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Abstract

Background

The availability of the bovine genome sequence and SNP panels has improved various

genomic analyses, from exploring genetic diversity to aiding genetic selection. However,

few of the SNP on the bovine chips are polymorphic in buffalo, therefore a panel of single

nucleotide DNA markers exclusive for buffalo was necessary for molecular genetic analyses

and to develop genomic selection approaches for water buffalo. The creation of a 90K SNP

panel for river buffalo and testing in a genome wide association study for milk production is

described here.

Methods

The genomes of 73 buffaloes of 4 different breeds were sequenced and aligned against the

bovine genome, which facilitated the identification of 22 million of sequence variants among

the buffalo genomes. Based on frequencies of variants within and among buffalo breeds,

and their distribution across the genome, inferred from the bovine genome sequence,
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90,000 putative single nucleotide polymorphisms were selected to create an Axiom® Buffalo

Genotyping Array 90K.

Results

This 90K “SNP-Chip” was tested in several river buffalo populations and found to have

*70% high quality and polymorphic SNPs. Of the 90K SNPs about 24K were also found to

be polymorphic in swamp buffalo. The SNP chip was used to investigate the structure of buf-

falo populations, and could distinguish buffalo from different farms. A Genome Wide Associ-

ation Study identified genomic regions on 5 chromosomes putatively involved in milk

production.

Conclusion

The 90K buffalo SNP chip described here is suitable for the analysis of the genomes of river

buffalo breeds, and could be used for genetic diversity studies and potentially as a starting

point for genome-assisted selection programmes. This SNP Chip could also be used to ana-

lyse swamp buffalo, but many loci are not informative and creation of a revised SNP set spe-

cific for swamp buffalo would be advised.

Introduction

The water buffalo is a key species for smallholder producers in developing countries, and an

important resource for specialized markets. Domestic buffaloes have a global distribution and

are found in 129, mainly tropical and sub-tropical, countries. They contribute to the rural

economies, especially in Asia, and in many regions where buffalo are more important than cat-

tle. The world population of buffalo is about 195 million compared to more than 1.4 billion

cattle, 1 billion sheep and 500–600 million goats [1]. There are two types of domestic water

buffalo, the River Buffalo (Bubalus bubalis bubalis, 2n = 50) which has a global distribution,

but are the predominant type found in the west from India to Europe. The second type, the

Swamp Buffalo (Bubalus bubalis carabanensis, 2n = 48), is found more frequently in the eastern

Asian countries, particularly from India through China, Indonesia and the Philippines. The

buffalo population in Asia is more than 188 million, representing 95% of the world population

[2–4]. In Africa domestic water buffalo are only found in Egypt, with about 4 million head,

and more recently in Mozambique [4].

River type buffalo have been genetically selected for improved milk production: Mediterra-

nean buffalo in Italy produce more than 2,000Kg of milk in a 270-day lactation with 8.1% fat

and 4.6% protein, while in India the Jaffarabadi, and in Pakistan the Nili-Ravi, give more than

2,000Kg in a 319-day lactation with 7.6% fat [5]. Advanced reproductive technologies, includ-

ing artificial insemination and embryo transfer, are routinely used where there is good buffalo

husbandry to increase the rate of genetic gain. The swamp type buffalo, in contrast, has tradi-

tionally been found in extensive rural production systems providing traction in addition to a

little milk and meat. Smaller than the river type buffalo, there has been little selection of

swamp buffalo for production traits. Swamp buffalo typically produce 1-2Kg milk per day and

average 350Kg milk per lactation [5].

Buffalo production systems vary widely in different countries depending on the local econ-

omy, climate, geography, cropping systems, size of the farms and primary purpose for buffalo
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production: milk, meat or draught. Buffaloes are kept in systems varying from extensive beef

production, through rural multi-purpose systems to intensively managed herds for milk pro-

duction [6, 7].

In Latin America, Murrah and Jaffarabadi river buffaloes were imported from India

between the 1940s and 1960s [8, 9] to improve production from swamp buffalo which had

been imported centuries before. More recently, Mediterranean buffalo have been imported

from Italy. In Asia, native swamp type buffalo are being crossed or replaced by river type buf-

falo from India and Europe. The indiscriminate crossing of buffalo species and breeds results

in a loss of local adaptation and the overall loss in genetic diversity of buffalo globally.

The use of molecular genetic approaches may increase the rate of gain in selection pro-

grammes and could be used to characterize, understand, and safeguard the global buffalo

genetic diversity. The complete buffalo genome sequence and de novo assembly of an Italian

Mediterranean river buffalo using MaSuRCA assembler [10] was completed by the Interna-

tional Water Buffalo Genome Consortium (GCF_000471725.1; deposited on NCBI in Novem-

ber 2013). A second genome sequence, of an Indian River buffalo is also available at NCBI

with a read depth of 17–19X [11], which is aligned against the cattle assembly Btau 4.0 (acces-

sion PRJNA33659). The genome sequence is an important starting point for genetic and com-

parative genomic studies of buffalo. A SNP genotyping panel is required to further realise the

potential of genomics for water buffalo genetics.

In this article, we describe the creation and testing of a genome-wide 90,000 SNP panel for

the water buffalo. The performance of the panel was investigated in several buffalo populations

and the panel was tested in a genome wide association study (GWAS) for milk production

traits in Italian Mediterranean river buffalo.

Results

SNP sources

A total of 73 river buffaloes from 4 breeds (Italian Mediterranean, Murrah, Nili-Ravi, Jaffara-

badi) were sequenced to a 5- to 12-fold depth using Illumina paired-end reads, yielding a total

of 470X genome coverage. Buffalo sequences were aligned to the bovine UMD3.1 genome

using Burrows-Wheeler Alignment tool (BWA) [12] and a total of 22,293,567 SNPs were dis-

covered from the aligned sequences from the four river breeds.

Axiom assay design

The distribution of SNPs on the buffalo genome was estimated by mapping the flanking

sequence onto the UMD3.1 bovine genome sequence. The distribution of SNP minor allele

frequencies (MAF) showed substantial differences among breeds (Fig 1), with the Jaffarabadi

showing a markedly different frequency spectrum than the other 3 breeds having a large num-

ber of SNPs with low MAF.

The selection of candidate SNPs for the array design was based on genome-wide distribu-

tion with respect to the bovine UMD 3.1 genome, and was weighted with respect to signifi-

cance of breed as follows: Mediterranean 30%; Murrah 30%; Jaffarabadi 20%; Nili-Ravi 20%.

More than 16 million SNPs were selected for the development of the SNP assay, for which pro-

besets were designed. The Affymetrix in-silico probeset design and evaluation pipeline predicts

the performance of SNPs and calculates a conversion probability value using various criteria

including: binding energy, GC content, and the expected degree of non-specific hybridization

to multiple genomic regions. Regions that are highly repetitive in the genome, duplicated

within the genome, contained an interfering SNP within 30bp from the candidate SNP or con-

tained ambiguity were assigned a value of 0. The probesets with lowest predicted performance,
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with p-convert score of<0.56, were not considered. Approximately 9 million SNPs remained

after applying these filters. A/T or G/C “allele-specific” SNPs were excluded as these SNPs

require twice the number of probes on the Affymetrix chip compared with other SNP types.

After all the filters had been applied 7.2 million SNPs remained which were then used to select

the 90,000 markers.

For each SNP, where both probesets passed all filters, the probeset with the highest p-con-

vert value was chosen giving 147,854 validated probesets of which 123,040 were selected for

synthesis. An additional 1,179 markers were added from the BovineHD array based on cross

reactivity and MAF in buffalo. The design also included 2000 non-polymorphic probes to

assess sample quality during genotyping (DQC probes).

The final Axiom1 Buffalo Genotyping array design comprises 123,029 probes, which

includes (single or double) probes to interrogate 89,988 SNPs, 5,799 QC probes and 1,784 gen-

der determination probes. The distribution of the gaps between the 97,581 SNPs in relation to

the bovine UMD 3.1 sequence was as follows: the minimum, maximum, 1-, 5-, 25-, 50-, 75–

95-, and 99-percentile gap sizes were on average 17,462; 1,145,380; 19,566; 20,877; 24,718;

28,611; 34,085; 42,416; and 55,359 bp, respectively, across all loci (Fig 2).

Axiom assay performance

The genome-wide Axiom1 Buffalo Genotyping array was tested across 31 buffalo populations

(15 River, 16 Swamp, 1 Cape buffalo, 1 Anoa) with a total of 1605 individuals (1376 River Buf-

falo, 200 Swamp Buffalo, 15 Cape Buffalo, 14 Anoa) to assess the performance of the chip. The

data were processed through an automated open-source pipeline, AffyPipe [13], to extract and

edit SNP probes [14]. A total of 67,330 and 9,229 SNP probes were validated as polymorphic

Fig 1. SNP MAF. Distribution of SNP Minor Allele Frequency (MAF) for Mediterranean, Murrah, Jaffarabadi and Nili-Ravi breeds

used in the design of the SNP panel.

https://doi.org/10.1371/journal.pone.0185220.g001
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and monomorphic high quality SNPs (PolyHighResolution and MonoHighResolution),

respectively, considering all samples of river breeds. Fewer than 0.1% (83 SNPs) gave spurious

signals with Variable Intensity Non-hybridizing Oligos (VINO cluster), which most likely

arise from variations within the target probe sequence that were not identified in the sequence

set used for the probe design. About 1.7% of the SNP (1,494) were missing one of the homozy-

gous genotypes (NoMinorHom). Only 4.1% (3,668) of the probes had a call rate below the

threshold. In total 9.1% of the SNP were rejected for low quality genotypes according to quality

criteria used. Considering only the PolyHighResolution SNPs, the average sample call rate was

99.75% and the average sample reproducibility calculated by comparing the 26 replicate sam-

ples included in the sample set was 99.96%, demonstrating high quality and accuracy of the

genotyping in the target river type buffalo.

The performance of the panel was also tested on more than 150 Swamp buffaloes from

China, Thailand, Brazil and Indonesia. Genotyping success for the Swamp buffalo was, as may

be expected, lower than for the river buffalo: 23,938 SNPs (24.5%) were polymorphic high res-

olution, while 47,016 (48.2%) were high quality monomorphic SNPs. In total 26,627 (27.3%) of

the SNPs were rejected as low quality, i.e. where call rates were below the threshold for calling,

missing a homozygote or genotypes were poorly separated which is possibly caused by poly-

morphisms in probe target sequences. The distribution of polymorphic SNPs in River and

Swamp buffalo across the genome is shown in Table 1. The panel was also tested in Anoa

(Bubalus depressicornis) and in the distantly related wild Cape buffalo. Results for 14 samples

from Anoa and 15 from Cape buffalo (Syncerus caffer) from South Africa indicated that 7,652

(7.8%) and 3,239 (3.3%) of the SNPs were polymorphic high resolution in these species respec-

tively suggesting these are ancestral variations, while 52,425 (53.7%) and 65,641 (67.3%) were

high quality monomorphic SNPs.

Application to genome-wide association study (GWAS)

A GWAS was performed using 529 individuals for which milk records were available from 4

Italian Mediterranean buffalo farms. These were genotyped with the 90K SNP panel giving

66,534 high-quality (PolyHighRes) SNPs with MAF >1%. As the draft genomic sequence of

the buffalo (GCF_000471725.1) is currently not assigned to chromosomes, chromosome and

position for all SNPs were based on the bovine UMD 3.1 genome sequence. This also facili-

tated the use of the bovine gene annotation information.

Fig 2. SNP GAP. The distribution of the gaps between the 90,000 SNPs with respect to their location in the

bovine UMD 3.1 sequence.

https://doi.org/10.1371/journal.pone.0185220.g002
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Analysis of the population structure from the genotype data showed a strong farm of origin

effect. One main cluster included animals from 2 farms (1859 and 26225), while individuals

from the other two farms (71801 and 61207) clustered separately, showing only minimal over-

lap with the other farms (Fig 3). This is explained by the use of same artificial insemination

(AI) bulls by farms 1859 and 26225, hence the observed genetic overlap. Farms 71801 and

61207 used mainly natural service bulls, which were less unrelated.

A genome-wide association analysis was performed with the GenABEL R package, using the

GRAMMAR procedure [15]. First, an additive polygenic model was fitted to obtain individual

residuals using the genomic relationship matrix. Then, the SNP association was tested using a

linear model on residuals from the first step. The SNP statistical significance was corrected by

the stratification of the population using the Genomic Control option [16] (Fig 4). Milk yield

heritability, based on a classical animal model and recorded pedigree which was used to build

an additive relationship matrix, was 0.38, whereas it increased to 0.45 using the genomic rela-

tionship matrix. These values are similar to those obtained in cattle for the same trait [17].

A total of nine significant associations were found on the bovine-based chromosomes

(BBC) 4, 11 19, 23 and 29 (Fig 5). Among these, five SNPs (including the SNP with the lowest

Table 1. Numbers of heterozygous SNP per chromosome. SNPs are annotated per bovine chromosome as the buffalo genome is not yet assigned to

chromosomes.

Buffalo BTA (BBC) Number of heterozygous SNPs in river buffalo Number of heterozygous SNPs in swamp buffalo

1 4048 2768

2 3525 2409

3 3135 2058

4 3068 1909

5 3022 1942

6 2982 1765

7 2890 1795

8 2828 2077

9 2620 1594

10 2656 1620

11 2762 1933

12 2172 1413

13 2173 1419

14 2233 1416

15 2084 1474

16 2062 1278

17 1884 1317

18 1668 998

19 1639 970

20 1813 1335

21 1789 1240

22 1609 1064

23 1346 900

24 1691 954

25 1202 817

26 1347 879

27 1191 866

28 1223 714

29 1249 796

https://doi.org/10.1371/journal.pone.0185220.t001
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P-value) were identified in two regions of BBC11 at ~33Mb and ~76Mb (Table 2). The most

significant association (P-value < 7.24 x 10–06) was for two SNPs in the 33Mb region of

BBC11 (AX-85080229 and AX-85093842). The significant SNP on BBC4 (AX-85143079) was

located (~51 Kb) downstream of Collagen alpha-2 gene (COL1A2) which is associated with the

kinetics of milk production in sheep [18].

Discussion

The present work describes the design and testing of a genome-wide SNP panel for water buf-

falo. Over 5.8 million high quality SNPs were discovered in 4 breeds of river buffalo, 3 from

Fig 3. MDS. Multidimensional scaling plot showing the relationship among individuals from the four farms

used in this study.

https://doi.org/10.1371/journal.pone.0185220.g003

Fig 4. Q-Q plot. Quantile-Quantile plot showing P-values from GWAS. Deviations from the distribution under

the hypothesis (null hypothesis of no association) are showed.

https://doi.org/10.1371/journal.pone.0185220.g004
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the Indian sub-continent and the 4th from Italy. The distribution of SNP minor allele frequen-

cies (MAF) differed among breeds (Fig 1). These data were used to design a SNP assay for

genomic studies in river buffalo. An Affymetrix genotyping array with 123,040 probes was cre-

ated to interrogate 90,000 SNPs. This array was tested across River and Swamp buffalo, Anoa

and the wild African Cape buffalo. The panel had 66,534 polymorphic high quality SNPs with

a MAF greater than 1% when tested in Italian river buffalo, and a further 10,025 high quality

SNP loci which were not polymorphic. These later loci may prove to be polymorphic in other

populations. The Axiom array was also tested in Swamp buffalo, which is an evolutionarily dis-

tinct species with 48 chromosomes compared with 50 of the river buffalo, resulting from a

fusion of river buffalo chromosomes 4 and 9 in swamp buffalo [19]. Estimates based on molec-

ular data (mitochondrial DNA, microsatellite loci and biochemical markers) suggest the spe-

cies diverged 150,000 to 1.7 million years ago [20–22]. In total 23,938 SNPs were polymorphic

in Swamp buffalo with a MAF of 1% or greater, which may be ancestral variation that existed

prior to species divergence. A further 47,016 loci were of good quality, but non-polymorphic

in the samples used for the panel validation. These loci show sequence conservation at probe

binding sites, but it is likely that the polymorphism occurred in River buffalo after species

divergence. Among the 97,581 SNPs on the Axiom array, 3,239 were also polymorphic in the

wild African Cape Buffalo, which is estimated to have diverged from the river buffalo in the

Miocene period 5–23 million years ago [23]. These SNPs therefore are likely to represent his-

toric variations originating from a common ancestor prior to divergence of domestic and wild

buffalo species.

Fig 5. Association between individual SNP and milk yield from a genome-wide association study.

Each dot represents a SNP that has passed the quality threshold and the high above the X axis is proportional

to the strength of the association.

https://doi.org/10.1371/journal.pone.0185220.g005

Table 2. Significant SNPs obtained in the GWA study for milk yield in 529 Italian Mediterranean buffalo.

SNP BTA Position N P-val

AX-85080229 11 34107047 529 7.24E-06

AX-85114201 11 76258496 529 1.86E-05

AX-85125077 11 75854702 529 2.04E-05

AX-85143079 4 11676240 529 2.16E-05

AX-85093842 11 32955361 529 3.32E-05

AX-85048470 23 6051649 529 4.23E-05

AX-85140457 19 13338605 528 5.01E-05

AX-85041172 11 75787638 528 5.49E-05

AX-85086756 29 9205713 528 6.64E-05

https://doi.org/10.1371/journal.pone.0185220.t002
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Pedigree information is essential to calculate estimated breeding values (EBV), but is also

needed to measure and control inbreeding. Even though, pedigree information is often

unavailable for buffalo populations, the use of SNP information can be used to reconstruct

pedigrees and resolve relationships among individuals to support breeding programs. Geno-

mic relationship can be more accurate than traditional pedigrees which routinely contain

errors [24, 25]. In the present study the heritability of milk traits increased from 0.38 calculated

using recorded pedigrees to 0.45 using the genomic relationship. Inbreeding can also be esti-

mated from SNP data, e.g. using Runs of Homozygosity [26]. Controlling inbreeding is impor-

tant to maintain genetic diversity and to avoid the expression of recessive defects. This is

especially important in small local populations where buffaloes are bred by smallholders with

few animals and often using a common bull.

The SNP data can be used to disentangle the genetic structure of buffalo populations at the

farm level, as demonstrated here using the 90K SNP array where we show that farm of origin

can be distinguished, when stock bulls are used. Conversely the convergence of genetic diver-

sity among farms is observed where a small number of AI bulls is used, as is the case of the

Mediterranean buffalo.

For swamp buffalo, nearly 24K SNPs on the Axiom array were polymorphic with a MAF

greater than 1%. A large number of SNP loci in river buffalo were monomorphic in the swamp

buffalo, suggesting that these polymorphisms occurred following the divergence of the two

buffalo species. Nevertheless, there are sufficient polymorphic loci on the panel e.g. to explore

the diversity of the swamp buffalo. Swamp buffalo are being upgraded for milk production by

crossing with the more productive river buffalo in countries such as China, the Philippines

and South America [27]. The SNP panel can be used to study introgression of the different spe-

cies and estimate the level of admixture.

The SNP array reported here was used to perform a genome-wide association study which

identified nine significant SNPs associated with milk production. These SNPs were mapped

onto bovine chromosomes 4, 11, 19, 23 and 29. Using the annotation of the bovine genome

(UMD 3.1) putative candidate genes associated with milk yield close to significant SNPs were

identified and retrieved using Ensembl BIOMART. The networks within which these genes

mapped are related to cell morphology, cellular function and maintenance, cell cycle and

organ morphology. The merged network, which includes most of the genes close to significant

SNPs (Fig 6), shows enrichment in the metabolic pathways, particularly Gluconeogenesis I (p-

value 9,71E-03). The significant SNP on BBC4 (AX-85143079) is located ~51 Kb downstream

of COL1A2 gene, which has been associated with the kinetics of milk production in sheep,

with an under expression of COL1A2 found in low-milk flow ewes [18]. SNPs in the intronic

region of COL1A2 have been associated with milk fat yield in cattle [28]. COL1A2 is a focus

gene for the functional network for glucose synthesis and may link together genes near to

other significant SNPs from the GWAS analysis (Fig 7). COL1A2 is therefore a good candidate

gene for milk yield in buffalo while the supply of glucose to the mammary gland is critical for

milk production and hence this is a relevant network for further study.

Other genes near to the significant SNPs are not obvious candidates for milk production

traits. The two most significant SNPs, located on BBC 11 (AX-85080229 and AX-85093842),

are 120Kbp downstream of Neurexin-1 (NRXN1), which is involved in cell signalling. The clos-

est gene to the significant SNP on BBC23 (AX-85048470) is tubulointerstitial nephritis antigen

(TINAG), a gene involved in immune response. The other two significant SNPs, AX-85140457

on BBC19 and AX-85086756 on BBC29 are close to genes involved in mitochondrial RNA

methylation (Mitochondrial rRNA Methyltransferase 1 Homolog–MRM1) and in the cell

structure (Coiled-Coil Domain Containing 81- CCDC81), respectively.
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Genetic breeding programs for livestock are increasing using high-density genotyping pan-

els which are comprised of SNPs selected to evenly span the genome [29, 30]. However, inclu-

sion of putative causal mutations with large effect, such as those identified from GWAS, within

genotyping panels are used in estimating genomic breeding values and have been shown to

increase the accuracy [31]. Therefore refinement of this panel may take into account GWAS

data such as that presented here and should also consider the inclusion of addition loci selected

to be polymorphic in swamp buffalo.

The use of genetically improved river buffalo breeds will ensure milk supply for poor com-

munities, but using semen from a limited number of improved bulls will threaten the genetic

diversity of local populations. This is particularly the case for swamp buffalo which are being

replaced or crossed with the more productive river buffalo. The SNP array described here, if

used appropriately, will facilitate the identification of genes of major effect or the application

of genomic selection to enhance the genetic improvement of buffalo, while being used to mon-

itor and manage cross breeding programmes to maintain genetic diversity at a global level.

Fig 6. IPA merged network. The focus molecules are indicated in bold. One of the link molecules in the merging

networks is D-Glucose, important for the milk synthesis and involved in the gluconeogenesis pathway.

https://doi.org/10.1371/journal.pone.0185220.g006
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Materials and methods

Animals and DNA samples

DNA sequences for SNP discovery came from Pakistan—Nili-Ravi breed, Italy—Mediterranea

italiana breed, and Brazil—Murrah and Jaffarabadi breeds. Samples genotyped to test the SNP

array were provided by members of the International Water Buffalo Genome Consortium

including: China, Indonesia, Thailand, Pakistan, Philippines, Iran, Egypt, Mozambique, Roma-

nia, Italy, Colombia and Brazil. Cape Buffalo were provided by Stellenbosch University (South-

Africa) and Anoa by Antwerp Zoo (Belgium) and Glamorgan University (UK).

Samples for the GWAS came from four commercial farms in Italy and all animals sampled

belonged to the Mediterranea italiana breed. Buffy coat was obtained by centrifuging fresh

blood at 4000G for 20 minutes at 4˚C followed by 2 washes for 10 minutes first with sterile

water then 0.9% NaCl. Buffy coat samples were resuspended in the lysis buffer [Tris-EDTA

(100mM Tris-HCL pH 8.0, 10mM EDTA pH 8.0), 250mM NaCl] and preserved at -20˚C until

DNA extraction. DNA was extracted from thawed buffy coat using a classic procedure by incu-

bating at 55˚C per 30 minutes with proteinase K (20mg/mL, Sigma-Aldrich, USA) and 10%

SDS followed by 2 phenol-chloroform (1:1, 1V) extractions and a chloroform extraction [32].

DNA was precipitated by adding 2 volumes 100% ethanol, the pellet washed with 70% ethanol,

dried and then dissolved in 1X TE (100mM Tris-HCL pH 8.0, 10mM EDTA pH 8.0). All the

samples were collected during routine veterinary checks according to ethical rules in the coun-

tries participating to the International Water Buffalo Genome Consortium (IWBGC).

Construction of libraries and sequencing

The IWBGC produced sequence for 86 buffaloes from 8 breeds with a depth between 5 and

12X by Illumina paired-end reads, yielding a total of 470X genome coverage. Of these data,

sequences of 4 breeds were used for SNP discovery yielding a total of 22,293,567 SNPs.

Fig 7. IPA molecule function network. The focus molecules are highlighted in purple. This network shows

the central role of D-Glucose molecule and its connections with the function of the molecules close to

significant SNPs in the present study.

https://doi.org/10.1371/journal.pone.0185220.g007
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SNP discovery

Buffalo sequences were aligned to the bovine UMD3.1 genome using BWA software version

0.5.9 (http://bio-bwa.sourceforge.net/) [20]. Aligned sequences were processed with SAMtools

version 0.1.18 [33] and Picard tools [34] in order to format the data for SNP calling with the

UnifiedGenotyper of the genome analysis tool kit GATK [35]. All computation steps related to

sequence alignment and SNP calling was conducted using the iAnimal cyberinfrastructure sys-

tem [36].

Only SNPs that were heterozygous in at least one individual within each buffalo breed were

kept for. The heterozygous SNPs were filtered and only those that had a base pair quality score

of Q>10 and did not have another SNP within 10bp were retained, to maximize genotyping

probe efficacy. The final unique, filtered SNP list was used for genotyping all sequenced indi-

viduals. These SNPs were genotyped from the original unfiltered SNP data for each individual

(e.g. a filtered VCF file including heterozygous and homozygous SNPs, regardless of the qual-

ity score). These steps were repeated for each breed and for the combined data (concatenation

of all breeds). The allele frequencies for these SNPs were calculated in each breed as well as

across the breeds and the minor allele frequencies (MAF) were then estimated.

The FastaAlternateReference function from the Genome Analysis Toolkit was used to cre-

ate a “buffalo corrected” version of the Bos taurus UMD3.1 reference. The corrected reference

was identical to the bovine genome, except for targeted changes to loci where homozygous

SNPs were identified across all buffalo individuals when compared to the bovine genome to

reflect the true buffalo sequence. Flanking sequence was retrieved from the buffalo corrected

reference to create probes for all filtered SNPs.

SNP selection for the assay design

The algorithm used to select SNP for the assay was based on that used to select SNP for the

Illumina BovineSNP50 [37]. This approach emphasizes quality of SNP sources by using

“waves” of SNP of descending quality. The definitions of the waves used in this chip design are

included in Table 3. For SNP i and breed j, a score was calculated as

scorei ¼
Xgroups

j

wj �MAFi;j � ½Bi;j � Ai;j� � 1 �
jðAi;j þ Bi;jÞ=2 � Pij

½Bi;j � Ai;j�=2

 ! !

where wj is the weight used for each breed, MAFi,j is the minor allele frequency of locus i in

breed j, Ai,j and Bi,j are the starting and ending positions of the current gap for breed j that con-

tains locus i, and Pi is the location of SNPi. At each round of SNP selection, the SNP with the

highest score is selected for addition to the assay, the endpoints (Ai,j and Bi,j) are updated for

SNP where Pi is contained in the existing gap, i.e. Pi � [Ai,Bi]. It should be noted that the end-

points of the gap surrounding Pi are the nearest flanking loci on each side that are polymorphic

in breed j.

Affymetrix design pipeline

The probes on the Axiom Buffalo Genotyping Array 90K were designed using the standard

Affymetrix design pipeline. At the time of writing, more than a hundred custom Axiom arrays

have been designed using this pipeline.

The Affymetrix design pipeline uses a number of stringent rules to identify the SNPs with

the highest probability of conversion. At the end of this process, all the SNPs that are unlikely

to provide a good conversion are filtered out. The basic input data required by the pipeline are
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Table 3. Criteria of SNP used in each wave of SNP selection, total number that met the criteria, and number used from that wave.

Wave Total SNP SNP Used Nearest

SNP

Oligos1 Design Score2 SNP Score3 MAF4

Medit Murr Jaff NR

1 114 113 >30 bp 1 0.8 100 >0.20 >0.20 >0.20 >0.20

2 379 371 >30 bp 1 0.8 100 >0.10 >0.10 >0.10 >0.10

3 72 72 >30 bp 1 0.8 100 >0.05 >0.05 >0.05 >0.05

4 111 108 >30 bp 2 0.8 100 >0.05 >0.05 >0.05 >0.05

5 5,022 4,042 >30 bp 1 0.7 100 >0.20 >0.20 >0.20 >0.20

6 14,862 8,452 >30 bp 1 0.7 100 >0.10 >0.10 >0.10 >0.10

7 3,087 1,399 >30 bp 1 0.7 100 >0.05 >0.05 >0.05 >0.05

8 3,349 1,304 >30 bp 2 0.7 100 >0.05 >0.05 >0.05 >0.05

9 4,201 1,721 >30 bp 1 0.7 50 >0.20 >0.20 >0.20 >0.20

10 11,042 3,818 >30 bp 1 0.7 50 >0.10 >0.10 >0.10 >0.10

11 3,157 1,004 >30 bp 1 0.7 50 >0.05 >0.05 >0.05 >0.05

12 2,641 786 >30 bp 2 0.7 50 >0.05 >0.05 >0.05 >0.05

13 4,348 1,155 >30 bp 1 0.6 100 >0.20 >0.20 >0.20 >0.20

14 11,621 2,428 >30 bp 1 0.6 100 >0.10 >0.10 >0.10 >0.10

15 2,461 553 >30 bp 1 0.6 100 >0.05 >0.05 >0.05 >0.05

16 3,243 641 >30 bp 2 0.6 100 >0.05 >0.05 >0.05 >0.05

17 4,011 1,022 >30 bp 1 0.6 50 >0.20 >0.20 >0.20 >0.20

18 9,293 1,936 >30 bp 1 0.6 50 >0.10 >0.10 >0.10 >0.10

19 2,797 581 >30 bp 1 0.6 50 >0.05 >0.05 >0.05 >0.05

20 2,842 540 >30 bp 2 0.6 50 >0.05 >0.05 >0.05 >0.05

21 925 134 >30 bp 1 0.8 100 >0 >0 >0 >0

22 38,340 4,551 >30 bp 1 0.7 100 >0 >0 >0 >0

23 28,103 2,896 >30 bp 1 0.7 50 >0 >0 >0 >0

24 27,644 2,039 >30 bp 1 0.6 100 >0 >0 >0 >0

25 22,351 1,876 >30 bp 1 0.6 50 >0 >0 >0 >0

26 186 7 >30 bp 2 0.8 100 >0 >0 >0 >0

27 5,550 299 >30 bp 2 0.7 100 >0 >0 >0 >0

28 4,186 295 >30 bp 2 0.7 50 >0 >0 >0 >0

29 5,311 308 >30 bp 2 0.6 100 >0 >0 >0 >0

30 4,123 312 >30 bp 2 0.6 50 >0 >0 >0 >0

31 11 1 >10 bp 1 0.8 100 >0.20 >0.20 >0.20 >0.20

32 36 0 >10 bp 1 0.8 100 >0.10 >0.10 >0.10 >0.10

33 7 0 >10 bp 1 0.8 100 >0.05 >0.05 >0.05 >0.05

34 5 0 >10 bp 2 0.8 100 >0.05 >0.05 >0.05 >0.05

35 436 37 >10 bp 1 0.7 100 >0.20 >0.20 >0.20 >0.20

36 1,030 65 >10 bp 1 0.7 100 >0.10 >0.10 >0.10 >0.10

37 191 11 >10 bp 1 0.7 100 >0.05 >0.05 >0.05 >0.05

38 245 19 >10 bp 2 0.7 100 >0.05 >0.05 >0.05 >0.05

39 453 48 >10 bp 1 0.7 50 >0.20 >0.20 >0.20 >0.20

40 825 61 >10 bp 1 0.7 50 >0.10 >0.10 >0.10 >0.10

41 282 20 >10 bp 1 0.7 50 >0.05 >0.05 >0.05 >0.05

42 228 18 >10 bp 2 0.7 50 >0.05 >0.05 >0.05 >0.05

43 584 68 >10 bp 1 0.6 100 >0.20 >0.20 >0.20 >0.20

44 1,045 55 >10 bp 1 0.6 100 >0.10 >0.10 >0.10 >0.10

45 226 18 >10 bp 1 0.6 100 >0.05 >0.05 >0.05 >0.05

46 356 29 >10 bp 2 0.6 100 >0.05 >0.05 >0.05 >0.05

(Continued )
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the SNP 71mers (with the SNP at the 36th position) and the reference genome. In this case, Bos

taurus UMD3.1 was used as the reference genome.

Up to two independent probesets can be designed per SNP, one for each flanking sequence.

The first step of the pipeline therefore consists in choosing which flank to use for the probe

design. Each SNP flanking sequence is assigned to one of the following categories: “recom-

mended”, “non-recommended” or “neutral”. The rules used to make the decision about the

SNP flanking category are:

• The probe sequence must be unique in the target genome, therefore all the SNP sequences

were aligned against UMD3.1 to confirm sequence uniqueness.

• The presence of interfering secondary polymorphisms within the first 20 nucleotides from

the target SNP makes the sequence non-recommended. An interfering secondary polymor-

phism at a distance greater than 20 nucleotides makes the sequence neutral. In order to be

recommended, no secondary polymorphism has to be present in the entire length of the

flanking sequence.

Table 3. (Continued)

Wave Total SNP SNP Used Nearest

SNP

Oligos1 Design Score2 SNP Score3 MAF4

Medit Murr Jaff NR

47 673 84 >10 bp 1 0.6 50 >0.20 >0.20 >0.20 >0.20

48 999 104 >10 bp 1 0.6 50 >0.10 >0.10 >0.10 >0.10

49 379 38 >10 bp 1 0.6 50 >0.05 >0.05 >0.05 >0.05

50 344 41 >10 bp 2 0.6 50 >0.05 >0.05 >0.05 >0.05

51 61 6 >10 bp 1 0.8 100 >0 >0 >0 >0

52 2,067 76 >10 bp 1 0.7 100 >0 >0 >0 >0

53 1,701 78 >10 bp 1 0.7 50 >0 >0 >0 >0

54 1,956 98 >10 bp 1 0.6 100 >0 >0 >0 >0

55 1,805 121 >10 bp 1 0.6 50 >0 >0 >0 >0

56 11 0 >10 bp 2 0.8 100 >0 >0 >0 >0

57 325 13 >10 bp 2 0.7 100 >0 >0 >0 >0

58 299 14 >10 bp 2 0.7 50 >0 >0 >0 >0

59 384 17 >10 bp 2 0.6 100 >0 >0 >0 >0

60 371 28 >10 bp 2 0.6 50 >0 >0 >0 >0

61 662,323 28,696 >30 bp 1 0.6 50 >0 for 3 breeds

62 105,202 1,384 >30 bp 2 0.6 50 >0 for 3 breeds

63 41,051 441 >10 bp 1 0.6 50 >0 for 3 breeds

64 7,236 62 >10 bp 2 0.6 50 >0 for 3 breeds

65 988,679 10,457 >30 bp 1 0.6 50 >0 for 2 breeds

66 154,274 728 >30 bp 2 0.6 50 >0 for 2 breeds

67 63,443 251 >10 bp 1 0.6 50 >0 for 2 breeds

68 10,525 44 >10 bp 2 0.6 50 >0 for 2 breeds

69 3,022,893 0 1

70 502,138 0 2

Total 5,800,471 87,894

1Number of oligonucleotide probes needed to assay the SNP.
2Design score generated by Affymetrix
3SNP score indicating likelihood of a real SNP at the location generated by GATK.
4Minor allele frequency for Mediterranean (Medit), Murrah (Murr), Jaffarabadi (Jaff) and Nili-Ravi (NR).

https://doi.org/10.1371/journal.pone.0185220.t003
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• As an additional check, all the possible 16-mer generated from the flanking sequence were

aligned against the reference genome and the total number of hits checked.

• At the core of the SNP sequence evaluation there is a machine learning algorithm that calcu-

lates the expected probability of conversion–p convert score–based on the SNP sequence

composition. Only flanking sequences with a p convert score greater than 0.6 are

recommended.

Once all the SNP sequences are evaluated, the pipeline adds to the array design the SNPs

with at least one recommended flank. For such SNPs (in total 56960), only one probeset was

created. For the SNPs with two recommended flanks, the sequence with the highest p-convert

value was selected.

Additional 33,040 SNPs were selected to provide uniform predicted coverage of the buffalo

genome and reach the total number of 90,000 SNPs, even though no recommended flank

could be identified. In order to maximize the chance of conversion, for these additional SNPs

two separate probesets (one for each flank) were designed.

The selected SNPnuon were aligned with the UMD3.1 bovine reference then queried

against the buffalo reference sequence (NCBI GCF_000471725.1) to create a 71mer sequence

flanking each SNP. Each SNP selected was named based on the (bovine) chromosome and

position and the reference and alternative allele noted. In addition, if a SNP was present in the

first 25 bases or last 25 bases of the 71mer, these were notated as 5’ or 3’ SNPs within the

probe.

GWAS

Blood samples were obtained for 619 Italian Mediterranean buffalo from 4 farms in the Lom-

bardy region (Italy), and lactation records pedigree information was provided by the Italian

Buffalo Breeders Association (ANASB). DNA was extracted from the blood sample as

described above and genotyped with the Buffalo 90K Axiom Array.

Quality control (QC) on genotypes discarded replicated individuals and those with call rate

(CR) lower than 10%. Only the best quality SNP probe category “PolyHighRes” called by the

Affymetrix’ SNPolisher R package were retained and SNPs with a minor allele frequency

(MAF) and a CR lower than 1% and 10% respectively were rejected. Preliminary analysis of

the genetic structure of the population was conducted using the Multidimensional Scaling Plot

statistics (Fig 2).

Associations between SNP genotypes and lactation records were tested by fitting all SNP

simultaneously using the GRAMMAR procedure (Genome-Wide Rapid Association using

Mixed Model and Regression), applied within the GenABEL package [38]. The GWA analysis

was performed in a two-step procedure. First, lactation records were pre-corrected for fixed

and polygenic effects which were included to account for genetic sub-structure, as higher or

lower degree of genomic relationship between animals can have a direct impact on estimates,

increasing false positives and negatives. The following model was used:

LactRecordijkpqr
¼ mþ Farmi þ CalvYear j þ CalvSeasonk þ Calvingsp þ Ageq þ Polygenicr þ eijkpqr

where LactRecord is a 270 days in milk (DIM) conventional lactation record, μ is the general

mean, Farm is a fixed farm effect (i = 1,4), CalvYear is a fixed effect for calving year (j = 1,2 for

pre and post 2010), CalvSeason is a fixed effect for season of calving (k = 1,4), Calvings is a

fixed effect for the number of calvings (p = 1,2 for primiparous and multiparous), Age is a

covariate for age (in months), Polygenic is a polygenic effect for animal r, and e is the random
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residual, with e~ N(0,e2). The second step of the procedure involved the GWA study, using the

random residual of each individual, obtained from the above model, as pre-corrected pheno-

type. A significance threshold, corrected for residual population inflation (lambda) but not for

multiple testing, of p� 1 x 10−4 was used to retain SNPs for further analyses.

Pathway analysis

Putative genes 100kb down- and up-stream of all significant SNPs on at least one of the cross-

validation runs were retrieved using Ensembl BIOMART [39], and used to obtain a network

analysis of the results, using IPA1 Software (Ingenuity Pathway Analysis, www.ingenuity.

com) and InnateDB for details on the genes identified by the network [40]. For IPA, the refer-

ence set was the Ingenuity Knowledge Base (genes only) and three analyses were conducted.

The first to identify canonical pathways in which two or more genes were overrepresented and

networks of genes were built. Finally, upstream regulators of focus genes were identified.
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