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Abstract
Background: FUS, EWS and TAF15 are structurally similar multifunctional proteins that were first
discovered upon characterization of fusion oncogenes in human sarcomas and leukemias. The
proteins belong to the FET (previously TET) family of RNA-binding proteins and are implicated in
central cellular processes such as regulation of gene expression, maintenance of genomic integrity
and mRNA/microRNA processing. In the present study, we investigated the expression and cellular
localization of FET proteins in multiple human tissues and cell types.

Results: FUS, EWS and TAF15 were expressed in both distinct and overlapping patterns in human
tissues. The three proteins showed almost ubiquitous nuclear expression and FUS and TAF15 were
in addition present in the cytoplasm of most cell types. Cytoplasmic EWS was more rarely detected
and seen mainly in secretory cell types. Furthermore, FET expression was downregulated in
differentiating human embryonic stem cells, during induced differentiation of neuroblastoma cells
and absent in terminally differentiated melanocytes and cardiac muscle cells. The FET proteins were
targeted to stress granules induced by heat shock and oxidative stress and FUS required its RNA-
binding domain for this translocation. Furthermore, FUS and TAF15 were detected in spreading
initiation centers of adhering cells.

Conclusion: Our results point to cell-specific expression patterns and functions of the FET
proteins rather than the housekeeping roles inferred from earlier studies. The localization of FET
proteins to stress granules suggests activities in translational regulation during stress conditions.
Roles in central processes such as stress response, translational control and adhesion may explain
the FET proteins frequent involvement in human cancer.
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Background
Gene expression was for a long time considered to consist
of a chain of distinct events starting with synthesis of RNA,
followed by splicing and ending with mature mRNAs
being translated in the cytoplasm. The discovery of multi-
functional RNA-binding proteins has since then joined
transcription, RNA processing, transport of RNA species
and translation into an integrated tightly regulated cellu-
lar machinery [1,2]. One such group of proteins is the FET
(previously called TET) family of RNA-binding proteins
[3]. The FET family consists of mammalian FUS (TLS) [4],
EWS [5], TAF15 (TAFII68, TAF2N, RBP56) [3] and the
closely related Drosophila cabeza/SARFH [6]. All four
proteins are structurally similar and contain a number of
evolutionary conserved regions [7]. The FUS, EWS and
TAF15 proteins bind RNA as well as DNA and have both
unique and overlapping functions. The human FET pro-
teins are associated with transcription, splicing, micro-
RNA (miRNA) processing [8,9], RNA transport, signaling
and maintenance of genomic integrity. Furthermore, the
5' parts of the human FET genes are as a result of chromo-
somal translocations rearranged and fused to various tran-
scription factor genes in multiple human malignancies.
These events are considered the driving forces of cancer
development in their associated diseases [2,10].

Although the FET family proteins are implicated in
numerous cellular processes their functions remain
poorly characterized. This together with the fact that the
proteins are structurally similar prompted us to investi-
gate their cell type-specific expression. In the present
study, we used immunostaining and ectopically expressed
proteins to examine the expression patterns of FET family
members in multiple human tissues and cell types. Our
results show that the three FET proteins are heterogene-
ously expressed throughout human tissues with FUS and
TAF15 having highly correlated expression patterns. In
addition, we here report that the FET proteins display
alterations in expression at both mRNA and protein level
upon differentiation and that they are involved in cellular
stress response as well as cell spreading.

Results
FUS, EWS and TAF15 show cell type-specific localization in 
vivo
Tissue microarrays (TMA) were stained with antibodies
against FUS, EWS and TAF15 and the percentage of posi-
tively staining cells within 35 organs were estimated
(Table 1). The FET proteins showed almost ubiquitous
expression with FUS and TAF15 having highly correlated
expression patterns (Table 2). However, FET proteins were
not detected in melanocytes and cardiac muscle cells and
neither FUS nor TAF15 were detected in cardiac endothe-
lium. Most cell types showing FET expression had nuclear
localization of the proteins but FUS and TAF15 was absent

from the nuclei of hepatocytes. Moreover, FUS and TAF15
often showed cytoplasmic localization while EWS was
more rarely found in this compartment (Table 1). Cyto-
plasmic EWS was mainly detected in secretory cell types.
In salivary gland, EWS showed a striking divergence in
cytoplasmic expression between different cell types. EWS
was restricted to the nuclei of mucous cells while being
expressed in both the nucleus and cytoplasm of ducts and
serous cells (Figure 1).

The FET proteins show conserved localization in cultured 
cells
In cultured human cells, the FET proteins displayed
smooth nuclear localization with infrequent nuclear
speckles (Figure 2a and Additional file 1). None of the
proteins localized to nucleoli. FUS and TAF15 showed a
diffuse distribution in the cytoplasm but were in some
cases localized to small cytoplasmic granules. EWS was
not detected in the cytoplasm. These patterns were similar
for all cell lines tested. Stably expressed GFP-tagged FET
proteins demonstrated similar expression patterns as the
corresponding endogenous proteins (Figure 2b) while
overexpressed FET proteins showed protein aggregation
(see below). FET protein expression in stable transfectants
was confirmed by western blot analysis (Figure 2c). Cell
measurements performed on stable transfectants showed
that cells with ectopic FUS or FUSA expression were some-
what larger than other cells (Additional File 2).

The FET family proteins are targeted to stress granules 
upon environmental stress
Cells transiently transfected with FET-GFP expression vec-
tors showed occasional nuclear and more commonly
cytoplasmic FET-GFP protein aggregation (Figure 3a). The
cytoplasmic aggregates resembled stress granules (SGs)
[11]. When such cells were stained with antibodies against
the SG marker TIA-1 [12], colocalization was seen
between this marker and the ectopically expressed GFP-
tagged FET proteins (Figure 3a). However, there were clear
differences between the individual FET proteins. EWS-
GFP rarely localized to SGs (in less than 1% of the cells),
while FUS-GFP and TAF15-GFP localized to stress gran-
ules in the majority of transiently transfected cells. To fur-
ther confirm that the FET proteins localize to SGs
following stress, stable FET transfectants (not showing
stress granules under normal growth conditions (Figure
2b)) and HeLa cells were exposed to oxidative stress by
sodium arsenite treatment (Figure 3b and 3c). FET-GFP
proteins as well as endogenous FET proteins localized to
stress granules following these experiments. EWS-GFP was
only detected in a minority of cells and in cases were two
smaller cells were located in close proximity to each other.
Endogenous EWS on the other hand was found in SGs in
all HeLa cells. The FET proteins showed similar SG locali-
zation after both heat-shock and arsenite treatment (not
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shown). A stably expressed FUS mutant lacking the RNA-
binding domain showed background signal in SGs similar
to the GFP control (Figure 3d).

FUS and TAF15 localize to spreading initiation centers
FUS and TAF15, but not EWS, were detected in large cyto-
plasmic granules forming close to the plasma membrane
in a subset of adhering F470 and HT-1080 cells. These
cells were rounded-up and seemingly not completely
attached to the underlying surface. When such cells were
further co-stained with the focal adhesion/spreading initi-
ation center (SIC) markers Vinculin, FAK and RACK1 [13],
colocalization was apparent between these markers and
both FUS and TAF15 (Figure 4).

FUS, EWS and TAF15 show heterogeneous expression 
within the same cell type in vivo
When comparing individual cells of the same type within
tissues, we found that in addition to differences in locali-
zations there were quantitative differences in the amount
of FET protein expression. Epithelial cells of the esopha-

gus displayed the most pronounced variations ranging
from strong to complete lack of expression within the
same cell type (Figure 5a). Similar observations were
made for many other cell types and tissues (not shown).
In addition, markedly attenuated FET expression was seen
in secretory endometrium compared with proliferative
endometrium (Figure 5b). Immunostained cultured cells
showed more homogeneous FET expression (Figure 2a).

FET family expression is downregulated in neuroblastoma 
cells following retinoic acid treatment
To investigate a possible connection between FET expres-
sion and differentiation, we analyzed FET expression in
SH-SY5Y neuroblastoma cells treated with all-trans retin-
oic acid (RA). Cells were monitored by light microscopy
and harvested after 3, 6 and 9 days of treatment. An
increased neurite formation was visual in RA treated cells
compared to untreated cells. Western blot analysis of pro-
tein extracts from these cells demonstrated a marked
decrease in FET expression upon prolonged retinoic acid
treatment (Figure 6). No change in localization of the FET
proteins was detected by immunofluorescence analysis
after RA treatment of SH-SY5Y cells (not shown).

FUS, EWS and TAF15 gene expression is gradually 
attenuated in differentiating human embryonic stem cells
We further investigated FET family gene expression during
spontaneous differentiation of cultured human embry-
onic stem cells (hESCs). Samples were collected from
morphologically distinct inner and peripheral parts of the
hESC colonies (Figure 7a). Quantitative RT-PCR was used
to assay FET gene expression as well as markers for differ-
entiation and proliferation (Figure 7b). FET gene expres-
sion was over time downregulated in the peripheral parts
of the hESC colonies. However, the expression of individ-
ual FET genes diverged partially from each other. FUS and
TAF15 expression was considerably reduced in the periph-
eral parts while EWS showed only weak attenuation here.
In addition, TAF15 was slightly downregulated in the
inner parts, while FUS and EWS expression was main-
tained in these cells. An overall downregulation of
POU5F1 (OCT4) indicated that all hESCs had initiated
differentiation (POU5F1 expression is restricted to undif-
ferentiated cells). Over time, peripheral colonies sponta-

EWS expression in salivary glandFigure 1
EWS expression in salivary gland. EWS shows cytoplas-
mic expression in ductal and serous cells but is undetectable 
in the cytoplasm of mucous cells. DC – ductal cells, MC – 
mucous cells, SC – serous cells.

DC

MC

SC

Table 2: Calculated Spearman correlations of FET expression patterns from Table 1

FUS N FUS CP EWS N EWS CP TAF15 N TAF15 CP

FUS N 1 0.40** 0.67** -0.08 0.87** 0.35**
FUS CP 1 0.19 0.29** 0.47** 0.96**
EWS N 1 0.06 0.63** 0.19
EWS CP 1 -0.04 0.30**
TAF15 N 1 0.43**
TAF15 CP 1

Asterisks indicate statistical significance with p < 0.01. N – nuclear, CP – cytoplasmic.
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Table 1: Expression patterns of FUS, EWS and TAF15 in human tissues by TMA immunohistochemistry analysis

FUS EWS TAF15
Organ Tissue/Cell type Nuclear Cytoplasmic Nuclear Cytoplasmic Nuclear Cytoplasmic

Adrenal gland Parenchymal cells +++ +++ +++ - +++ +++
Appendix Appendix smooth muscle +++ +++ +++ - +++ +++
Brain
- white matter Glial cells +++ - +++ - +++ -
- grey matter Neurons +++ + +++ - +++ +
Breast Glandular epithelium +++ +++ +++ - +++ +++

Myoepithelial cells +++ +++ ++ - +++ +++
Endothelium, capillaries +++ ++ +++ - +++ +++
Adipocytes +++ - +++ - +++ -

Colon & Rectum Surface epithelium +++ +++ ++ - +++ +++
Crypt epithelium +++ +++ ++ - +++ +++
Malt tissue, germinal centre +++ - +++ - +++ -
Malt tissue, mantle zone +++ - +++ - ++ -

Duodenum Enterocytes, villus epithelium +++ +++ ++ - +++ +++
Enterocytes, crypt epithelium +++ +++ ++ - +++ +++
Ganglion cells +++ +++ +++ - +++ +++

Endometrium
- proliferative Glandular epithelium +++ +++ +++ - +++ +++

Stromal cells +++ - ++ - +++ -
- secretory Glandular epithelium +++ +++ +++ - +++ +++

Stromal cells ++ - ++ - ++ -
Esophagus Squamous epithelium, suprabasal +++ +++ +++ - +++ +++

Squamous epithelium, basal ++ +++ + - ++ +++
Endothelium, medium-sized arteries +++ + +++ - +++ ++
Smooth muscle cells +++ +++ +++ - +++ +++

Gallbladder Mucosal epithelium +++ +++ +++ +++ +++ +++
Smooth muscle cells +++ +++ +++ - +++ +++

Heart Cardiac muscle cells - - - - - -
Cardiac endothelium - - ++ - - -

Kidney Glomeruli ++ - ++ - ++ -
Proximal tubuli +++ +++ +++ +++ +++ +++
Distal tubuli +++ +++ +++ +++ +++ +++

Liver Hepatocytes - +++ ++ +++ - +++
Bile duct epithelium +++ +++ +++ +++ +++ +++

Lung & Bronchus Respiratory epithelium +++ +++ +++ - +++ +++
Glandular epithelium +++ +++ +++ - +++ +++
Pneumocytes ++ - ++ - ++ +
Chondrocytes +++ - ++ - ++ -
Endothelium, capillaries +++ - +++ - +++ -
Muscle artery, endothelial cells +++ - +++ - +++ -
Muscle artery, smooth muscle +++ +++ +++ - +++ +++

Lymph node Germinal centre ++ - ++ - ++ -
Mantle zone ++ - ++ - ++ -

Myometrium Smooth muscle cells + - + - + -
Nasal mucosa Respiratory epithelium +++ ++ ++ - +++ ++

Glandular epithelium +++ +++ +++ - +++ +++
Ovary Follicular epithelium +++ +++ ++ - +++ +++

Ovarial stromal cells +++ - +++ - +++ -
Pancreas Exocrine glands +++ +++ +++ - +++ +++

Duct epithelium +++ +++ +++ - +++ +++
Endocrine cells +++ +++ +++ +++ +++ +++

Placenta Syncytiotrophoblasts ++ ++ + + ++ +++
Cytotrophoblasts +++ + ++ + +++ +

Prostate Prostate epithelium + + ++ + ++ +
Basal cells +++ - +++ - ++ -

Salivary gland Serous cells +++ +++ +++ ++ +++ +++
Mucous cells +++ + ++ - +++ +
Intercalated/striated ducts +++ +++ +++ +++ +++ +++
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neously differentiated towards a mesodermal cell fate
defined by an upregulation of VIM expression. The inner
parts showed a very weak upregulation of SOX2, an early
ectodermal marker as well as downregulation of the pro-
liferation marker CCNA2. FUS, EWS and TAF15 expres-
sion at the protein level was confirmed in hESCs by
immunofluorescence (Figure 7c).

FET protein expression is maintained in growth arrested 
cells and unaltered by serum starvation or stimulation
As FET gene expression correlated with the proliferation
marker CCNA2 in hESCs we investigated whether actively
proliferating cells have increased FET expression com-
pared to quiescent cells. Proliferating, semi-confluent
F470 primary human fibroblasts were compared with
confluent contact-inhibited cells. Also, experiments stud-
ying FET expression following serum-stimulation/starva-
tion were performed in HT-1080 cells. These experiments
did no reveal any significant differences in FET expression
as analyzed by western blot (Additional file 3).

Discussion
In the present study, we show that the FET proteins are
ubiquitously expressed throughout human tissues and
only a few cell types lack FET expression. The proteins dis-
play cell type-specific localization with FUS and TAF15
having highly similar expression patterns. FUS and EWS
have previously been found in the nucleus as well as in the
cytoplasm and shown to shuttle between these locations
[14,15]. We here report that TAF15 is also present in both
of these compartments in numerous human cell types.
This implies that TAF15 may participate in nuclear-cyto-
plasmic shuttling in much the same way as the other FET
family members do. In general, FUS and TAF15 showed
cytoplasmic localization in most cell types while EWS was
more rarely seen in this compartment. Expression data
obtained for EWS in the present study differed from that
recently made available on the internet [16], where the
EWS expression was judged to be restricted to the nucleus
throughout human tissues. Differences in staining proce-
dure and analysis could explain discrepancies between
our studies. In this study, cytoplasmic EWS was mainly
detected in secretory cell types, suggesting that EWS is
involved in the expression of secreted proteins. In salivary

Myoepithelium +++ - +++ - +++ -
Salpinx Glandular epithelium +++ +++ +++ - +++ +++
Seminal vesicle Epithelium +++ +++ +++ +++ +++ +++
Skeletal muscle Skeletal muscle fibers ++ - ++ - +++ -
Skin & Subcutis Keratinocytes +++ +++ +++ - +++ +++

Melanocytes - - - - - -
Fibroblasts +++ - +++ - +++ -
Ecrine epithelium, sweat gland +++ +++ ++ - +++ +++
Endothelium, capillaries +++ - +++ - +++ -
Adipocytes +++ - ++ - ++ -

Spleen Lymphocytes, red and white pulp ++ - ++ - + -
Stomach
- body Surface & foveolar epithelium +++ +++ +++ - +++ +++

Specialized glandular epithelium + +++ + +++ + +++
- antrum Surface & foveolar epithelium +++ +++ ++ - +++ +++

Specialized glandular epithelium +++ +++ ++ - +++ ++
- smooth muscle Smooth muscle cells +++ - +++ - +++ -
Small bowel Enterocytes, villus epithelium +++ +++ ++ - +++ +++

Enterocytes, crypt epithelium +++ +++ ++ - +++ +++
Ganglion cells +++ +++ +++ +++ +++ +++

Testis Germinal epithelium +++ - +++ - +++ -
Leydig intestitial cells ++ ++ ++ - ++ +++
Spermatides + - + - ++ -

Thymus T-lymphocytes ++ - ++ - ++ -
Epithelium +++ + +++ - +++ +++

Thyroid Follicular epithelium +++ +++ ++ - +++ +++
Tonsil Squamous cell epithelium +++ +++ +++ - +++ +++

Lymphocytes +++ - +++ - +++ -
Umbilical cord Stromal cells +++ ++ ++ - +++ ++
Urinary bladder Urothelium +++ +++ +++ - +++ +++
Uterine cervix Squamous epithelium, basal +++ +++ ++ - +++ +++

Squamous epithelium, suprabasal +++ +++ +++ - +++ +++

The percentage of FET positive cells within an organ is indicated as: +++ (100-76% positively staining cells), ++ (75-26% positively staining cells), + 
(25-1% positively staining cells) and - (negative).

Table 1: Expression patterns of FUS, EWS and TAF15 in human tissues by TMA immunohistochemistry analysis (Continued)
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FET protein localization in cultured human cellsFigure 2
FET protein localization in cultured human cells. (a) Actively proliferating cells stained with antibodies for FET pro-
teins. FUS and TAF15 show both nuclear and cytoplasmic localization while EWS is found solely in nuclei. Scale bars indicate 10 
μm. (b) HT-1080 cells stably expressing FET-GFP proteins show nuclear localization of all three proteins and in addition cyto-
plasmic localization for FUS-GFP and TAF15-GFP. Scale bars indicate 10 μm. (c) Western blots showing FET-GFP proteins of 
expected sizes and specificity of FET antibodies used. Wells contain the following lysates: FUS-GFP clone 1 (1), EWS-GFP clone 
1 (2), TAF15-GFP clone 1 (3), GFP clone 1 (4), HT-1080 (5), FUS-GFP clone 2 (6), EWS-GFP clone 2 (7), TAF15-GFP clone 2 
(8), GFP clone 2 (9). No crossreactivity is seen between different FET antibodies. Endogenous FET proteins correspond to the 
lower bands seen in all lanes and tagged FET proteins to upper bands. GFP adds approximately 27 kDa to the total size of the 
respective protein. FUS-GFP and EWS-GFP are expressed at slightly augmented levels compared with their endogenous coun-
terparts while TAF15-GFP is expressed at much higher levels than wild type TAF15.
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FET proteins localize to stress granulesFigure 3
FET proteins localize to stress granules. Images show FET proteins (green) and immunostaining for the stress granule 
marker TIA-1 (red). Nuclei are visualized by DAPI staining (blue) in the bottom image of each column (a) Overexpression of 
FET-GFP proteins cause stress granule formation in transiently transfected HT-1080 cells. (b) HT-1080 cells stably expressing 
FET-GFP proteins show localization of tagged proteins to stress granules upon arsenite treatment. (c) Endogenous FET pro-
teins localize to stress granules in response to oxidative stress in HeLa cells. (d) Stable transfectants of FUSA-GFP and GFP 
show similar minor signal in granules upon arsenite treatment. Scale bars indicate 5 μm.
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FUS and TAF15 localize to spreading initiation centersFigure 4
FUS and TAF15 localize to spreading initiation centers. F470 and HT-1080 cells co-stained with FET antibodies and 
focal adhesion/SIC markers Vinculin, FAK and RACK1. Arrowheads indicate areas of cytoplasmic overlap and nuclei are shown 
in blue by DAPI staining in the merge images. Bars indicate 5 μm.
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EWS FAK merge EWS FAK merge
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Heterogenous FET protein expression in human tissuesFigure 5
Heterogenous FET protein expression in human tissues. Brown staining indicates FET expression while blue staining 
shows negatively staining nuclei. (a) Individual epithelial cells of esophagus show large heterogeneity in FET expression levels. 
(b) FET expression is elevated in proliferating endometrium (upper panel) compared to differentiated secretory endometrium 
(lower panel).

FUS EWS TAF15
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(b)

FUS EWS TAF15
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FET expression is reduced during neuronal differentiation of SH-SY5Y neuroblastoma cellsFigure 6
FET expression is reduced during neuronal differentiation of SH-SY5Y neuroblastoma cells. Cells were treated 
with 1 μM of all-trans retinoic acid and lysed at different time points. Relative quantification (RQ) values were obtained by nor-
malizing FET expression against beta actin expression in each sample and by further comparing RA treated with untreated cells 
at each time point. Data from one of two independent experiments yielding similar results.
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FET gene expression is attenuated in differentiating human embryonic stem cellsFigure 7
FET gene expression is attenuated in differentiating human embryonic stem cells. (a) A colony of spontaneously 
differentiating hESCs. Inner and peripheral parts of the colonies were harvested based on cell morphology. (b) Relative expres-
sion of selected mRNAs in samples from inner or peripheral parts of colonies analyzed by quantitative real-time PCR with 
ACTB as endogenous control. POU5F1 – pluripotency marker,SOX2 – ectodermal marker, VIM – mesodermal marker,CCNA2 – 
proliferation marker. The day 12 measurement consists of one sample taken from inseparable, mixed cell populations. (c) 
Undifferentiated hESCs show positive FET protein staining. Cells were stained with primary antibodies for FET proteins and 
visualized with Cy3-conjugated secondary antibodies (red). The merge images additionally show DAPI staining of nuclei (blue).
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gland, the EWS protein was expressed in both the cyto-
plasm and nucleus of ductal and serous cells. In contrast,
EWS was restricted to a nuclear localization in mucous
cells. This and other examples of differential expression of
the FET proteins in closely related cell types indicate spe-
cific roles in regulation of specialized functions. In cul-
tured cells of different tissue origins, EWS expression was
limited to the nucleus whereas FUS and TAF15 were
observed in both compartments. This pattern reflected the
most common type of expression seen in tissues and may
be explained by homogeneous culture conditions. The
strong nuclear preference of EWS in most cell types in con-
trast to FUS and TAF15 may be connected to its more fre-
quent mutation in human cancers were the oncoprotein is
restricted to nuclear functions as an aberrant transcription
factor. The localization of normal EWS in various subcel-
lular compartments has previously been shown to be
affected by methylation [17] but it is unknown whether
localization of FUS and TAF15 is regulated in a similar
manner.

A majority of cells overexpressing GFP-tagged FUS and
TAF15 showed cytoplasmic aggregates that colocalized
with the stress granule marker TIA-1. These results implied
that the FET proteins might target SGs as part of cellular
stress response. SGs are phase-dense particles that are
composed of stalled translation pre-initiation complexes,
mRNAs and RNA-binding proteins and appear in the cyto-
plasm of cells exposed to environmental stress [11]. To
further confirm SG localization of FET proteins, we
exposed stable FET transfectants and HeLa cells to oxida-
tive stress and heat shock. Exogenous as well as endog-
enous FET proteins localized to SGs in these experiments.
However, exogenous EWS was detected in SGs only in
occasional cells and endogenous EWS showed weak SG
staining compared to FUS and TAF15. This could be
explained by higher amounts of cytoplasmic EWS during
and post mitosis. FUS was recently reported in stress gran-
ules in a small subset of thapsigargin treated cells and also
when expressed as an RFP-tagged protein [18]. We here
further show that the entire FET family is targeted to SGs
upon environmental stress. FUSA and GFP expressing
cells showed similar degrees of signal in SGs which
seemed to correlate with the amount of GFP tagged pro-
tein present in the cell. It is therefore possible that a cer-
tain amount of ectopically expressed protein associates
with stress granules as a consequence of overexpression
and non-specific protein aggregation. The SG signals from
the full-length FET members were judged to far exceed
those of the FUS mutant and the GFP protein alone. It is
therefore likely that the RNA-binding domain of FUS is
needed for stress granule targeting. Several other RNA-
binding proteins have previously been found in stress
granules, e.g. TIA-1, HuR, hnRNPA1, YB-1 and FMRP [19-
21], and many of these proteins have been shown to reg-

ulate translation of specific mRNAs [22-25]. For the FMRP
protein, this regulation was proposed to be mediated by
miRNA-coupled translational repression [25]. FMRP,
hnRNPA1 and YB-1 have previously been found together
with FUS and EWS in messenger ribonucleoprotein com-
plexes [26,27], suggesting related functions of these pro-
teins. In addition, the FET proteins are part of nuclear
miRNA processing complexes [8,9] and in our work
detected in cytoplasmic SGs known to contain miRNAs
[28]. Hence, it is possible that the FET proteins interact
with miRNAs and shuttle in protein-RNA complexes con-
taining these non-coding RNAs. FUS has previously been
associated with polysomes [29] and implicated in regula-
tion of localized protein synthesis in dendritic spines [30].
The protein is also proposed to be a component of
processing bodies, cellular structures with a direct role in
mRNA degradation and with implications in RNAi-medi-
ated post-transcriptional gene silencing [21]. However, we
could not detect any structures resembling p-bodies and
the FET family was restricted to stress granules in our
hands. Based on these data we speculate that the FET pro-
teins have functions in regulation of post-transcriptional
gene expression during both normal and stress-induced
situations.

The FUS protein has earlier been detected in spreading ini-
tiation centers, focal adhesion-like complexes that assem-
bles upon early cell spreading [13]. We here show that
TAF15 is also present in these structures. However, EWS
was undetectable in SICs, possibly is due to a low abun-
dance of cytoplasmic EWS protein under normal condi-
tions. FUS has previously been reported in NMDA
receptor-adhesion protein signaling complexes [31] and
all three FET proteins have been found to interact with v-
Src [32], a protein known to indirectly induce adhesion
turnover and actin remodeling [33]. de Hoog et al. have
also found that perturbation of RNA-binding proteins (in
particular FUS) affects cell spreading [13]. These data sug-
gest that at least two of the FET proteins are involved in
focal adhesion-related processes. We noted that stable
transfectants expressing FUS variants were somewhat
larger than other stably transfected cells but seemingly not
flatter when visually inspected in the z-axis by confocal
microscopy. The reason for this larger phenotype of FUS-
expressing cells and a putative connection with cell
spreading is currently not understood.

In addition to in vivo cell type-specific localization, the
FET proteins showed heterogeneous expression levels
within the same cell type in multiple organs. These results
suggested that the expression of the FET proteins may be
regulated in individual cells by external factors provided
by neighboring cells and the microenvironment. Observa-
tions from cell cultures with uniform growth conditions
and cell populations, showing only small variances in FET
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expression between individual cells, supported this
assumption. However, we saw no change in FET expres-
sion following experimental serum starvation or stimula-
tion of fibrosarcoma tumor cells, implying that externally
provided serum factors are not directly affecting FET
expression in these cells. An alternative hypothesis is that
the observed heterogeneity depends on differentiation,
attributing a developmental role for the proteins. We
investigated this hypothesis experimentally by measuring
FET expression in SH-SY5Y neuroblastoma cells induced
to differentiate by retinoic acid. In these experiments, FET
expression was markedly decreased in cells receiving RA
treatment compared to untreated cells. To further investi-
gate expression of the FET family during differentiation,
we measured FET gene expression in spontaneously differ-
entiating human embryonic stem cells. We conclude from
these data that the three FET genes are regulated upon
early differentiation in a lineage-specific manner.

Altered FUS and EWS expression during differentiation
has been reported by several studies [34-37]. Further-
more, FUS and EWS have been shown to be required for
B lymphocyte development and for spermatogenesis in
mice [38-40]. One study showed that an alternative EWS
isoform is augmented during neuronal development [41].
In the present study, we could however not distinguish
between EWS isoforms. Nevertheless, our data together
with previous reports point to functions for the FET family
in specialized cells, rather than the housekeeping func-
tions inferred from earlier promoter studies [42-44]. This
conclusion is further supported by the lack of FET expres-
sion in terminally differentiated melanocytes and cardiac
muscle cells. Bertolotti et al. previously showed that the
FET proteins associate with both common and distinct
TFIID complexes and RNA polymerase II subunits [3,45].
These results implied overlapping as well as unique func-
tions within the FET family. Our data showing differences
in regulation and expression patterns of the individual
FET proteins in specific cell types supports this interpreta-
tion and suggests that these unique functions are mani-
fested at a cell type-specific level.

A previous study showed that the FUS homolog pigpen is
regulated during the transition between proliferating and
quiescent endothelial cells [46], providing an alternative
explanation for the heterogenic FET expression seen in tis-
sues and under experimental conditions. Therefore, we
investigated a possible correlation between proliferation
and FET expression by comparing FET expression in pro-
liferating and growth arrested cells. However, no relation-
ship between active proliferation and FET protein
expression was seen in these experiments. In support of
our data is an earlier study showing that FUS expression is
uncorrelated to proliferative status [47]. Thus, we con-

clude differentiation rather than proliferation as an
expression determinant for the FET family proteins.

FET proteins have been shown to be part of the splicing
machinery [2] and oncogenic variants of the FET proteins
are reported to promote aberrant splicing [48,49]. Inter-
estingly, altered subcellular localization of the FUS and
EWS associated hnRNPA1 protein results in alternative
splicing. In addition, an overall change in subcellular dis-
tribution of splicing factors has been proposed to influ-
ence pre-mRNA processing [50]. We thus speculate that
the heterogeneous tissue and cell type-specific expression
patterns shown by the FET proteins and their involvement
in RNA processing link these proteins to cell type-specific
splicing. The miRNA profile of a given cell could in a sim-
ilar manner be affected by FET protein expression as many
miRNAs are spliced out of introns of protein-coding genes
[51]. The tumor type-specific FET fusion oncogenes
present in multiple human cancers have documented
strong transforming properties and the tumors display
few other cytogenetic aberrations [52,53]. As alternative
splicing and miRNA maturation are emerging as central
for both development and disease [54,55], abnormal FET
oncoproteins disturbing these vital processes could
thereby instigate significant biological changes resulting
in cancer. Analogously, altered adhesion and stress
response are common traits of many human cancers and
these properties could be targeted by oncogenic variants
of FET proteins.

Conclusion
We conclude that the FUS, EWS and TAF15 proto-onco-
proteins are regulated and expressed in a cell type-specific
manner. Our results expand on previous knowledge and
imply multiple functions for the FET family proteins in
specialized cells during both normal and stress-induced
situations. These results suggest functions for all FET fam-
ily members in differentiation, stress response and cell
spreading in addition to their previously known activities
as transcription factors. The multifunctionality of the FET
family proteins makes them vulnerable targets for cancer-
causing mutations as such events could affect several cel-
lular control systems simultaneously. A deregulation of
multiple vital processes may explain why FET oncogenes
resulting from single mutations can disturb cellular
homeostasis and in the extension lead to the development
of cancer.

Methods
Immunohistochemistry
Human normal organ tissue arrays (Super Bio Chips) con-
taining 59 core biopsies per slide were stained with pri-
mary antibodies against human FUS [56], EWS and TAF15
(Additional file 4), according to the protocol supplied by
the manufacturer. Briefly, slides were deparaffinized in
Page 13 of 17
(page number not for citation purposes)



BMC Cell Biology 2008, 9:37 http://www.biomedcentral.com/1471-2121/9/37
xylene and rehydrated by successive incubations in etha-
nol followed by immersion in water. Antigens were
retrieved by microwave treatment in citrate buffer pH 6.0
and endogenous peroxidase activity was quenched using
hydrogen peroxide. Slides were incubated with FET anti-
bodies in Tris-buffered saline pH 7.4 with 2% bovine
serum albumin (BSA, Sigma-Aldrich) and 0.05% Tween
20 (Sigma-Aldrich) overnight at 4°C. Primary antibodies
were detected using biotin conjugated secondary antibod-
ies (Multi Link, DakoCytomation), which were further
incubated with Streptavidin/HRP (P0397, DakoCytoma-
tion) and then treated with metal enhanced DAB solution
(Pierce). Tissue arrays were counterstained with Mayer's
hematoxylin (Histolab), dehydrated in ethanol and
xylene, and mounted in Pertex (Histolab). Slides were
analyzed with an Olympus BX51 light microscope and
selected tissues were photographed on a Nikon Eclipse
E1000M light microscope fitted with a ProgRes 3012 dig-
ital camera (Kontron Elektronik). FET expression patterns
for individual cell types in each tissue were scored based
on the amount of positively staining cells (Table 1).
Nuclear and cytoplasmic FET expression was estimated by
the following criteria: +++ (100-76% positively staining
cells), ++ (75-26% positively staining cells), + (25-1%
positively staining cells) and - (negative).

Cell culture
HT-1080 fibrosarcoma cells [57] and F470 primary
human fibroblasts [58] were maintained in RPMI1640
medium (Sigma-Aldrich). HeLa cells (a kind gift from Dr.
Tommy Nilsson, Department of Medical and Clinical
Genetics, Goteborg University) were cultured in Dul-
becco's Modified Eagles Medium High Glucose (E15-011,
PAA) and U1242MG glioblastoma cells [59] were grown
in Basal Medium Eagle with Earle's salts (41010, Gibco).
The neuroblastoma cell line SH-SY5Y [60] was main-
tained in Minimal Essential Medium with Earle's salts.
Growth medium was further supplied with 2 mM L-
Glutamine, 10% fetal bovine serum (FBS), penicillin (50
U/ml) and streptomycin (50 μg/ml) and cells were cul-
tured at 37°C in 5% CO2. Cells were seeded in Lab-Tek
flaskettes (Nalge Nunc International) one day prior to
immunofluorescence analysis and transfection (see
below). Undifferentiated human embryonic stem cell
lines SA 121 (Cellartis AB, Gothenburg, Sweden), HUES1
[61] and HUES3 [61] were maintained on mitotically
inactivated mouse embryonic fibroblasts (in the Semb
laboratory). SA121 was mechanically passaged every 4–7
days and half of medium was changed every second day as
previously reported [62]. HUES1 and HUES3 were enzy-
matically passaged and cultivated as described [61]. In
vitro experiments using hESCs were performed according
to Swedish ethical guidelines. Stress experiments were per-
formed by treating selected cell types with 0.5 mM sodium

arsenite (Sigma-Aldrich) or heat-shock at 44°C for 1 h as
described [12].

Immunofluorescence
Cells were fixed in 3.7% formaldehyde in phosphate-
buffed saline (PBS) pH 7.2 at 37°C and stained with pri-
mary antibodies for FUS, EWS, TAF15 (Additional file 4)
in PBS supplied with 2% BSA and 0.2% Triton x-100
(Merck). Spreading initiation centers were assayed in
F470 cells three hours after seeding and in HT1080 cells
16 hours after seeding and stained with antisera directed
at Vinculin, FAK and RACK1 (Additional file 4). Stress
granules were detected with a TIA-1 antibody (Additional
file 4). Primary antibodies were detected using goat Cy3
conjugated secondary antibodies (Fluorolink, Amersham
Biosciences) or combinations of donkey/goat/rabbit Alex-
aFluor 488/568 conjugated secondary antibodies (Molec-
ular Probes). Slides were mounted using Prolong Gold
antifade with DAPI (Molecular Probes) and allowed to
cure overnight. Cellular fluorescence was imaged using a
Zeiss LSM510 META confocal microscope system or a
Zeiss Axioplan 2.

Transfection
The full-length coding regions of FUS, EWSR1 and TAF15
were cloned into EGFP-N1 expression vectors (Clontech)
as described [58]. A FUS mutant (here named FUSA)
expressing amino acids 1–175 was generated in a similar
manner. Cloning primer sequences are available as sup-
plementary data (Additional file 5). FET-EGFP expression
vectors were transiently transfected into cells using the
FuGENE 6 transfection reagent (Roche), according to the
instructions supplied by the manufacturer. On the follow-
ing day, transfected cells were fixed, mounted and imaged
as before. HT-1080 cells stably expressing FUS, FUSA,
EWS and TAF15 tagged with EGFP as well as control cells
expressing EGFP were obtained after two weeks of pro-
longed culture of transfected cells under selection of 800
μg/ml geneticin (G418, Invitrogen). These cells were sub-
sequently subjected to single-cell dilution cloning. Stable
transfectants were maintained in RPMI1640 medium sup-
plied with 500 μg/ml geneticin. Stable transfectants were
fixed and imaged as before. Total protein was obtained by
lysis in radioimmunoprecipitation (RIPA) buffer (50 mM
Tris-HCl pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton
x-100, 1% Sodium deoxycholate, 0.1% SDS) containing
1× Complete Mini Protease Inhibitor (Roche). For cell
measurements, stable transfectants were fixed as earlier
and stained with 0.2% Evans Blue (Merck) in PBS (whole-
cell staining) before red fluorescence was recorded with
an Axio Imager Z1 microscope (Zeiss). Images were
thresholded for background and average cell areas were
obtained by using the "Analyze Particles" function in the
public domain ImageJ software.
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Differentiation and proliferation assays
Differentiation of neuroblastoma cells was performed as
previously described [63]. Briefly, SHSY-5Y cells were
treated with 1 μM all-trans retinoic acid for 3, 6 or 9 con-
secutive days to induce neuronal differentiation. Treat-
ment with vehicle (DMSO) was used as control. Protein
extracts were obtained by lysis in buffer containing 1%
Nonidet-P40, 10% glycerol, 20 mM Tris buffer pH 8, and
197 mM NaCl. In addition, FET protein expression was
assayed in actively proliferating and quiescent F470 cells
as well as in serum stimulated and starved HT-1080 cells.
For F470 cells, 80% confluent, actively proliferating cells
were lysed and compared with contact-inhibited cells that
had grown to full confluence over seven days. For HT-
1080 cells, serum-free medium was added to 50% conflu-
ent cells grown in 6-well plates for 24 hours after which
half of the wells received full-serum medium (10% FBS)
and the rest serum-free medium for 20 hours. Total pro-
tein was extracted with RIPA lysis buffer as before.

Western blot
Protein concentrations in cell extracts were determined
using a bicinchoninic acid (BCA) protein assay kit
(Pierce) and diluted for equal loading on gels. Samples
were mixed with 4× LDS sample buffer (Invitrogen), 10%
0.5 M dithiothreitol and run on NuPage 4–12% Bis-Tris
gels (Invitrogen). Proteins were blotted onto PVDF mem-
branes (Immobilon) and probed with FET antibodies
(Additional file 4). GFP protein was detected using an
anti-GFP antibody and beta actin expression was used as
loading control (Additional file 4). Bands were visualized
by horseradish peroxidase-conjugated secondary antibod-
ies by chemiluminscent detection (SuperSignal West Dura
Extended Duration Substrate, Pierce) or alternatively
membranes were developed with BCIP/NBT tablets
(Sigma-Aldrich). Chemiluminscent membranes were
imaged using a FluorChem imaging system (Alpha
Innotech Corporation) and bands were quantified using
ImageJ.

Quantitative real-time PCR
Inner and peripheral rings of hESC colonies were sepa-
rated mechanically and total RNA was extracted with Gen-
Elute Mammalian Total RNA kit (Sigma-Aldrich). RNA
concentrations were measured with the NanoDrop ND-
1000 spectrophotometer. Reverse transcription was per-
formed with SuperScript III (Invitrogen) according to the
instructions of the manufacturer using a mixture of 2.5
μM oligo(dT) and 2.5 μM random hexamers (both Invit-
rogen) as primers. Real-time PCR measurements were per-
formed on an ABI PRISM 7900HT Sequence Detection
System (Applied Biosystems). Twenty microliter reactions
contained 10 mM Tris (pH 8.3), 50 mM KCl, 3 mM
MgCl2, 0.3 mM dNTP, 1 U JumpStart Taq polymerase (all
Sigma-Aldrich), 0.5 × SYBR Green I (Invitrogen) and 400

nM of each primer (MWG-Biotech). Primer sequences are
available as supplementary data (Additional file 5). 1×
Reference Dye (Sigma-Aldrich) was used as passive refer-
ence dye. Formation of correctly sized PCR products was
confirmed by agarose gel electrophoresis (2%) for all
assays and melting curve analysis for all samples. Gene
expression data was normalized against ACTB expression
after reference genes evaluation [64].

Statistical analysis
Spearman's rank correlation coefficients were calculated
for nuclear and cytoplasmic expression of FET proteins in
tissues using the SPSS 15.0 software. Coefficients were
considered significant at the 0.01 level using two-tailed
tests.

Abbreviations
EGFP: enhanced green fluorescent protein; FBS: fetal
bovine serum; FET: FUS-EWS-TAF15; hESC: human
embryonic stem cells; miRNA: microRNA; PBS: phos-
phate-buffered saline; RA: all-trans retinoic acid; RIPA:
radioimmunoprecipitation; RQ: relative quantification;
SIC: spreading initiation center; SG: stress granule; TBS:
tris-buffered saline; TFIID: transcription factor II D; TMA:
tissue microarray.
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Additional material

Additional file 1
Immunofluorescence and transfections. Immunostaining and transfec-
tions of FET proteins. (a) Endogenous and transient FET protein expres-
sion in four different cultured cell types with DAPI staining of nuclei 
(blue). Scale bars indicate 10 μM. (b) Stable expression of FET-EGFP 
proteins in HT1080 with DAPI staining (blue). Scale bars indicate 10 
μM.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-37-S1.pdf]

Additional file 2
Cell area measurements. Clones of stable transfectants were seeded out, 
stained and imaged as described in Materials and methods. Average cell 
areas were calculated from 130–200 cells in five images per clone. Error 
bars show standard error of mean.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-37-S2.pdf]
Page 15 of 17
(page number not for citation purposes)

http://www.biomedcentral.com/content/supplementary/1471-2121-9-37-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2121-9-37-S2.pdf


BMC Cell Biology 2008, 9:37 http://www.biomedcentral.com/1471-2121/9/37
Acknowledgements
We thank Dr. Douglas Melton (Department of Molecular and Cellular Biol-
ogy, Harvard University) and Cellartis AB for supplying hESC lines. Thanks 
to Dr. Tommy Nilsson (Department of Medical and Clinical Genetics, 
Goteborg University) for the HeLa cell line. This work was supported by 
grants from the Swedish Cancer Society, Assar Gabrielssons Research 
Foundation and the Johan Jansson Foundation for Cancer Research. AS is 
supported by a postdoctoral fellowship award from the Swedish Research 
Council.

References
1. Keene JD, Lager PJ: Post-transcriptional operons and regulons

co-ordinating gene expression.  Chromosome Res 2005,
13(3):327-337.

2. Law WJ, Cann KL, Hicks GG: TLS, EWS and TAF15: a model for
transcriptional integration of gene expression.  Brief Funct
Genomic Proteomic 2006, 5(1):8-14.

3. Bertolotti A, Lutz Y, Heard DJ, Chambon P, Tora L: hTAF(II)68, a
novel RNA/ssDNA-binding protein with homology to the
pro-oncoproteins TLS/FUS and EWS is associated with both
TFIID and RNA polymerase II.  Embo J 1996, 15(18):5022-5031.

4. Crozat A, Aman P, Mandahl N, Ron D: Fusion of CHOP to a novel
RNA-binding protein in human myxoid liposarcoma.  Nature
1993, 363(6430):640-644.

5. Delattre O, Zucman J, Plougastel B, Desmaze C, Melot T, Peter M,
Kovar H, Joubert I, de Jong P, Rouleau G, Aurias A, Thomas G: Gene
fusion with an ETS DNA-binding domain caused by chromo-
some translocation in human tumours.  Nature 1992,
359(6391):162-165.

6. Stolow DT, Haynes SR: Cabeza, a Drosophila gene encoding a
novel RNA binding protein, shares homology with EWS and
TLS, two genes involved in human sarcoma formation.
Nucleic Acids Res 1995, 23(5):835-843.

7. Guipaud O, Guillonneau F, Labas V, Praseuth D, Rossier J, Lopez B,
Bertrand P: An in vitro enzymatic assay coupled to proteomics
analysis reveals a new DNA processing activity for Ewing sar-
coma and TAF(II)68 proteins.  Proteomics 2006,
6(22):5962-5972.

8. Shiohama A, Sasaki T, Noda S, Minoshima S, Shimizu N: Nucleolar
localization of DGCR8 and identification of eleven DGCR8-
associated proteins.  Exp Cell Res 2007, 313(20):4196-4207.

9. Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B,
Cooch N, Shiekhattar R: The Microprocessor complex medi-

ates the genesis of microRNAs.  Nature 2004,
432(7014):235-240.

10. Riggi N, Cironi L, Suva ML, Stamenkovic I: Sarcomas: genetics, sig-
nalling, and cellular origins. Part 1: The fellowship of TET.  J
Pathol 2007, 213(1):4-20.

11. Anderson P, Kedersha N: Stressful initiations.  J Cell Sci 2002,
115(Pt 16):3227-3234.

12. Kedersha NL, Gupta M, Li W, Miller I, Anderson P: RNA-binding
proteins TIA-1 and TIAR link the phosphorylation of eIF-2
alpha to the assembly of mammalian stress granules.  J Cell
Biol 1999, 147(7):1431-1442.

13. de Hoog CL, Foster LJ, Mann M: RNA and RNA binding proteins
participate in early stages of cell spreading through spread-
ing initiation centers.  Cell 2004, 117(5):649-662.

14. Zinszner H, Sok J, Immanuel D, Yin Y, Ron D: TLS (FUS) binds
RNA in vivo and engages in nucleo-cytoplasmic shuttling.  J
Cell Sci 1997, 110(Pt 15):1741-1750.

15. Belyanskaya LL, Gehrig PM, Gehring H: Exposure on cell surface
and extensive arginine methylation of ewing sarcoma (EWS)
protein.  J Biol Chem 2001, 276(22):18681-18687.

16. Human Protein Atlas   [http://www.proteinatlas.org/]
17. Belyanskaya LL, Delattre O, Gehring H: Expression and subcellu-

lar localization of Ewing sarcoma (EWS) protein is affected
by the methylation process.  Exp Cell Res 2003, 288(2):374-381.

18. Goodier JL, Zhang L, Vetter MR, Kazazian HH Jr: LINE-1 ORF1
protein localizes in stress granules with other RNA-binding
proteins, including components of RNA interference RNA-
induced silencing complex.  Mol Cell Biol 2007, 27(18):6469-6483.

19. Anderson P, Kedersha N: RNA granules.  J Cell Biol 2006,
172(6):803-808.

20. Guil S, Long JC, Caceres JF: hnRNP A1 relocalization to the
stress granules reflects a role in the stress response.  Mol Cell
Biol 2006, 26(15):5744-5758.

21. Yang WH, Bloch DB: Probing the mRNA processing body using
protein macroarrays and "autoantigenomics".  Rna 2007,
13(5):704-712.

22. Kawai T, Lal A, Yang X, Galban S, Mazan-Mamczarz K, Gorospe M:
Translational control of cytochrome c by RNA-binding pro-
teins TIA-1 and HuR.  Mol Cell Biol 2006, 26(8):3295-3307.

23. Mazan-Mamczarz K, Galban S, Lopez de Silanes I, Martindale JL, Ata-
soy U, Keene JD, Gorospe M: RNA-binding protein HuR
enhances p53 translation in response to ultraviolet light irra-
diation.  Proc Natl Acad Sci USA 2003, 100(14):8354-8359.

24. Cammas A, Pileur F, Bonnal S, Lewis SM, Leveque N, Holcik M, Vag-
ner S: Cytoplasmic Relocalization of Heterogeneous Nuclear
Ribonucleoprotein A1 Controls Translation Initiation of
Specific mRNAs.  Mol Biol Cell 2007, 18(12):5048-5059.

25. Jin P, Zarnescu DC, Ceman S, Nakamoto M, Mowrey J, Jongens TA,
Nelson DL, Moses K, Warren ST: Biochemical and genetic inter-
action between the fragile × mental retardation protein and
the microRNA pathway.  Nat Neurosci 2004, 7(2):113-117.

26. Zinszner H, Albalat R, Ron D: A novel effector domain from the
RNA-binding protein TLS or EWS is required for oncogenic
transformation by CHOP.  Genes Dev 1994, 8(21):2513-2526.

27. Kanai Y, Dohmae N, Hirokawa N: Kinesin transports RNA: isola-
tion and characterization of an RNA-transporting granule.
Neuron 2004, 43(4):513-525.

28. Leung AK, Calabrese JM, Sharp PA: Quantitative analysis of Arg-
onaute protein reveals microRNA-dependent localization to
stress granules.  Proc Natl Acad Sci USA 2006,
103(48):18125-18130.

29. Belly A, Moreau-Gachelin F, Sadoul R, Goldberg Y: Delocalization
of the multifunctional RNA splicing factor TLS/FUS in hip-
pocampal neurones: exclusion from the nucleus and accu-
mulation in dendritic granules and spine heads.  Neurosci Lett
2005, 379(3):152-157.

30. Fujii R, Takumi T: TLS facilitates transport of mRNA encoding
an actin-stabilizing protein to dendritic spines.  J Cell Sci 2005,
118(Pt 24):5755-5765.

31. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG: Pro-
teomic analysis of NMDA receptor-adhesion protein signal-
ing complexes.  Nat Neurosci 2000, 3(7):661-669.

32. Lee HJ, Kim S, Pelletier J, Kim J: Stimulation of hTAFII68 (NTD)-
mediated transactivation by v-Src.  FEBS Lett 2004, 564(1–
2):188-198.

Additional file 3
Proliferation assay. Western blot showing FET expression in contact-
inhibited and actively proliferating F470 cells as well as in serum stimu-
lated and starved HT1080 cells. Beta actin expression is used as a loading 
control.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-37-S3.pdf]

Additional file 4
Primary antibodies. Primary antibodies used.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-37-S4.doc]

Additional file 5
Primer sequences. Primers used for cDNA cloning and quantitative real-
time PCR.
Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2121-9-37-S5.doc]
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