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ABSTRACT: A facile functionalization of C(sp3)−H bonds and
tandem cyclization strategy to synthesize quinoline derivatives
from 2-methylbenzothiazoles or 2-methylquinolines and 2-
styrylanilines has been developed. This work avoids the require-
ment for transition metals, offering a mild approach to activation of
C(sp3)−H bonds and formation of new C−C and C−N bonds.
This strategy features excellent functional group tolerance and
scaled-up synthetic capability, thus providing an efficient and
environmentally friendly access to medicinally valuable quinolines.

1. INTRODUCTION
Nitrogen-functionalized heterocycles are ubiquitous in phar-
maceuticals, natural alkaloids, and functional materials;1

particularly, functionalized quinoline and benzothiazole motifs
possess a wide spectrum of biological activities and are
considered as a privileged class of biologically active chemicals
in medicinal chemistry.2 Figure 1 shows some biologically

active quinoline and benzothiazole derivatives. Compound I
was proved to show a positive result against SARS-CoV-2,
indicating a potential antiviral activity.3 Compound II
levofloxacin was synthesized at Daiichi Seiyaku Co., Ltd.,
Tokyo, Japan. As of now, levofloxacin has become one of the
most broad-spectrum antibiotics in pharmaceuticals and is
being used to treat or prevent bacterial infections.4

Camptothecin (compound III) is a natural plant alkaloid
which shows superior anticancer efficacy.5 Quinine (com-
pound IV) has been commonly prescribed for the treatment of
malaria.6 Benzothiazole derivative V is a new potential
structure for treating human African trypanosomiasis.7

Since their first isolation from coal tar by Friedlieb Ferdinard
Runge in 1834, increasing efforts have been devoted to the
synthesis of substituted quinoline derivatives. Classical
methods involve the condensation of aniline derivatives with
ketones or aldehydes.8 These classical methods are still
frequently used for preparation of quinoline motifs. However,
some of these useful synthesis methods suffer from several
drawbacks, for instance, expensive catalysts, limited substrate
scope, multiple reaction steps, poor site selectivity, and so on.
Recently, some new methods using 2-styrylanilines as starting
materials have been disclosed (Scheme 1a). The group of
Helaja reported the formation of polysubstituted quinolines by
condensation of 2-styrylanilines with aldehydes.9 Chen’s group
reported CuCl2·2H2O-catalyzed oxidative cyclization to
generate quinolines.10 These methods are step-efficient and
atom-economic. However, transition-metal or preactivated
catalysts limit the industrial applications. Lyu’s group
developed lactamization of the C(sp2)−H bond to synthesize
2-quinolinones, with CO2 as the carbonyl source.

11 The groups
of Zhang and co-workers12 and Ma and co-workers13

separately reported the condensation of 2-styrylanilines with
β-keto esters using I2 or TsOH as the catalyst. Although there
have been a number of synthesis strategies using 2-styrylani-
lines as the starting material, the development of different
methods using new substrates for construction of function-
alized quinolines remains of great importance.
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Figure 1. Selected quinoline- and benzothiazole-based structures.
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On the other hand, direct C−H functionalization reactions
are of great importance in construction of C−C and C−X (X =
N, O, S, etc.) bonds due to the omnipresence of C−H bonds
in chemical feedstocks, step economy, and atom economy.14

Compared to the C(sp2)−H bonds, C(sp3)−H bonds are
relatively inert because of their poor acidity, high bond
dissociation energy, and ubiquitous feature.15 The activity and
site selectivity of C(sp3)−H bond functionalization remain
long-standing challenges. Currently, the transition-metal-
catalyzed or metal-free strategies of direct functionalization
of C(sp3)−H bonds have attracted tremendous attention in
organic synthesis. A transition-metal (such as rhodium,
palladium, iron, cobalt, and copper)-catalyzed directing-
group-assisted strategy has emerged as a robust and highly
efficient way to direct functionalization of C(sp3)−H bonds
over the past decades.16 Despite the great achievement of this
tactic, using toxic, precious metals and complicated ligands,
wasting over stoichiometric amounts of oxidants and harsh
reaction temperatures partly hinder the application of this
method. Distinct from the above studies, functionalization of
C(sp3)−H bonds via the radical process has been reported as a
novel method in recent years; the reaction site usually occurs
in the neighborhood of the carbonyl group, benzyl group, allyl
group, oxygen atom, nitrogen atom, etc.17 These protocols
feature metal-free, efficient, and simple operation. Never-
theless, the scope of C(sp3)−H bonds is limited in certain
substrate species. Therefore, the development of more general
methods for improving the structural diversity is highly
desirable. In continuation of our previous efforts on direct
C−H bond functionalization,18 we herein report an environ-
ment-friendly and efficient functionalization of C(sp3)−H
bonds and tandem cyclization strategy from 2-methylbenzo-
thiazoles or 2-methylquinolines and 2-styrylanilines by iodide
catalysis to formation of functionalized quinoline derivatives
(Scheme 1b). This protocol features metal-free, direct
functionalization of C(sp3)−H bonds, broad substrate scope,
moderate-to-good yields, and scaled-up synthetic capability.

To the best of our knowledge, rare examples about metal-free
functionalization of 2-methylbenzothiazole have been docu-
mented to date.19

2. RESULTS AND DISCUSSION
We started our investigation by studying the reaction of 2-
methylbenzo[d]thiazole 1a with 2-styrylaniline 2a. Excitingly,
we were delighted to find that molecular iodine (0.2 equiv)
catalyst in combination with the oxidant TBHP (3 equiv, 70%
aq) in DMSO (1.5 mL) at 120 °C gave the best result, where
the desired product 3a was obtained in 78% isolated yield
(Table 1, entry 1). The reaction was sensitive to the iodide

catalysts. KI and NaI were ineffective (entries 2 and 3). I2,
TBAI, and NIS were effective for the reaction, and I2
performed the best, giving 3a in 52% yield (entries 4−6).
Catalysis-equivalent screening revealed that decreasing the
dosage of catalyst led to poor results, and increasing the dosage
of catalyst was less effective (entries 7 and 8). The solvent was
crucial for the reaction; DMF, MeCN, and NMP were inferior
to DMSO (entries 9−12), owing to DMSO acting as both the
solvent and oxidant in the Kornblum-type oxidation process.
Expectedly, lowering or increasing the temperature resulted in
lower yields (entries 13 and 14). Lowering the oxidant dosage
to 0.6 mmol diminished the yield to 52% (entry 15). With a
higher oxidant loading of 1.2 mmol, only 60% of 3a was
obtained (entry 16). Moreover, the catalyst and oxidant were
essential for the reaction, and the target product was not
obtained in the absence of either element (entries 17 and 18).
With the optimized reaction conditions in hand, we explored

the effect of substituents on 2-styrylanilines and 2-methyl-
benzothiazoles. As shown in Scheme 2, the reaction between 2-
methylbenzothiazole (1a) and 2-styrylanilines 2a−h afforded
the corresponding 2-heteroaromatic quinolines 3a−h in fair-to-
good yields (47−80%), revealing quite a general compatibility
with the electronic nature of substituents on the benzene group

Scheme 1. (a and b) Synthesis of Quinoline Derivatives
from 2-Styrylanilines

Table 1. Optimization of the Reaction Conditionsa

entry changes from the standard conditions yield (%)b

1 none 78
2 KI (0.2 equiv) as the catalyst trace
3 NaI (0.2 equiv) as the catalyst trace
4c I2 (0.2 equiv) as the catalyst 52
5 TBAI (0.2 equiv) as the catalyst 27
6 NIS (0.2 equiv) as the catalyst 47
7 I2 (0.1 equiv) as the catalyst 49
8 I2 (0.3 equiv) as the catalyst 53
9 DMF as the solvent 15
10 MeCN as the solvent 20
11 NMP as the solvent 43
12 toluene as the solvent trace
13 temp = 100 °C 45
14 temp = 140 °C 50
15 TBHP (2 equiv) 52
16 TBHP (4 equiv) 60
17 no catalyst trace
18 no oxidant trace

aReactions were performed on a 0.3 mmol scale, 1a (0.3 mmol) and
2a (0.54 mmol.). bIsolated yield. c2 equiv of TBHP was used.
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of the aniline substrates. Moreover, the 2-styrylaniline
substrates with the electron-donating groups showed better
reactivity than those with the electron-withdrawing groups.
Notably, the substituent on the benzene of the styryl motifs
afforded target compounds 3i in moderate yields (49%). In
addition, the substrates (2j−l) with the substituents on the
benzene of 2-methylbenzothiazole, either electron-donating
groups (Me and MeO) or the electron-withdrawing group (F),
also afforded the desired products in fair yields (53−67%). For
further verifying the generality and flexibility of the direct
functionalization of 2-methylbenzothiazole, the reaction was
carried out by using 2-hydrazinylpyridines as the substrates.
The electron-withdrawing and electron-donating substituents
at the benzene of 2-methylbenzothiazole were compatible,
affording the corresponding products (3m−p) in good yields
(49−76%). It is noteworthy that a strong conjugated aromatic
system such as 2-methylnaphtho[1,2-d]thiazole provided the
desired product 3q in 75% yield.
The substrate scope of the reaction for 2-methylquinolines

was further investigated by slightly modifying the reaction
conditions with 1 equiv of CH3COOH as the promoter, which
can activate the methyl group and promote enamine
tautomerization,20 and the result is shown in Scheme 3. 2-
Styrylanilines, with the aryl group either on the styryl or aniline
motifs bearing electron-rich (5a−e) and electron-poor
substituents (5f−g and 5i), worked well, and the desired
compounds were obtained in moderate-to-good yields (60−

83%). The reaction of 2 with various substituted quinoline
motifs was also explored. A series of 2-methylquinolines with
different electronic properties smoothly finished the reaction;
the target compounds were obtained in 42−81% yield (5j−n);
generally, electron-withdrawing substituents (F and Cl) on the
aromatic ring gave a higher yield than the electron-donating
substituents (Me and MeO). 1-Methylisoquinoline, 4-methyl-
quinoline, and 2-methylquinoxaline were all suitable for this
reaction, providing the corresponding products in moderate
yields (5o−q, 50−53%). Regretfully, 2-methylpyridine, 2-
methyl-1H-benzo[d]imidazole, 2-methylbenzo[d]oxazole, 2-
methyl-1H-indole, 2-methylimidazo[1,2-a]pyridine, and me-
thylated caffeine were not suitable for this reaction system.
Furthermore, we found that the reaction of 4a with 2a is
enabled to scale up to gram quantities with good yield and
efficiency (Scheme 4).

Scheme 2. Cyclization of 2-Methylbenzothiazoles with 2-
Styrylanilinesa

aReaction conditions: 1 (0.3 mmol), 2 (0.54 mmol), I2 (0.2 equiv),
TBHP (3 equiv), 1.5 mL of DMSO, 120 °C. bReaction with 2-
hydrazinylpyridine.

Scheme 3. Cyclization of 2-Methylquinolines with 2-
Styrylanilinesa

aReaction Conditions: 4 (0.3 mmol), 2 (0.54 mmol), I2 (0.2 equiv),
TBHP (3 equiv), CH3COOH (1 equiv), 1.5 mL of DMSO, 120 °C.

Scheme 4. Gram-Scale Synthesis
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To gain insights into the mechanism of this process, a series
of control reactions were investigated. First, 2-methylbenzo-
thiazole and 2-methylquinoline could afford benzothiazole-2-
carbaldehyde and quinoline-2-carbaldehyde in 85 and 87%
isolated yields, respectively, under the standard conditions
(Scheme 5a,b). These results suggest that the reaction may

proceed with the oxidation of C(sp3)−H to aldehyde motifs.
Second, in the presence of TEMPO or 1,1-diphenylethylene (3
equiv), the reaction of 1a with 2a was totally hindered
(Scheme 5c), and the reaction of 4a with 2a was reduced from
81 to 11 and 33%, respectively (Scheme 5d). These results
suggest that the reaction might involve radical species in the
reaction mechanism.
On the basis of these results and previous literatur-

es,18c, 19a, 19e a proposed pathway is described in Scheme 6.

The free-radical species tBuO· and tBuOO· were generated by a
catalytic cycle of I2 and TBHP. At first, N-heteroaromatic
methane undergoes enamine tautomerization to the corre-
sponding enamines A. Then, the addition of iodine to the
enamines forms benzylic iodides B, followed by a Kornblum-
type oxidation to generate aldehyde motifs C (path I). On the
other hand, the free-radical addition and oxidation of enamine
with tBuO· or tBuOO· generate an intermediate E, which is
further transformed through tautomerization and oxidation to
give an intermediate G; hydrolysis of G leads to the formation
of aldehyde motifs C (path II). Finally, the reaction of
aldehyde motifs C with 2a, followed by thermal electro-
cyclization and aromatization, forms target molecules.

3. CONCLUSIONS
In conclusion, we have developed an environment-friendly and
efficient functionalization of C(sp3)−H bonds and tandem
cyclization strategy from 2-methylbenzothiazoles or 2-methyl-

quinolines and 2-styrylanilines. Various functionalized quino-
lines were obtained in moderate-to-excellent yields. This
protocol featured avoidance of metal catalysts, broad substrate
scope, good functional group compatibility, and scaled-up
synthetic capability. These advantages are expected to make
this protocol a powerful tool for synthesis of medicinally
valuable quinoline structures.
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