figure S5. For hits, there
was no significant difference between dynamic and
static scenes, b = 0.16, SE = 0.16, z = 1.01, p = 0.312.
With regard to blindspot size, search accuracy was
significantly reduced for S-Blindspots compared to the
control condition, b = −0.73, SE = 0.21, z = −3.47, p
= 0.001. Moreover, search accuracy was significantly
smaller for M-Blindspots than for S-Blindspots, b =
−1.21, SE = 0.18, z = −6.7, p < 0.001. Scene type

and blindspot size did not interact (Table 3). The
reduction in search accuracy for M-Blindspots was
accompanied by more timed-out trials and more miss
trials (Supplementary Figure S5).

Search time and its epochs
For search time (Figure 13b), there were no

significant effects (Table 3). However, effects on
verification time, which we observed in Experiment 2,
operate on a smaller time scale, with the critical
question being whether they are large enough to drive
corresponding effects on overall search time (Clayden
et al., 2020). Therefore, we investigated subprocesses of
search, with a focus on verification times (Figure 9c).
Verification times were subjected to a mixed model
using dummy coding and “static scenes” and “no
scotoma” as reference levels. The simple effect for scene
type was not significant, b = −161.04, SE = 120.3, t =
−1.34. For static scenes, the difference in verification
times between S-Blindspots and the control condition
was not significant, b = 212.47, SE = 141.08, t = 1.51.
However, the difference between M-Blindspots and the
control condition was significant for the untransformed
data, b = 509.82, SE = 236.23, t = 2.16, but not for
the transformed data, b = 0.02, SE = 0.02, t = 0.98.
The scene type × S–No Blindspot was not significant,
b = −211.2, SE = 176.43, t = −1.2. The scene type ×
M–No Blindspot interaction was not significant for
the untransformed data, b = −369.53, SE = 218.63,
t = −1.69; for the transformed data, however, it was
significant, b = −0.07, SE = 0.03, t = −2.23.
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Dependent variable Prameter Intercept Scene type
Scotoma
size S–No

Scotoma
size M–S

Scene type
× Scotoma
size S–No

Scene type
× Scotoma
size M–S

Random
effects

Probability correct b 1.35 0.16 −0.73 −1.21 −0.05 −0.59 2
SE 0.23 0.16 0.21 0.18 0.42 0.36
z 5.95 1.01 −3.47 −6.7 −0.11 −1.66
p <0.001 0.312 0.001 <0.001 0.909 0.097

Search time b 3,517.88 131.69 22.45 340.39 81.18 230.38 3
SE 363.62 207.25 187.38 207.81 376.35 416.71
t 9.67 0.64 0.12 1.64 0.22 0.55

Saccade amplitude b 5.67 −0.28 0.94 0.81 0.13 −0.27 5
SE 0.15 0.13 0.14 0.12 0.22 0.32
t 38.09 −2.09 6.92 6.63 0.6 −0.83

Fixation duration b 215.26 −3.55 4.5 2.38 5.62 0.46 4
SE 6.68 2.46 5.04 3.07 5.78 6.29
t 32.24 −1.44 0.89 0.78 0.97 0.07

Table 3. Linear and generalized linear mixed models (LLM and GLMM, respectively) for Experiment 3: means (b), standard errors (SE),
and test statistics (LLMs: t values; GLMMs: z values and p values) for fixed effects. Note: Nonsignificant coefficients are set in bold
(LLMs: |t| < 1.96; GLMMs: p > .05). See text for further details.

For completeness, Supplementary Figure S6 and
Supplementary Table S2 additionally provide the results
for search initiation and scanning times, using the
default contrast coding. As in Experiment 2, search
initiation times were significantly shorter for static as
compared to dynamic scenes, b = −79.64, SE = 7.72, t
= −10.31. For scanning times, there was no significant
difference between dynamic and static scenes, b =
−129.15, SE = 229.32, t = −0.56.

Effect of scene motion and visual complexity on search
time

Different from Experiment 2, search times were
not prolonged for dynamic scenes in any of the
experimental conditions tested. Therefore, additional
analyses were performed to explore the effects of visual
complexity and motion on search times. For a given
type of scene, data were collapsed across the blindspot
and control conditions. Visual complexity and motion
are continuous variables, which were z transformed for
the LMM analyses. The LMMs were random intercept
models.

The first model considered the data for static
scenes and included visual complexity as fixed
effect. The effect of complexity was significant,
b = 1,120.61, SE = 274.79, t = 4.08, and its
direction indicated that scenes with higher visual
complexity were associated with longer search
times.

The second model considered the data for dynamic
scenes and included both motion and visual complexity
as fixed effects. Individual scores were calculated for
each trial to acknowledge that the video was only shown

until the subject’s button press. For each frame of the
video the subject had seen, the optical flow magnitudes
were summed up. To create the motion score, these
values were added up and divided by the number
of frames. Similarly, the visual complexity score was
derived as the mean of the Feature Congestion clutter
values for all video frames the subject had seen during
the trial. (Of course, these values are highly correlated
with the corresponding values for the static images.)
There was no significant effect of motion on search
times, b = 58.02, SE = 369.32, t = 0.16. However,
there was a significant effect of visual complexity, b
= 1,004.10, SE = 412.30, t = 2.44. To facilitate the
interpretation of these results, we conducted the same
analyses for the data from Experiment 2 and found no
significant effects.

Saccade amplitudes and fixation durations
The main effect of scene type was significant, b

= −0.28, SE = 0.13, t = −2.09; saccade amplitudes
were shorter for static as compared to dynamic scenes
(Figure 14a). Moreover, saccade amplitudes were
significantly longer for S-Blindspots as compared to
the control condition, b = 0.94, SE = 0.14, t = 6.92,
and for M-Blindspots as compared to S-Blindspots, b
= 0.81, SE = 0.12, t = 6.63. Thus, larger Blindspots
were associated with progressively longer saccade
amplitudes. There were no significant interactions
between blindspot size and scene type (Table 3). In this
experiment, neither scene type nor the presence of a
Blindspot, nor blindspot size, had significant effects on
fixation durations (Table 3, Figure 14b).
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Figure 14. Mean saccade amplitudes (a) and fixation durations (b) for Experiment 3. Two different Blindspot sizes are compared with a
no-scotoma control condition for both dynamic scenes (color: crimson, bold line, large marker) and static scenes (color: salmon,
normal-weight line, normal-size marker). Error bars are 95% within-subjects confidence intervals. Lines with asterisks indicate a
significant difference between condition means.

Discussion

In Experiment 3, there were more timed-out trials
and longer search times for successful trials than in the
corresponding conditions of Experiment 2. Saccade
amplitudes were longer when searching dynamic as
compared to static scenes (Smith & Mital, 2013). For
fixation durations and search times, there were no
differences between dynamic and static scenes. Taken
together, the results suggest that the increased visual
complexity of the scenes used in Experiment 3 made the
target more difficult to acquire than in Experiment 2.
Using scenes with a larger range of visual complexities,
we also found an effect of visual complexity on search
times, for both static and dynamic scenes (cf. Henderson
et al., 2009, for static scenes). One interpretation of
these results is that search in more complex scenes
negated the differences between dynamic and static
scenes that we had observed in Experiment 2.

General discussion

Using eye tracking, we combined two approaches
to illuminate commonalities and differences in visual
search for a static target embedded in complex
dynamic and static real-world scenes. First, we used
gaze-contingent Blindspots and Spotlights to investigate
the importance of the different regions of the visual
field to the search process (Nuthmann, 2014). Second,
we used observers’ gaze data to decompose their
button-press search times into temporal epochs that

are associated with particular subprocesses of search
(Castelhano et al., 2008; Malcolm & Henderson, 2009).

The logic of the gaze-contingent scotoma
manipulations is that information processing during
the task will be disrupted to the extent that the missing
information is needed for the task (Larson & Loschky,
2009; Nuthmann, 2014). For example, the extrafoveal
scotoma (S-Spotlight) blocks out extrafoveal vision and
keeps foveal vision intact, which means that we can
assess observers’ ability to do the task with foveal vision
only. Conversely, the foveal scotoma (S-Blindspot)
blocks out foveal vision and keeps extrafoveal vision
intact, which means that we can assess observers’ ability
to do the task with extrafoveal vision only. Together,
the S-Spotlight and the S-Blindspot inform us about the
relative importance of foveal and extrafoveal vision to
the task. Let us assume that search with an S-Spotlight
leads to a drop in performance, whereas search with an
S-Blindspot does not (Nuthmann, 2014). Such a pattern
of results indicates that foveal vision is neither sufficient
(S-Spotlight) nor necessary (S-Blindspot) for normal
task performance. That is, extrafoveal vision is sufficient
(S-Blindspot) and necessary (S-Spotlight). In summary,
we would consider foveal vision to be unimportant and
extrafoveal vision to be important to the task.

Under the assumption that motion attracts attention
and gaze, we would expect search times to be longer
for dynamic than for static scenes. In our natural
vision control conditions, search times were prolonged
for dynamic scenes in Experiment 2 but not in
Experiment 3. In both experiments, search initiation
times were elevated for dynamic scenes. Apparently, the
potential or actual presence of motion in the dynamic
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scene increased the time needed to select a first search
target candidate. Moreover, verification times were
prolonged for dynamic scenes in Experiment 2 but
not in Experiment 3. Given that the two experiments
differed with regard to the materials, we suggest
that scenes with greater visual complexity and more
motion (Experiment 3) made the acquisition of
the target equally difficult for dynamic and static
scenes.

For our main Experiment 2, comparing the data
from the no-scotoma control conditions to data
obtained with different types of scotomas enabled us
to explore the role motion played in foveal and central
vision as opposed to extrafoveal and peripheral vision
during different epochs of search. Our analyses yielded
three key results. First, in conditions in which it was
possible to process motion in extrafoveal and peripheral
vision, observers directed their very first saccade to
locations with higher motion values than when motion
could not be preprocessed (Figure 11e,h). Thus, the first
saccade was guided by motion in the scene (cf. Carmi
& Itti, 2006, for free viewing). However, and secondly,
this was not the case for subsequent saccades made
during the scanning epoch, representing the actual
search process (Figure 11f,i). These data suggest that
task-irrelevant motion in extrafoveal and peripheral
vision did not affect the guidance component of search,
which is consistent with the notion that task demands
can provide a cognitive override of stimulus-based
salience (Einhäuser et al., 2008; Underwood et al.,
2006). Still, finding a short-lived effect of scene motion
has practical relevance in that losing the first saccade
to a task-irrelevant moving element in the scene
could be the difference between a safe and an unsafe
traffic situation, for example. Third, when motion was
potentially present (Spotlights) or absent (Blindspots) in
foveal or central vision only, we observed differences
in verification times for dynamic and static scenes
(Figure 9); see below.

Previous research on visual search in static
scenes suggested that foveal vision was surprisingly
unimportant to the task. For object-in-scene search, S-
and M-Blindspots neither affected search accuracy nor
search time (Nuthmann, 2014). Only for L-Blindspots,
degrading central vision, was there both a reduction
in search accuracy as well as a significant increase
in search times for correct trials due to prolonged
verification times. Results were slightly different when
the target was a contextually irrelevant black letter (T
or L) of variable size. In this case, a foveal scotoma
(circular with a radius of 1°) was associated with
significantly increased verification times, which in turn
boosted search times (Clayden et al., 2020). For letter
search with an M-Blindspot (circle radius 2.5°, as in our
Experiments 2 and 3), search times were significantly
prolonged, which was (mainly) driven by an increase in
verification times (Nuthmann et al., 2021).

Overall, the present findings for static scenes were
consistent with these prior results. To guide search,
participants could rely on a precise template of the
target’s shape, size, and color (grayish). S-Blindspots
blocked foveal vision, whereas M-Blindspots blocked
foveal and part of parafoveal vision. In Experiment 2,
we observed search-time costs in these conditions,
which originated from increased verification times. In
Experiment 3, however, the presence of Blindspots
was not associated with significant increases in search
times.

For dynamic scenes, the search-time results for
correct trials from three experiments converge on the
novel finding that neither foveal vision nor central vision
was necessary to attain normal search proficiency.
Importantly, verification times were not increased
during visual search with moving Blindspots in dynamic
scenes. Participants knew that the target was static.
Moreover, due to implicit learning, they were most
likely aware that the target almost never (Experiments 1
and 2) or rarely (Experiment 3) interacted with moving
elements in the scene. Therefore, we suggest that the
low prevalence of motion in the target region helped to
reduce the uncertainty about the presence of the target,
thereby counteracting any increases in verification
times, as observed for static scenes.

However, for both static and dynamic scenes, there
were fewer hits during search with moving Blindspots,
in particular for larger Blindspots. Instead, there were
more timeouts, which indicates that visual search can be
more difficult with a Blindspot than without (see also
Clayden et al., 2020; Nuthmann et al., 2021). There
were also more miss trials, but their interpretation is less
straightforward due to the difficulty in distinguishing
between incidents where the target was not located
from trials where observers’ eyes did not fixate on a
correctly located target when the overt response was
made (Clayden et al., 2020; Nuthmann, 2014).

Moreover, the results from Experiments 1 and 2
emphasize the importance of extrafoveal and peripheral
to visual search, which is consistent with previous
research using static scenes (Loschky & McConkie,
2002; Nuthmann, 2014). In Experiment 1, in which
only dynamic scenes were used, search accuracy was
only reduced when extrafoveal vision was masked
(S-Spotlights). In Experiment 2, in which both dynamic
and static scenes were used, we observed a small
but signification reduction in search accuracy for
M-Spotlights and a considerable decrease in search
accuracy for S-Spotlights.

For correct trials, we observed massive search-time
costs in both experiments. Specifically, any reduction
in extrafoveal search space increased search times and
systematically so as Spotlights became smaller. The
gaze-based decomposition of search times revealed that
search initiation times and scanning times also increased
as Spotlights became smaller (cf. Nuthmann, 2014).
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These results support the view that peripheral input
provides information (a) for processing the gist of
the scene and (b) for guiding the search process and
eye-movement planning, thereby supporting core
assumptions of a recent theory of visual information
acquisition in tasks such as driving (B. Wolfe et al.,
2020).

In the Spotlight conditions of Experiment 2, search
accuracy was lower for dynamic than for static scenes,
which was an unexpected result. For correct trials, both
search initiation and verification times were prolonged
for dynamic scenes, leading to numerically longer search
times. These results are in agreement with data reported
by Reingold and Loschky (2002), who found that
degrading the scene outside a gaze-contingent moving
window delayed target acquisition more strongly for
dynamic than for static scenes.

Why, then, were verification times during search
with a moving Spotlight longer for dynamic scenes as
compared to static scenes (Figure 9a)? We speculate that
the sudden appearance of motion within a Spotlight
on some verification-epoch fixations may have made
target verification more difficult. Interestingly, for the
two types of scotomas, the verification-time differences
between dynamic and static scenes had opposite
signs, that is, for dynamic scenes, we observed longer
verification times during Spotlight search but shorter
verification times during Blindspot search (both in
Experiments 2 and 3); see Figure 9. This dissociation
warrants further research.

In previous research, both mean saccade amplitudes
and fixation durations were found to be longer
for dynamic as compared to static scenes, both for
free-viewing and spot-the-location tasks (Smith &
Mital, 2013). Using a target acquisition task, we
observed longer saccade amplitudes for dynamic
scenes in Experiment 3 but not in Experiment 2. In
Experiment 3, mean fixation durations did not differ
for dynamic and static scenes, whereas in Experiment 2,
there was some evidence for longer fixation durations in
dynamic scenes.

As a reasonable first step, we used nonmoving targets.
It would of course be interesting for future studies to
use moving targets (cf. Reingold & Loschky, 2002).
Future studies should also consider using different
types of targets and/or manipulate their properties. To
reduce the variability in target salience between scenes,
during stimulus generation, we positioned the target
at an individually determined location in each scene.
Still, a few targets were “invisible” to the observers, in
particular for the London scenes, for which target color
was not individually adjusted. It may be advantageous
for future studies to better control for target salience
by placing targets algorithmically, for example, by
extending the Target Embedding Algorithm that we
developed for static scenes (Clayden et al., 2020) to
dynamic scenes.

Moreover, the present research could be productively
extended by using objects that are naturally part of
the scenes as search targets. Research on visual search
has used a range of tasks, from looking for arbitrary
targets within random arrays, through to searching for
contextually relevant objects within naturalistic scenes.
For basic laboratory search tasks, guidance by basic
features like color andmotion plays an important role in
constraining the deployment of attention (J. M. Wolfe
& Horowitz, 2017). During object-in-scene search,
however, feature-based guidance is complemented or
overridden by scene-based guidance (e.g., Underwood
et al., 2006). According to the Surface Guidance
Framework by Castelhano and colleagues, attention
and gaze are directed to surfaces in the scene that are
most associated with the target (Pereira & Castelhano,
2019). Moreover, Võ and colleagues have fleshed out
the idea that scenes, like language, have a grammar,
comprising both scene semantics and syntax (Võ et al.,
2019). The notion that observers use various forms of
scene guidance when searching naturalistic scenes has
found empirical support (Castelhano & Krzyś, 2020;
Võ, 2021, for reviews).

In our experiments, observers searched for a ring
target that was superimposed on the scene stimulus.
This situation bears similarities to real-world searches
for which there is minimal or no guidance by scene
context (e.g., search for a fly). But note that ring
targets tend to violate the scene syntax, that is, the
physical rules of the scene environment in which they
appear (cf. Biederman et al., 1982). So far, few studies
have investigated how scene-based guidance (beyond
processing of the scene’s gist) interacts with information
acquisition outside the fovea (see Pereira & Castelhano,
2014, for an exception). Future research on this topic
may indicate whether the present results for dynamic
versus static scenes generalize from arbitrary search
targets to different types of contextually relevant search
objects.

Conclusions

In the real world, we often search for a nonmoving
object amid an environment that contains some moving
elements. When having observers search for a static,
contextually irrelevant target in videos depicting
naturalistic scenes, we found that task-irrelevant motion
in extrafoveal and peripheral vision had a fast but
transient effect on saccade target selection. Regarding
the importance of foveal, parafoveal, and peripheral
vision to the search process, any differences found
between dynamic and static scenes were relatively
subtle. Moreover, the results of this multiexperiment
study highlight the importance of using different sets of
scenes to test the generalizability of results.
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Footnotes
1First-pass gaze duration is defined as the sum of all fixations on the
target during the first pass, that is, before the eyes left the target for the
first time (Liversedge & Findlay, 2000).
2Strictly speaking, this only holds for saccade lengths that are larger
than or equal to the sum of the patch radius and the scotoma radius.
For shorter saccade lengths between fixations with a moving Spotlight,
motion around fixation n partially overlaps with motion around fixation
n – 1. For fixations with a moving Blindspot, shorter saccade lengths
imply that not all motion within the patch centered on fixation n could be
processed during fixation n – 1. We did not remove these cases, as this
would considerably reduce the number of observations, in particular in
the Spotlight conditions.
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