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Abstract

Objectives

Eradicated infectious diseases like smallpox can re-emerge through accident or the designs

of bioterrorists, and cause heavy casualties. Presently, the populace is largely susceptible

as only a small percentage is vaccinated, and their immunity is likely to have waned. And

when the disease re-emerges, the susceptible individuals may be manipulated by disinfor-

mation on Social Media to refuse vaccines. Thus, a combination of countermeasures con-

sisting of antiviral drugs and vaccines and a range of policies for their application need to be

investigated. Opinions regarding whether to receive vaccines evolve over time through

social exchanges via networks that overlap with but are not identical to the disease propaga-

tion networks. These couple the spread of the biological and information contagion and

necessitate a joint investigation of the two.

Methods

We develop a computationally tractable metapopulation epidemiological model that cap-

tures the joint spatio-temporal evolution of an infectious disease (e.g., smallpox, COVID-19)

and opinion dynamics.

Results

Considering smallpox, the computations based on the model show that opinion dynamics

have a substantial impact on the fatality count. Towards understanding how perpetrators

are likely to seed the infection, we identify a) the initial distribution of infected individuals that

maximize the overall fatality count; and b) which habitation structures are more vulnerable

to outbreaks. We assess the relative efficacy of different countermeasures and conclude

that a combination of vaccines and drugs minimize the fatalities, and by itself, drugs reduce

fatalities more than the vaccine. Accordingly, we assess the impact of increase in the supply

of drugs and identify the most effective among a collection of policies for administering of
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drugs for various parameter combinations. Many of the observed patterns are stable to vari-

ations of a diverse set of parameters.

Conclusions

Our findings provide a quantitative foundation for various important elements of public

health discourse that have largely been conducted qualitatively.

1 Introduction

The devastating potential of a sudden outbreak of an infectious disease is self-evident in this

time of a pandemic. The havoc caused by the COVID-19 outbreak may not only be replicated

but may also be amplified should an eradicated infectious disease re-emerge. While naturally

occurring smallpox was eradicated in the 1970s through decades of a global vaccination cam-

paign, it could re-emerge under various scenarios [1–4]. Smallpox is considered a “potential

weapon in a bioterrorism attack” [5]. Variola virus (smallpox virus) is a category A bioterror-

ism agent [6] and stocks of the virus are known to officially exist in two high-security biosafety

level 4 laboratories in the United States (Centers for Disease Control and Prevention) and Rus-

sia (VECTOR Institute) and potentially elsewhere too [1–4]. For instance, in 2014, scientists at

the National Institute of Health (NIH) discovered a half-dozen forgotten vials of smallpox in a

storage room on its campus in Bethesda, Maryland [7, 8]. In addition, a virus similar to Vari-

ola, horsepox, has recently been synthesized from genetic pieces ordered in the mail [9], and

smallpox may be recreated using similar techniques.

If smallpox does re-emerge, vaccine hesitancy—that is, refusing immunization on non-

medical grounds (e.g., religious and philosophical beliefs, safety concern, disinformation)—

can thwart attempts to proactively prevent it. Anti-vaccination movements also known as

“Antivaxxers” have routinely propagated disinformation regarding immunization for various

diseases, e.g., that measles, mumps, and rubella (MMR) vaccine causes autism [10, 11]. A

recent survey has shown that only about 50% of women in the US would opt for COVID-19

vaccine [12]. US media estimates that about 50% of US service members would decline

COVID-19 vaccine. US marine services has put this number at 40% among US Marines, and

57% at one of its prominent bases, Camp Lejeune in North Carolina [13]. Vaccine hesitancy

caused a spike in measles outbreak in 2019 [14]. Consequently, the World Health Organization

(WHO) added vaccine hesitancy to their list of top 10 threats to global health in 2019 [15].

Vaccine hesitancy will particularly damage the containment of future outbreaks of smallpox

because only a small percentage of the current populace is vaccinated, and their protection is

likely to have waned. In 1972 routine administration of the smallpox vaccine to infants was

discontinued in the US. In 1976 and 1982 respectively, administration of the vaccine to health-

care workers and international travelers were discontinued. The vaccine is no longer available

for the public, and only recommended for some military personnel and lab workers who work

with a related virus [5].

Social media has fueled vaccine hesitancy by escalating disinformation on immunization

[16], and in the event of an outbreak may enable malefactors who seed the disease to simulta-

neously amplify anti-vaccine campaigns and manipulate the target populace to refuse preven-

tives. Also, in the age of social media, opinions regarding receptivity to vaccines rapidly evolve,

through social networks that overlap with but are not identical to biological networks. Specifi-

cally, during physical interactions, both diseases and opinions may spread, whereas only
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opinions may spread through remote (e.g., electronic) interactions. In some cases, only the dis-

ease might spread because individuals share the same physical space (e.g., public spaces like

beaches, parks, public transports) without exchanging ideas. Thus, spread of smallpox and

opinion regarding receptivity of vaccines must be jointly investigated.

Vaccine-hesitant individuals are likely to be more receptive towards receiving drugs. Addi-

tionally, underlying medical conditions like immunocompromise contraindicate a section of

the populace from receiving fast-acting live vaccines. Both vaccine-hesitant and immunode-

ficient (also known as immunocompromised) individuals can benefit from antiviral drugs

(e.g., tecovirimat (TPOXX) and cidofovir [17]) which may be used to both treat infected per-

sons as well as prevent disease in those exposed. These are currently stockpiled in the Strategic

National Stockpile for use if there is an outbreak of smallpox in the United States [17]. Drugs

have an advantage in a public health setting because they can be administered without the

intervention of a healthcare professional, e.g., TPOXX is taken orally twice daily [18]. The

downside, however, is that they need to be taken for many days throughout the outbreak.

Thus, considering the comparative advantages and disadvantages of drugs vis-a-vis vaccines,

only a combination of countermeasures may be able to successfully counter smallpox should it

reemerge. One can envision different policies for administering antiviral drugs: (a) Policy 1—

administer to those who have fever or rash; (b) Policy 2 –administer only to those with rash;

(c) Policy 3—once the number of cases in a neighborhood exceeds a certain threshold, admin-

ister to everyone in the neighborhood. We, therefore, need a framework to assess the applica-

tion of a combination of countermeasures and multiple countermeasure application policies.

Note that the supply of the countermeasures would be finite in practice, a constraint that

ought to influence the design of informed countermeasures.

Finally, geography, spatial distribution and mobility patterns of individuals is crucial in

understanding the spread of an infectious disease and the efficacy of countermeasures. Loca-

tions inhabited by the target population are comprised of different neighborhoods, some of

which are adjacent, some geographically disparate. Connections between individuals who are

in geographically distant neighborhoods is expected to be more frequent than those between

the disparate ones leading to heterogeneous interaction rates. Beyond common wisdom, this

observation has recently been substantiated through data analysis and theoretical modeling

[19, 20]. Specifically, analyzing friendship links on Facebook between individuals in every

county-pair, Bailey et. al. have shown that the intensity of friendship links between counties in

US declines strongly with increase in geographic distance between them [19]. It is worth not-

ing that as of September 2014, more than 58% of the US adult population used Facebook and

in US, Facebook friends are mostly mainly real-world friends and acquaintances. Thus, Face-

book friendship network is representative of a real-world friendship network [19]. Using a the-

oretical model, Patacchini et. al. have independently observed that the intensity of social

relationships between two individuals decreases with the geographical distance between them

[20].

Next, interactions often happen through mobility which must observe geographical con-

straints. That is, when individuals move from one neighborhood to another, they pass through

those in-between; thus, moving between two geographically disparate neighborhoods involves

encountering individuals in the intervening neighborhoods. The effectiveness of the counter-

measure may well be substantially enhanced by exploiting groupings of populations in distinct

locales. Additionally, the perpetrators of the attack may exploit the geography to strategically

implant the initially infected individuals and persuade individuals in specific regions to refuse

vaccines, following a spatial distribution that maximizes the spread of the disease.

Mathematical modeling is an indispensable analytical tool that can help us prepare for and

respond to a smallpox incident. Several models have been constructed to understand the
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spread of smallpox and the efficacy of vaccination and quarantine as a response [1, 3, 21–25].

Note that immunocompetent individuals (that is, those with healthy immune systems) can be

immunized by the live vaccine (ACAM2000) which provides immunity in a short time after

administering if taken while they are susceptible (that is before they are infected) or in the

early part of incubation (that is shortly after infection) [1, 26]. On the other hand, the immu-

nodeficient individuals can only be given the Modified Vaccinia virus Ankara (MVA) vaccine

(Imvamune) [1, 26]. MVA takes two-shots 30 days apart to provide immunity [26]. Although

approximately 20% of people in the United States are immunodeficient [24, 27, 28], the exist-

ing work largely does not consider the impact of the immunodeficient population. However,

[3, 24] considered such persons in their model, assuming though that they are contraindicated

from all vaccinations and excluded them from participating in vaccination altogether. How-

ever, [1, 26] have shown that immunodeficient persons can receive the MVA vaccine but it

will take a longer time to provide immunity. Only one study (i.e., [1]) has considered adminis-

tering drugs. The evolution of opinions, mobility, impact of geography, finite supply of drugs,

have not been considered even in isolation in the context of evolution of smallpox. None of the

existing research naturally simultaneously modeled these variables, particularly in conjunction

with the combination of multiple countermeasures and different application strategies.

Epidemiological investigation of other infectious diseases have considered spatial heteroge-

neity in the spread of infection e.g., [29, 30]. But these have not investigated questions particu-

larly relevant for bioterrorist attacks, namely 1) which spatial distributions of the initially

infected individuals maximize the spread of the disease; 2) which topological connectivities of

habitations enhance vulnerability to infectious epidemics. Most importantly, the joint spatio-

temporal spread of disease and opinion dynamics and the impact of one on the other remain

an unchartered territory in the modeling of infectious diseases. Thus, public discourse on the

correlation between the two dependent evolving processes has remained qualitative. These

opinion dynamics, encompassing receptivity to vaccine once developed and wearing protec-

tive gears like masks, is expected to strongly influence the evolution of many infectious dis-

eases, including COVID-19, in the present moment. The role of the social and biological

networks and their overlap in this joint spread need to be understood. For example, do spatial

distributions of the initially infected individuals, distributions of those initially professing a

specific opinion, the choice of countermeasures (since receptivity to different countermeasures

differ), and mobility rates have significant impact on the evolution of opinions and thereby on

fatality counts? Given the myriad of the parameters that influence the joint spread, does the

nature of the variation of fatality counts with respect to one parameter change drastically when

another parameter is varied? These questions arise because of an apparent intrinsic overlap

between information warfare, strategic threats of bioterrorism (e.g., the spatial distribution of

the initially infected may be strategically selected if the outbreak is the result of bioterrorism)

and the choice of countermeasures. In this paper we undertake the first step towards answer-

ing these questions.

Our contributions are as follows. We develop a computationally tractable mathematical

model that jointly captures the evolution of a smallpox incident and vaccine hesitancy (opin-

ion dynamics) over time and space and the impact of various combinations of spatial topolo-

gies, mobility rates, opinion exchange rates, disease spread rates, distributions of the initially

infected and vaccine-hesitants, countermeasures, and strategies for their applications. The

model captures the essence of stochastic evolution, while retaining computational tractability,

and therefore easily scales to typical target population sizes for infectious diseases encompass-

ing millions of individuals. We utilize the model to quantify the impact of the opinion dynam-

ics, different countermeasures and application strategies, topologies, distributions of the

initially infected and vaccine-hesitants and mobility patterns on metrics that capture the
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overall health of the system such as total number of fatalities, and visits to health-care facilities.

This provides a quantitative foundation to public health discourse pertaining to the relation

between disease and opinion spreads that have largely been conducted in the qualitative sphere

thus far. The quantifications confirm several common-place intuitions, and go beyond by

unearthing the exact nature of dependence of the above public health metrics on several key

parameters and helps us anticipate the strategic choices that future potential bioterrorist

attacks are likely to adopt. We also discover several stable patterns of variations of public health

metrics with respect to important parameters. These patterns are stable in that the nature of

the variations with respect to a parameter does not change if values of the other parameters

change. Since many of these parameters assume widely differing values in different environ-

ments that arise in practice, the recurrence of stable patterns is an important finding. This is

likely to simplify public health policy choices pertaining to incentivizing the spread of opinions

favorable towards reception of vaccines over social and other media and the choice of new

urban designs resilient to pandemics. Finally, we have chosen smallpox as a specific example of

an infectious disease, since (1) it is highly infectious; (2) it has a high death rate; and (3) its dis-

ease progression parameters are known with reasonable certainty owing to years of research.

But, our framework ports to any other infectious disease (e.g., COVID-19) that spreads

between individuals in proximity, through the consideration of a different set of disease states

and parameters. We illustrate this generalization considering COVID-19 as an example.

2 Methods

2.1 Developing the model—State transition formulations

Infectious diseases evolve in different stages. Each stage exhibits different symptoms and the

initial stages need not show any symptoms. In smallpox, individuals move from the stage of

susceptibility to early incubation to late incubation to prodrome to early rash and then to late

rash. From the late rash, patients either recover or die. Different stages have different dura-

tions. The incubation phase typically lasts 8 to 17 days and does not have any symptoms. The

prodromal phase begins at the onset of the first symptoms (fever, chills, headache) and lasts for

3 days on average. The early and late rash periods last for 3 and 7 days respectively [1]. We use

susceptibles, incubators, prodromals to denote the individuals in susceptible, incubation and

prodrome stages respectively. Patients can infect susceptible individuals in the prodrome, early

and late rash stages.

Efficacy of countermeasures depends upon the stage in which they are administered. Vac-

cines prevent the onset of smallpox with certain probabilities if administered prior to the late

incubation stage. Live vaccines (ACAM2000) provide immediate immunity during this period

[26]. Immunodeficient individuals are contraindicated for receiving the live vaccine, instead

they are administered the MVA vaccine (Imvamune) [1, 26]. MVA takes two-shots 30 days

apart to provide immunity [26]. Antiviral drugs like tecovirimat (TPOXX) and cidofovir [17]

are generally administered to infected persons for treatment and can be used for prevention

during the period in which they are administered.

The application of countermeasures introduces additional states, namely preempted, which

we discuss in greater detail in the respective sections (Sections 2.1.2—2.1.4).

We now describe the state transitions, progressively considering the following scenarios:

(1) No countermeasure—neither drugs nor vaccines administered; (2) Drug only; (3) Vaccine

only; (4) Both drug and vaccine.

2.1.1 No countermeasure. We first consider the case that all individuals are in the same

neighborhood, that is, they interact with each other at the same rate (homogeneous mixing).

Each individual is either immunocompetent or immunodeficient. Individuals in either
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category may be in one of the following states: susceptible, early incubation, late incubation,

prodrome, early rash, late rash, recovered, dead. Fig 1 depicts the state transitions pictorially.

There are two kinds of transitions: (1) interactional and (2) non-interactional. The first kind of

transition occurs as a result of physical interactions in which the biological contagion spreads,

that is, when two individuals are in close proximity and one is susceptible while the other is

infectious (that is in one of the following states prodrome, early rash, late rash), then the sus-

ceptible is infected with a certain probability and transitions to early incubation stage. The sec-

ond kind of transition occurs as a result of the natural evolution of the disease in infected

individuals. For instance, the disease transition from early incubation to late incubation and

from late incubation to prodrome after about 7 and 5 days respectively. From the late rash

stage, the immunocompetent individuals either transition to the recovered or to the dead state,

while immunodeficient individuals invariably die [31].

2.1.2 Drug only. We consider three policies for administering drugs: policies 1, 2, 3.

Under the first two policies only the people with symptoms are administered drugs (refer to

Introduction for the descriptions of these policies). Animal trials have shown that treatment

with antiviral drugs cure (with a certain probability) animals who have already received the

virus even after they show symptoms. The cured animals do not develop the disease even if

they receive the virus in future [32]. We assume the same for human (like [1]). Thus, under

these policies, upon receiving the drug, individuals enter a state in which they do not have the

disease nor do they develop the disease in future. We, therefore, introduce a state called pre-
empted, which we denote by Q, into which individuals receiving the drug transition to with the

specified probability. It is an absorbing state, i.e., individuals can only enter this state, not leave

it.

Under the third policy, drugs are administered to everyone, including those not exposed, in

neighborhoods of heavy outbreak. Antiviral drugs prevent the occurrence of smallpox (with a

certain probability) during the period they are administered, e.g., TPOXX prevents smallpox

during the period it is taken orally twice daily [1, 18]. We assume that once individuals without

symptoms are administered this drug, to prevent the onset of smallpox even after possible

exposure, they continue to receive the drug until the disease is completely contained. Thus,

once an individual starts to receive the drug he can no longer have smallpox (with the specified

probability) until containment of the outbreak (that is, until the end of the duration we con-

sider). In this sense, we consider that antiviral drugs preempt smallpox. Thus, for the purpose

Fig 1. Smallpox disease progression overview when no countermeasure is implemented. The symbol S denotes

susceptible, A and B denote early and late incubation respectively, P denotes prodrome, C and E denote early and late

rash respectively, R denotes recovered and D denotes dead. The suffix h denotes immunocompetency, and c denotes

immunodeficiency e.g., Sh, Sc respectively denote immunocompetent and immunodeficient susceptible, etc. Table 4 in

Appendix A.1 of S1 Appendix contains all the relevant abbreviations we used to represent each state. The states in blue

color are the susceptibles (not yet infected but they are prone to infection) while those in light green color are still in

incubation period, hence they are not infectious. The states in dark red are infectious while those in gold have

recovered and black denotes dead. In addition, the yellow arrows show interactional changes, namely susceptibles

transitioning to the incubation state after contracting the virus from infectious individuals. The blue arrows indicate a

non-interactional change, namely the natural progression of the disease.

https://doi.org/10.1371/journal.pone.0256014.g001
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of our model, without loss of generality, individuals (with or without symptoms) enter the pre-
empted state (denote by Q) with the specified probability, if they are administered drugs. The

probability is 0.99 before the onset of rash, 0.8 during early rash and 0 during late rash [1].

The states and state transitions are otherwise similar to that of the no countermeasure sce-

nario. The state transitions have been depicted pictorially in Fig 2.

2.1.3 Vaccine only. The individuals who receive vaccine transition to the preempted state,

after developing permanent immunity to the infectious disease. There is a delay incurred in

developing this immunity after the vaccination process is completed and even then immunity

is developed with a certain probability. Thus the recipients transition to the preempted state

after this delay and with the associated probability. The probability is 1 (0.8, respectively) for

susceptibles (early incubators, respectively) [1]. Vaccines are not effective when administered

in late incubation stage or beyond; thus, there is no transition from these states to the pre-

empted state. Some individuals may not be willing to receive vaccines. We refer to those will-

ing to receive vaccine as cooperative, and the rest as non-cooperative. Opinion regarding

cooperation evolves with interactions with other individuals. Thus, this scenario needs to

model both opinion and disease dynamics and the two are coupled. Thus, the state space

needs also to be enriched to consider opinions and their evolutions. Finally, one also needs to

distinguish between immunocompetent and immunodeficient individuals because the latter

can receive vaccines that act only very slowly regardless of their willingness to do so, and may

not recover from a serious infectious disease [31].

Interactions can be of the following kinds: (a) physical interactions with an exchange of

opinion and biological contagion (e.g., friends and acquaintances visiting homes of each

other); (b) physical interactions without any exchange of ideas (e.g., people commuting on a

bus, train, etc.); (c) virtual interactions with an exchange of ideas (e.g., a health worker

counseling a susceptible individual over the phone or internet). (a) can cause infection and

change in opinion, (b) can cause only infection, (c) can cause only change of opinion. All the

above represent interactional transitions in this case in which both disease and opinions spread

through interactions. Fig 3 depicts the state transitions of this scenario pictorially. Here we

only consider the case that the cooperatives persuade the non-cooperatives to become cooper-

atives during opinion exchange, but in practice the opinion exchange may change opinions in

the reverse direction too. In Section 2.1.4, we discuss how opinion changes in the reverse direc-

tion may be accommodated through minor modifications.

Referring to the above state transitions, we need to consider four different outcomes for

interaction between individuals:

(a). Neither of the individuals gets infected or changes their opinion after the interaction.

For instance, let a cooperative susceptible, Sah, interact with a cooperative early incubator

Fig 2. Smallpox disease progression overview for “drug only” scenario. The state in orange color denotes the

preempted state. The red arrows denote preemption via drugs. Every other state and transition has the same meaning

as described in the caption for Fig 1.

https://doi.org/10.1371/journal.pone.0256014.g002
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say Aah. This interaction does not lead to infection neither does it lead to a change in

opinion about immunization.

(b). Neither of the individuals gets infected, but one (and only one) changes his opinion,

e.g., a cooperative susceptible, Sah, interacts with a non-cooperative early incubator, Abh.

The susceptible does not contract the infection but the early incubator might change his

opinion to become Aah.

(c). One of the individuals gets infected, but neither changes his opinion. This happens for

example in a physical interaction between a susceptible (e.g., Sbc) and an infectious indi-

vidual (e.g., Pbc) both of whom share the same opinion.

(d). One of the individuals gets infected, and the other changes his opinion. This happens

for example in a physical interaction between a susceptible (e.g., Sbc) and an infectious

individual (e.g., Pah) who have different opinions (Sbc may become Sac after the

exchange).

2.1.4 Both drug and vaccine. An individual may be preempted by receiving either the

drug or the vaccine. The preempted states are Qa or Qb respectively representing preempted

Fig 3. Smallpox disease progression overview for vaccine only scenario. Building on the definitions of states in Fig 1,

the suffixes a and b respectively denote willingness to receive vaccine and otherwise e.g., Sah, Sac respectively denote

immunocompetent and immunodeficient susceptibles that are willing to vaccinate. Similarly, Sbh, Sbc respectively

denote immunocompetent and immunodeficient susceptibles that are not willing to vaccinate. The states in the top

two rows and the transitions between them are identical to those in the bottom two rows except for the index “a” being

replaced by “b”. The difference in this index represents a partition of these states based on the willingness to vaccinate.

Sans this partition, the states and the transitions are similar to those in Fig 2—specifically, the states in the top two rows

and the transitions between them, and those in the bottom two rows, by themselves, are similar to the states and the

transitions in Fig 2 (except that the transition to the preempted state happens from a larger set of states in Fig 2).

Table 7 in Appendix A.3 of S1 Appendix contains all the relevant abbreviations in this scenario. The states in blue color

are the susceptibles (not yet infected but they are prone to infection) while those in light green color are still in

incubation period, hence they are not infectious. The states in dark red are infectious while those in gold have

recovered, those in yellow are immunized, and black denotes dead. In addition, the yellow arrows show susceptibles

transitioning to the incubation state after contracting the virus. The blue arrows indicate the natural progression of the

disease. The red arrows denote preemption via vaccination while the black arrows indicate opinion evolution.

https://doi.org/10.1371/journal.pone.0256014.g003
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cooperative and non-cooperative individuals. An individual can reach Qa by receiving either

drug or vaccine, while he can reach Qb only by receiving drug. Although an individual transi-

tions to the preempted state upon receiving either drug or vaccine, he may receive both drug

and vaccine in the course of the outbreak. For example, if a vaccine is not effective in an indi-

vidual (that is, his immunity does not increase to the level that future infection is prevented)

then he does not transition to the preempted state after receiving the vaccine. Then even after

receiving the vaccine he may develop the disease upon receiving the virus from an infectious

individual. Once he develops symptoms he may be treated with the drug, which may cure him

and then he would transition to the preempted state. Similarly, an individual who has not been

infected may be treated with the drug and during the treatment he transitions to the pre-

empted state. Subsequently, instead of continuing his drug treatment until the end of the out-

break, he may be vaccinated and the drug treatment terminated after the vaccine develops the

immunity in him which ensures that he remains in the preempted state. Trials on animals

have revealed that the combination does not cause adverse physiological impact [32].

The state transition in this “both drug and vaccine” case may be obtained by combining

those of the “drug only” and “vaccine only” scenarios—more specifically, by adding to the vac-

cine-only scenario, the transitions to the preempted state induced by delivery of drugs. Refer to

Fig 4 for the state transitions. Note that in this figure, we assume that during opinion exchange

cooperatives convert non-cooperatives. To accommodate persuasion in the opposite direction,

one simply needs to invert the state transition directions corresponding to opinion exchange,

namely the directions of the black arrows.

2.2 Capturing the impact of spatial heterogeneity

We divide the target geographical area into smaller regions, referred to as clusters, such that

the constituent regions are reasonably spatially homogeneous, that is, individuals inhabiting

that region interact with each other at similar rate. The clusters can for example be neighbor-

hoods of a city. The target geographical region can be a city, a county, a state, or even a

Fig 4. Smallpox disease progression overview for both drug and vaccine scenario. The states colored orange are the

preempted states. Every other state and transition has the same meaning as described in the caption for Fig 3.

https://doi.org/10.1371/journal.pone.0256014.g004
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country. Clusters correspond to natural groupings of individuals in communities. Accord-

ingly, people within the same cluster have high contact rates between themselves, while those

in different clusters have fewer contacts.

So far, an individual has been characterized by his cooperativity, stage of the disease, pre-

emption, immunocompetency or immunodeficiency. Now, he is also identified by the cluster

he inhabits. Thus, the cluster becomes part of his state description, which also changes as he

moves between the clusters.

To capture the geography of the target region and the mobility rates of the individuals

between the clusters, we represent every cluster as a node on a graph. Now, the mobility rates

across the clusters may be represented through a mobility rate matrix on the graph. It is a

matrix with rows and columns labeled by the cluster numbers, and whose i, j th entry repre-

sents the mobility rate, κi,j, of individuals in cluster i to cluster j. Here, κi,j = 0 if it is not possible

to move directly from i to j (e.g., if these are not geographically adjacent or if traffic rules do

not permit vehicular mobility from i to j). If it is possible to move from i to j, then κi,j repre-

sents the probability that an individual goes to cluster j when he decides to move out of cluster

i divided by the expected time he spends in cluster i.
We have pictorially represented some cluster decompositions in Fig 5. The central node in

Fig 5a for example represents the downtown of a city, and the other nodes represent the neigh-

borhoods surrounding it. Fig 5b depicts the cluster decomposition of a commercial and busi-

ness district located at the edge of a river, sea or ocean.

We use matrices to specify physical and virtual contact rates within and across clusters.

Individuals in cluster i get in physical proximity of another in cluster j at a certain rate, the rate

is much higher if i = j, than when i 6¼ j. Only a fraction of these contacts spread the disease. We

consider that disease spread rate ϕi,j is the product of the rate at which an individual in cluster i
gets in physical contact with another in cluster j and fraction of contacts between susceptibles

and infectious individuals that spread the disease to the susceptibles. Rate of an event is the

expected duration between successive occurrences of the event. Typically, ϕi,i would be much

higher than ϕi,j for all i 6¼ j. Analogously, opinion spread rate αi,j is the product of the rate at

which an individual in cluster i exchanges opinions with another in cluster j and fraction of

such exchanges that change cooperativity.

2.3 The Clustered Epidemiological Differential Equation (CEDE) model

A joint investigation of infectious disease and opinion dynamics in presence of spatial hetero-

geneity inevitably leads to a computationally complex model with 1) a multiplicity of states

representing a combination of stages of the disease, immunocompetency, and cooperativity;

and 2) a multiplicity of state transitions representing interactional transitions due to spread of

Fig 5. Two example topologies. (a) Star topology. (b) Linear topology.

https://doi.org/10.1371/journal.pone.0256014.g005
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the disease and opinions, non-interactional transitions due to mobility of individuals and the

natural progression of the disease in infectious individuals. We model these by adapting the

metapopulation epidemiological model [29, 30] which relies on a set of differential equations

(co-authors of this work have utilized the metapopulation model as well [33, 34]). Metapopula-

tion models have some distinct advantages in modeling the spread of infectious diseases. In

general, estimating the spread of infectious diseases is computationally challenging because it

involves millions of individuals in habitation sizes one needs to consider. Metapopulation

models alleviate this challenge by relying on differential equations, which constitute computa-

tionally simple tools and can be solved using readily available numerical techniques. The dif-

ferential equations capture the evolution of states of different fractions of the total population.

Thus, the computational time does not increase with the increase in the size of the populace.

Metapopulation models have however thus far not captured the transitions due to spread of

both disease and opinions and application of various countermeasures. We have been able to

adapt the metapopulation model to capture these attributes, we describe the adaptations in

Appendix A in S1 Appendix and refer to the resulting model as clustered epidemiological differ-
ential equations or the CEDE, given that our target area is spatially decomposed in subregions

referred to as clusters.

We briefly describe the CEDE here. Each variable in the CEDE represents the fraction of

the population who are in a particular system state, each state representing the combination of

the cluster inhabited, the stage of the disease, immunocompetency, and cooperativity. Each

differential equation captures the evolution of a particular variable. Thus, the solution of the

system of differential equations provides the fraction of individuals in different states at given

times, that is, the spatio-temporal distribution of the disease and opinion spread. The terms in

the differential equations are either quadratic or linear. The quadratic ones represent the inter-

actional transitions (refer to the yellow arrows in Figs 1–4 and the black arrows in Figs 3 and

4) and the linear ones represent the non-interactional transitions (refer to the blue arrows in

Figs 1–4). Note that interactions always involve two individuals, hence interactional transitions

are represented by quadratic terms; in contrast, the non-interactional transitions involve only

one individual and are therefore represented by linear terms. This is typical of epidemiological

models starting from the classical Kermack–McKendrick formulation [35] and onward to the

metapopulation models [29, 30, 33, 34]. Our work differs from the metapopulation epidemio-

logical models in that it captures two different evolving processes spreading simultaneously,

the disease and the opinion, through different but possibly overlapping contact processes

(physical proximity, opinion exchange); the metapopulation models typically capture only one

evolving process, namely the disease, spreading through physical proximity. The spread of the

two processes involves two broad categories of interactional transitions: (1) susceptible to early

incubator; (2) noncooperative to cooperative and vice versa. The metapopulation models typi-

cally capture only the first kind of interactional transitions. Since interactional transitions are

represented by quadratic terms, the second kind leads to additional quadratic terms in our

model. Our work also has additional linear terms representing preemption due to application

of countermeasures.

We now provide more details on the computation time of the CEDE. Let there be n clusters.

Then there are 29 x n system states in the most complex CEDE we propose, that is for the sce-

nario in which both vaccines and drugs are administered (Appendix A.4 in S1 Appendix). In

this scenario, there are 29n differential equations and 29n variables. Thus, the computation

time increases with the increase in the number of clusters and system states, but the rate of

increase is linear in each of these. The linear increase ensures that the CEDE can be computed

fast even for a large number of clusters, that is, when the target geographical area is large, e.g.,

of the size of a country.
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The CEDE is however a deterministic model, while many of the state transitions are sto-

chastic. Nevertheless, through an application of a classical result of probability theory, under

some commonly made assumptions on the stochastic evolutions, one can show that as the

number of individuals increases, the fractions of individuals in different system states in the

stochastic system converge to the solutions of the CEDE, and the convergence becomes exact

in the limit that the number of individuals is infinity. Thus the CEDE approximates the sto-

chastic process better as the number of individuals increase. The assumptions under which the

convergence guarantee holds is that the stochastic evolutions are Markov, that is, the amount

of time an individual spends in each system state is exponentially distributed, which is what we

assume to estimate the parameters of the system (Appendix B in S1 Appendix). Markovian

assumptions are commonplace in modeling the spread of infectious diseases (e.g., as noted in

Chapter 2, p. 28, [36]). In the Supporting Information, we have stated the classical result and

have shown that it guarantees convergence in our specific case. The arguments therein are

standard (similar arguments have been utilized in a recent work by one of the co-authors

involving the application of the CEDE in a different domain [34]), albeit long.

Our CEDE model is inherently flexible in that it can accommodate opinion dynamics, arbi-

trary topologies, mobility patterns, countermeasure combinations, countermeasure applica-

tion strategies and constraints (e.g., finite or infinite supply). In Section 3, we use the CEDE to

evaluate different public health metrics under different combinations of the above attributes.

Despite this modeling flexibility, the CEDE remains computationally tractable and provides

analytical convergence guarantee.

Finally, considering COVID-19 as an example, we show in Section 5 that our framework

ports to any other infectious disease that spreads between individuals in proximity, through

the consideration of a different set of disease states and parameters.

3 Results

We utilized our model to obtain insights on the impact of (1) opinion dynamics as to receptiv-

ity to vaccine; (2) the spatial distribution of the initially infected; (3) various countermeasures;

(4) geography; and (5) policies for administering the countermeasures on public health met-

rics. We mostly consider the total number of fatalities as the public health metric, but in some

cases we also assess the number of visits to health care facilities.

We now describe how we choose the parameters for the numerical computation and their

default values. In the numerical computation, unless otherwise stated, we use the default value

for each parameter. But we also vary the value of each parameter in a wide range because in

practice these parameters assume different values in different environments and there is no

one standard value (with one exception which is explicitly stated below).

We consider both single and multiple clusters throughout, with each cluster consisting of

10 million individuals. We consider two specific examples of multiple clusters throughout: the

star and linear topologies shown in Fig 5a and 5b. We choose these examples because they rep-

resent actual distribution of habitations (refer to the paragraph before Fig 5a and 5b). Besides

these topologies are representative of two fundamentally different characteristics: 1) the star is

centralized in that every cluster (other than the central cluster) is adjacent to the central cluster

and the maximum distance between any two clusters is two; 2) the linear is spread out in that

the maximum distance between two clusters increases with increase in the size of the topology,

the distance between the peripheral clusters at the opposite end is n − 1 when there are n clus-

ters overall. Our default choices are n = 4 for star and n = 5 for linear, but we also consider sev-

eral other values of n for both topologies (Figs 12, 16—19) and compare the public health

metrics across topologies and n (Table 2).
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We now describe the choice of the mobility rates. We consider that if clusters i, j are not

adjacent, the mobility rate κi,j = 0 and if they are adjacent κi,j = κ. For example, in Fig 5a, clus-

ters 1, 2 are adjacent, while 2, 3 are not adjacent. Similarly, in Fig 5b, clusters 1, 2 are adjacent,

while 1, 3 are not adjacent. Our default choice is κ = 0.01, but we also consider different values

of κ (Fig 8), and vary κ in a wide range (Figs 12 and 13).

We now consider the disease spread rate ϕi,j. We assume ϕi,j = 0 if i 6¼ j, that is, there is no

direct physical contact and therefore no direct spread of disease between people inhabiting dif-

ferent clusters. We refer to ϕi,i as ϕ. ϕ can be obtained from Basic Reproduction Number, R0 fol-

lowing standard mathematical techniques [3, 37]. Now R0 equals 6.9 for smallpox [1, 38],

which provides the default ϕ, ϕ = 0.00173 (refer to Appendix B.1 in S1 Appendix for details).

We also vary ϕ in a wide range in Figs 14a and 15a.

We next consider the opinion spread rate, αi,j. We assume that αi,j = 0 if i 6¼ j, that is indi-

viduals in different clusters do not directly exchange opinions. We consider that for all clusters

i, αi,i = α. For simplicity, we will refer to α as the opinion spread rate henceforth. The default

choice for α is 0.001, but we also consider different values of α (Fig 10) and vary α in a wide

range (Figs 6–9). We will consider two different scenarios in our computation: 1) cooperatives

convert non-cooperatives during opinion exchange (default case); and 2) non-cooperatives

convert cooperatives during opinion exchange.

We define the fractions of individuals who are willing to vaccinate at the initial time as ini-
tial cooperativity. Our default choice for initial cooperativity is 0.8 in each cluster, but we also

consider other values of initial cooperativity (0.2 in Fig 9b, 9d and 9f, and 0.25 in Fig 13). We

also vary cooperativity in a wide range (Figs 14b and 15b) and consider scenarios where initial

cooperativity is nonuniform (Fig 13).

Our default choice for initial number of infected individuals is 10000. This choice has been

motivated by the fact that given that smallpox has been extinct for sometime, its future out-

break may be a result of a bioterrorism attack. Such attacks often involve deliberate infection

of a large number of individuals, as discussed in [1]. Also, since each cluster consists of 10 mil-

lion individuals, even under the default choice, only a small fraction of the overall populace is

infected initially. Our default assumption is that all the initially infected individuals are in an

early stage of the disease, namely prodrome. Note that initially, the infected individuals are

likely to be in an early stage of the disease. We choose prodrome as this initial stage as this is

the first stage in which an individual becomes infectious. We also consider lower numbers of

initially infected individuals, namely 1, 1000 (Figs 6, 7 and 9a and 9b), as also scenarios in

which the initially infected individuals are distributed across different stages of the disease

(Figs 7 and 9b). We consider three distributions of initially infected individuals across the clus-

ters: (1) uniform distribution across clusters; (2) concentration in the central cluster (clusters 1

and 3 respectively in the star and linear topologies); and (3) concentration in a peripheral clus-

ter (clusters 2 and 1 respectively in the star and linear topologies). These are respectively

referred to as “Uniform”, “Central” and “Peripheral”, with “Uniform” being the default.

We choose the disease progression parameters and default values of the preemption rates

utilizing data available in the existing literature on smallpox. Refer to Appendix B in S1 Appen-

dix for a description of the methodology for calculating the above and also citations of the rele-

vant literature. Briefly, in calculating the preemption rates we consider 1) the delay incurred in

administering the vaccine or drug to an individual once he agrees to receive it (e.g., delay

incurred in getting the health worker’s appointment); and 2) the subsequent delay for the vac-

cine or drug to be effective (i.e., in preventing or curing the disease, prevention requires devel-

oping the bodily ability to not develop the disease even upon receiving the virus). Even after

the latter delay, the vaccine or drug becomes effective only with a certain probability; this prob-

ability depends on the stage of the disease an individual is in. Accordingly, we define the

PLOS ONE Countering bioterrorism in the information age—Identifying strategic threats, launching countermeasures

PLOS ONE | https://doi.org/10.1371/journal.pone.0256014 August 20, 2021 13 / 47

https://doi.org/10.1371/journal.pone.0256014


Fig 6. Relationship between fatality and opinion spread rate (single cluster). (a) Number of individuals infected at

the initial time is 1,000. (b) Number of individuals infected at the initial time is 10,000.

https://doi.org/10.1371/journal.pone.0256014.g006
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preemption rate as the product of the reciprocal of the expected total delay (in both parts

above) and the probability above. Note that throughout the numerical computations we fix the

disease progression parameters at their default values; we do not vary these as these constitute

fundamental characteristics of the disease and data on various stages of smallpox are well-doc-

umented. We do however vary the preemption rates around the default values to assess the sys-

tem under various operational conditions (Figs 10 and 11). We consider different supplies of

drugs, the default setting however is one where the supply is unlimited. We consider three dif-

ferent policies for administering drugs, the default choice is policy 1 in which drugs are admin-

istered to anyone with fever or rash. We investigate other policies in Figs 17—19.

3.1 Opinion dynamics has a strong impact on fatality rates

Our numerical computations in this section show that opinion dynamics have a strong impact

on the fatality for the cases in which vaccines are used as a countermeasure, namely the “vac-

cine only” and “both drug and vaccine” scenarios. We consider two cases separately: 1) coop-

eratives converting non-cooperatives (Figs 6 and 8) and 2) non-cooperatives converting

cooperatives (Fig 9) during interactions. In the two cases above, the cooperatives (non-cooper-

atives, respectively) convert the non-cooperatives (cooperatives, respectively) during their

interactions at the rate α, thus, as α increases from 0 to 1, more (less, respectively) people

become willing to receive vaccines, fatality in the “vaccine only” and “both drug and vaccine”

scenarios decrease (increase, respectively).

We start with the case that cooperatives convert non-cooperatives during interactions. Fig 6

plots the fatalities in the single cluster case in all four scenarios as a function of α in the range

[0, 1]. With 1000 (10000, respectively) individuals initially infected, fatality for “both drug and

vaccine” scenario decrease by 38.3% (30.7%, respectively) as α increases from 0 to 1. The fatal-

ity for the “vaccine only” scenario respectively decreases by 32.2% and 28.2% in these two

Fig 7. Fatality versus opinion spread rate for different numbers and stages of initial infections in a single cluster

(both drug and vaccine scenario).

https://doi.org/10.1371/journal.pone.0256014.g007
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cases. The fatality for no countermeasure and “drug only” scenarios does not change with any

change in α.

We now examine if deviation from our default assumption that all initially infected individ-

uals are in prodrome stage alters any trend. In Fig 7 for “both drug and vaccine” scenario, we

compare the fatalities when the initially infected individuals are all in prodrome stage with

when they are equally distributed across the prodrome and early rash stages. As expected, the

fatalities are somewhat higher in the latter case since there is less time to administer drugs

before patients expire. Otherwise, the plots are similar in both cases. We also consider the

lowest possible number of infected individuals, namely 1. The plot of the fatality as a function

of α remains similar, except that it is shifted vertically down, that is, the fatality count is

Fig 8. Relationship between fatality and opinion spread rate (multiple clusters). (a) Star topology, κ = 0.01. (b) Star topology, κ = 0.8. (c) Linear topology, κ = 0.01. (d)

Linear topology, κ = 0.8.

https://doi.org/10.1371/journal.pone.0256014.g008
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Fig 9. Relationship between fatality and opinion spread rate when non-cooperatives convert cooperatives. (a) Single cluster (initial

cooperativity = 0.8). (b) Single cluster (initial cooperativity = 0.2). (c) Star topology (initial cooperativity = 0.8). (d) Star topology (initial

cooperativity = 0.2). (e) Linear topology (initial cooperativity = 0.8). (f) Linear topology (initial cooperativity = 0.2).

https://doi.org/10.1371/journal.pone.0256014.g009
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substantially lower. This is expected since the number of initially infected is also substantially

lower. Note that the decrease in the fatality count with increase in α is substantially higher; as

α increases from 0 to 1, fatality decreases by 76%. Recall that this decrease is 38.3% and 30.7%

respectively when the initial number of infected individuals are 1000 and 10000 respectively.

Thus, the exchange of opinions becomes less effective as the initial number of infected individ-

uals increases.

Fig 8 plots the total fatality for “both drug and vaccine” scenario as a function of α in the

range [0, 1] for multiple clusters. We consider the Uniform, Central and Peripheral distribu-

tions of initially infected individuals across the clusters. First consider the default mobility rate

Fig 10. Relationship between fatality and preemption scale factor. (a) Star topology, α = 0.001. (b) Star topology, α = 0.8. (c) Linear topology, α = 0.001. (d) Linear

topology, α = 0.8.

https://doi.org/10.1371/journal.pone.0256014.g010
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Fig 11. Percentage decrease in fatality as a function of preemption scale factor. a) Star topology. (b) Linear

topology.

https://doi.org/10.1371/journal.pone.0256014.g011
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κ = 0.01. As α increases from 0 to 1 in the star topology, total fatality decreases by 29.4%,

66.8%, and 54.2% respectively in the 3 scenarios (Fig 8a). For linear topology, the respective

decrease percentages are 29.3%, 63.7%, and 52.4% (Fig 8c). When mobility rate increases, the

fatality counts increase by similar amounts at each value of α, that is, the plots move up verti-

cally but otherwise the nature of the variation with respect to α remains same (see Fig 8b and

8d for κ = 0.8). Specifically as α increases from 0 to 1 in the star topology, total fatality

decreases by 29.4%, 64.9%, and 68.5% (Fig 8b) respectively for the 3 distributions. Similarly,

for the linear topology, the respective decrease percentages are 29.3%, 71.9%, and 71.8% (Fig

8d). Therefore, the decrease in total fatality is considerable in all cases and comparable across

the two topologies and for wide variation in mobility rates.

We now consider the case that non-cooperatives convert cooperatives during interactions.

We report the results for the scenario in which both vaccines and drugs are administered for α
in the range [0, 1] (Fig 9). We consider two different values of initial cooperativity in these: 0.8

(default value) and 0.2 respectively. As expected, with increase in α, fatality increases through-

out. For example, when the initial cooperativity is 0.8, Fig 9a shows that in a single cluster, as α
increases from 0 to 1, fatality increases by 59.85%, 56.55% and 58.17% when there are 1, 1000

and 10000 initially infected individuals respectively and the initially infected individuals are in

prodrome stage. When the initially infected individuals are distributed equally between pro-

drome and early rash stages, fatality count increases by 56.22% and 54.28% for an initial attack

size of 1000 and 10000 respectively (when only 1 individual is initially infected, he can only be

in 1 stage, we choose that as prodrome). Thus, yet again, the trends are similar for different

number of initially infected individuals and distributed across different stages of the disease.

We now consider multiple clusters and for brevity, report the results only for the default set-

ting, namely 10000 initially infected individuals in the prodrome stage. As α increases from 0

to 1 in the star topology, fatality increases by 58.62%, 64.34%, and 62.32% respectively for Uni-

form, Central, Peripheral distributions of the initially infected individuals (Fig 9c). Similarly,

as α increases from 0 to 1 in the linear topology, fatality increases by 58.65%, 63.83%, and

61.97% respectively for the 3 distributions (Fig 9e). The pattern of variation of the fatality

count with increase in α remains similar at other values of initial cooperativity, only the

increase is by lower amounts for lower values of initial cooperativity, as then the non-coopera-

tives have fewer cooperatives to convert. Considering a single cluster, Fig 9b shows that when

initial cooperativity is 0.2 and initial infections originate from prodrome, as α increases from 0

to 1, fatality increases by 8.53%, 8.96% and 10.10% when initial number of infected individuals

are 1, 1000 and 10000 respectively. When the initially infected individuals are distributed

equally between prodrome and rash stages, fatality count increases by 8.98% and 9.83% for an

initial attack size of 1000 and 10000 respectively. As α increases from 0 to 1 in the star topol-

ogy, fatality increases by 10.45%, 9.57%, and 9.79% respectively for Uniform, Central and

Peripheral distributions of the initially infected individuals (Fig 9d). Similarly, as α increases

from 0 to 1 in the linear topology, fatality increases by 10.47%, 9.63%, and 9.83% respectively

for the 3 distributions (Fig 9f).

In summary, our numerical computations in this section reveal that the overall fatality

count sharply decreases (increases, respectively) with increase in rate of spread of opinion, α,

between cooperatives and noncooperatives when the former (latter, respectively) converts the

latter (former, respectively). Our finding holds for a large range of combination of parameters,

namely different geographical topology of target region (number of clusters, organization of

clusters), combinations of countermeasures, number and distribution of initially infected indi-

viduals, stage of disease of the initially infected individuals, mobility rates, initial cooperativ-

ities. With change in α, the fatality count often changes by more than 50%; the change is

smaller if there are fewer individuals available to convert at the initial time. Also, the pattern of
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the variation of fatality count with respect to α is similar for different choices of the above

listed parameters.

3.2 Distribution of initial infections, initial cooperatives, and mobility of

individuals have a significant impact

The outbreak of an infectious disease may start from a single cluster or multiple clusters. It is

of interest to find out if fatality is higher in one of these scenarios and if the difference is signif-

icant. This would help identify how the attacks might have been designed. We also seek to

understand how enhanced mobility of individuals affects fatalities. The cooperative individuals

help convert non-cooperative individuals. We, therefore, seek to understand how the initial

distribution of the cooperatives affects the fatalities.

We consider that both drug and vaccine are used and plot the total fatality count across lin-

ear and star topologies as a function of the preemption rate. The basic preemption rates in dif-

ferent states have been calculated in Appendix B in S1 Appendix. We consider a preemption

scale factor that multiplies all these rates, that is, scales the rates, and we plot the fatality count

as a function of this scale factor (Fig 10).

For each topology we consider the following distribution of the initially infected individu-

als: 1) Uniform 2) Central 3) Peripheral.

Fig 10 reveals the following. Other things being equal, the fatalities are much higher for

Uniform than for Central and Peripheral. Note that all the initial infections originate from one

cluster in the latter two. For instance, considering α = 0.001, preemption rate as 1, the fatality

for Uniform is 1.87 and 2.61 times that for Central and Peripheral in the star topology (see Fig

10a). For linear topology, the corresponding ratios are 2.49 and 3.30 (Fig 10c). Also, the fatali-

ties are higher for Central than for Peripheral in the case that the initial infections occur in one

cluster. For instance, at 0 preemption rate in the linear topology, the fatality for Central is 1.49

times that for Peripheral (see Fig 10c and 10d).

Fig 10 also shows that increasing the preemption rate substantially decreases the fatality

regardless of the distribution of the initial infection. The preemption rate may be increased by

decreasing the delay in administering the vaccine and delivering the drug to the individuals

which may be accomplished by increasing the number of health workers and the rate of deliv-

ery of the vaccine and drugs to the health facilities.

Next, Fig 10 also shows that the variation of the fatality count vis-à-vis the preemption scale

factor remains similar for different values of α, though the fatality counts decrease with

increase in α for all positive preemption scale factors and distribution of the initially infected.

The decline in fatality count with increase in α however increases with increase in the preemp-

tion scale factor (Fig 11). Specifically, in Fig 11 at each value of preemption scale factor, we

plot the decrease in fatality count when α increases from 0.001 to 0.8 as a percentage of the

fatality count at α = 0.001. This quantity increases substantially with increase in the preemp-

tion scale factor, because greater amount of conversion of noncooperatives due to greater fre-

quency of information exchange (that is higher α) is more effective at higher values of

preemption rate (equivalently, scale factor). The latter happens because at low preemption

rates even when a larger fraction of the population is willing to receive vaccine they can not

readily receive vaccines because of low delivery rates. Note that the plots for Uniform, Central

and Peripheral are parallel to each other for both topologies, thus the nature of the variation is

similar in the three cases; the decline is maximum for Central and least for Uniform. Thus,

conversion of noncooperatives is least effective for Uniform distribution of initially infected

individuals.
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We now plot the fatality count as a function of the mobility rates in the star and linear

topologies in Fig 12a and 12b.

We observe the following. If the initially infected individuals are uniformly distributed

across the clusters, then fatality count does not change with the mobility rate, assuming that

the mobility rates between two clusters are the same in both directions. If the initial infections

occur only in one cluster, fatality substantially increases with the mobility rate. For instance, as

the mobility rate increases from 0 to 1 in the star topology (Fig 12a), the total fatality increase

by 202.6% (from 27, 807 to 84, 136) if the initially infected individuals originate from the cen-

tral cluster only. Similarly, the total fatality increases by 166.5% (from 27, 807 to 74, 112) when

the initially infected individuals originate from a peripheral cluster. These observations may be

explained as follows. Mobility helps individuals in different clusters mix with each other. Thus,

if the initially infected individuals are concentrated in a few clusters, higher mobility rates help

spread the disease faster into other clusters and lead to high fatalities. This is the scientific basis

for reducing travel links (land or air) between different regions when the infection is localized.

But if the initially infected individuals is spread out uniformly, even without any mobility, the

disease spreads in each region from the individuals initially infected. Thus mobility enhances

the spread only marginally and thereby increases the fatality only marginally. Thus spatial

quarantining strategies do not help much if the initially infected individuals is uniformly

spread. Thus, the uniform spread of initially infected individuals constitute the most deadly

form of a deliberate attack.

We also note that regardless of the mobility rate, fatality is significantly higher when the ini-

tially infected individuals are uniformly spread as compared to when the initially infected indi-

viduals are concentrated in a few clusters. For instance, when the mobility rate is 0, the total

fatality when initially infected individuals are uniformly distributed across the linear topology

would be 11.4 times the fatality that occurs if infections originate from one cluster (Fig 12b).

When the mobility rate becomes 1, the total fatality for the uniformly distributed initially

infected individuals would be 1.9 times the fatality that occurs if initial infections occur only in

cluster 1.

We now investigate the impact of different distributions of initial cooperatives. We consider

two cases: 1) uniform distribution across all clusters 2) concentration in only one cluster, the

central cluster. Since each cluster has 10 million individuals, in the second case we can have at

most 10 million initial cooperatives, that is initial cooperativity is at most 0.25. We consider

cooperativity as this maximum value in the second case, and for consistent comparison we

consider the same in the first case too. We plot the fatalities for these two cases and three dif-

ferent distributions of the initially infected, namely Uniform, Central, Peripheral in Fig 13.

Note that the terminologies Uniform, Central, Peripheral refer to the distribution of the ini-

tially infected individuals which may be different from the distribution of the initial coopera-

tives. Thus we can have initial cooperatives uniformly distributed across clusters and the

initially infected individuals confined to the central cluster (i.e., Central). Fig 13 reveals that

the fatality count is much higher when the initial cooperatives are concentrated in one cluster,

e.g., under Uniform, the fatality in this case is 1.5 times that when the initial cooperatives are

uniformly distributed across clusters. As noted before, when the initial cooperatives are uni-

formly distributed, the fatality under Uniform far exceeds that under Central and Peripheral,

and the fatality under Peripheral is the least of the three. This observation largely extends to

when the initial cooperatives are concentrated in the central cluster, except when the mobility

rate is very low in which case, the fatality under Peripheral exceeds that under Central. In this

case, the individuals in different clusters have little or no physical or virtual contact (since we

assume that these contacts can not take place across clusters). Thus, in the Central and Periph-

eral cases, the infected individuals are largely confined to the central and the specific peripheral
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Fig 12. Relationship between fatality and mobility rate. (a) Star topology. (b) Linear topology.

https://doi.org/10.1371/journal.pone.0256014.g012
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Fig 13. Relationship between fatality and initial distribution of cooperatives. (a) Initial cooperatives are uniformly

distributed across clusters (initial cooperativity = 0.25). (b) Initial cooperatives are only in the central cluster (initial

cooperativity = 0.25).

https://doi.org/10.1371/journal.pone.0256014.g013
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clusters (one that had the initially infected). The cooperative individuals are however largely

confined to the central cluster in both these cases. In the first case, the spread of infection in

the central cluster reduces quickly because the cooperatives get vaccinated (all individuals in

the central cluster are cooperatives to start with). Thus fatality remains low. In the second case,

the infection spreads extensively in the peripheral cluster because very few individuals become

cooperatives and therefore very few receive vaccines. This leads to high fatality count in the

specific peripheral cluster which increases the overall fatality count. This phenomenon is a

result of localization of both the cooperativity and the disease, and subsides as mobility rate

increases. As mobility rate increases, the rank order between the fatality counts becomes the

same as that when the initial cooperatives are uniformly distributed. Finally, under Uniform,

for both distributions of the initial cooperatives, fatality does not change with change in mobil-

ity rate. Thus, distribution of the initially infected largely determines the pattern of variation of

fatality count with mobility.

In summary, our numerical computation in this section reveal that other things being

equal, fatalities are often significantly higher, when 1) the initial infections are uniformly dis-

tributed across various clusters than when all the initial infections only occur in one cluster; 2)

the outbreak originates from the central cluster(s) than when it originates from the peripheral

cluster(s). Even higher rate of exchange of opinions respectively reduces the fatalities 1) most

and 2) least when initially infected individuals are 1) all in the central cluster and 2) distributed

uniformly. The fatalities increase with increase in mobility rate when the initial infections

occur in one cluster, but do not depend on the mobility rate when the initial infections are uni-

formly distributed. These findings holds for a large number of choices of other parameters, as

applicable, namely, number and organization of clusters, mobility rates, preemption rates,

opinion exchange rates, distribution of initial cooperatives, etc.

3.3 Administering drugs substantially reduces fatality

We show that using drugs as a countermeasure against smallpox substantially reduces fatality

for various choices of parameter values, considering both unlimited (Figs 14 and 15) and lim-

ited (Fig 16) availability of drugs.

3.3.1 Infinite drug availability. First, Fig 14a plots fatality as a function of disease spread

rate, ϕ, for the four scenarios for one cluster. Visually, we note that for the entire range of ϕ
considered, the scenarios that involve administering of the drug, namely the “drug only” and

“both” scenarios, have much lower fatality than those that do not involve administering of

drugs, namely the “vaccine only” and “no countermeasure” scenarios. Specifically, at the

default value of ϕ, namely ϕ = 0.00173, the fatality for the “vaccine only” and “no countermea-

sure” scenarios are respectively 17.5 and 66.9 times that of the “drug only” scenario. Also, fatal-

ity for the “vaccine only” and “no countermeasure” scenarios are respectively 67.6 and 257.8

times that of the “both drug and vaccine” scenario. And fatality of the “drug only” scenario is

3.8 times that for the “both” scenario. Thus, deploying both countermeasures substantially

reduce fatality, but if only one countermeasure is to be deployed, the drug is a better option in

terms of fatality. This is because the non-cooperatives consent to the reception of the drug but

not to the vaccine and the immunodeficient ones can only receive vaccines that act very

slowly.

In addition, Fig 14b plots fatality as a function of the initial cooperativity. The conclusions

with respect to efficacy of the drug remain the same as in the previous paragraph. For example,

when the initial cooperativity is 0.8, then the fatality for the “vaccine only” and “no counter-

measure” scenarios are respectively 27.3 and 66.9 times that of the “drug only” scenario. Also,

fatality for the “vaccine only” and “no countermeasure” scenarios are respectively 67.3 and
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Fig 14. Fatalities under four countermeasure application scenarios for various values of infection spread rates and

initial cooperativities for single cluster. (a) Relationship between fatality and disease spread rate. (b) Relationship

between fatality and initial cooperativity.

https://doi.org/10.1371/journal.pone.0256014.g014
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Fig 15. Fatalities under four countermeasure application scenarios for various values of infection spread rates and

initial cooperativities for multiple clusters. (a) Relationship between total fatality and disease spread rate (star

topology). (b) Relationship between total fatality and initial cooperativity (linear topology).

https://doi.org/10.1371/journal.pone.0256014.g015
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164.5 times that of the “both drug and vaccine” scenario. And fatality of the “drug only” sce-

nario is 2.5 times that for the “both” scenario.

We now consider the multiple cluster case. Fig 15a plots total fatality as a function of disease

spread while Fig 15b plots total fatality as a function of the initial cooperativity. The patterns

are similar to what we reported in the previous paragraphs. For example, considering the

default value of ϕ, for the star topology, from Fig 15a, the fatality for the “vaccine only” and

“no countermeasure” scenarios are respectively 18.5 and 66.86 times that of the “drug only”

scenario. Also, fatality for the “vaccine only” and “no countermeasure” scenarios are respec-

tively 66.91 and 241.28 times that of the “both drug and vaccine” scenario. And fatality of the

Fig 16. Relationship between fatalities and antiviral drug availability. (a) Single cluster. (b) Star topology. (c) Linear topology.

https://doi.org/10.1371/journal.pone.0256014.g016
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“drug only” scenario is 3.61 times that for the “both” scenario. From Fig 15b, for linear topol-

ogy and for the initial cooperativity of 0.8, the total fatality for the “vaccine only” and “no

countermeasure” scenarios are respectively 28.24 and 66.86 times that of the “drug only” sce-

nario. Also, from Fig 15b, total fatality for the “vaccine only” and “no countermeasure” scenar-

ios are respectively 66.95 and 158.51 times that of the “both drug and vaccine” scenario. And

fatality of the “drug only” scenario is 2.37 times that for the “both” scenario.

3.3.2 Finite drug availability. We now consider that the drug availability is finite and

drug is no longer administered when the supply is exhausted. We assume that the first time a

patient is administered the drug, he is handed out enough quantity of the drug for his daily

consumption throughout the period of the outbreak. Since the period of the outbreak can vary

and may depend on re-introduction of the infection from outside, we measure the drug supply

in terms of the number of patients who have been administered the drug. Fig 16 plots the fatal-

ity as a function of the drug supply as measured above, and reveals that the fatality for the sce-

narios in which drug is administered, namely the “drug only” and “both drug and vaccine”

decrease approximately linearly with increase in drug supply, and remains constant once the

supply crosses a threshold. Above the threshold value there is enough drug to administer to

the population who need drugs. For the single cluster case, the fatality in the “drug only” case

decreases from 4.4 million to 65, 808 as the drug supply increases from 0 to approximately 10

million, 10 million constitutes the threshold value. Note that the population size is 10 million

here, thus the fatality does not decrease any further once the drug supply is enough to preempt

the entire population. The fatality in the “both drug and vaccine” scenario decreases from 1.8

million to 26, 752 (98.514%, see Fig 16a) as the drug supply increases from 0 to approximately

4 million, which constitutes the threshold value. Since individuals can also be preempted

through vaccines, one only needs enough drug supply to preempt 4 million individuals to

decrease the fatality count to its minimum possible value. Table 1a shows that the decrease of

the fatality with increase in supply is approximately linear for the “both drug and vaccine” sce-

nario. For supply less than or equal to 3.75 million, the magnitude of the deviation of an exact

straight line from the fatality plot is less than 0.5%, and is 0.41% on an average. The deviation

is higher though in a subsequent interval of relatively small size 3.75–4 million, leading up to

the threshold value of 4 million; the maximum deviation in this range is however still less than

13.41% in absolute value.

Similarly, for the four cluster star topology, the fatality in the “drug only scenario” decreases

approximately linearly from 17.6 million to 263, 234 (98.504%, see Fig 16b) as the drug supply

increases from 0 to approximately 40 million, which constitutes the threshold value. The fatal-

ity in the “both drug and vaccine” scenario decreases approximately linearly from 7.58 million

to 113, 305 (98.505%, see Fig 16b) as the drug supply increases from 0 to approximately 16.4

million, which constitutes the threshold value. In addition, for the five cluster linear topology,

the fatality in “drug only” scenario decreases approximately linearly from 22 million to 329,

042 (98.504%, see Fig 16c) as the drug supply increases from 0 to approximately 50 million,

which constitutes the threshold value. The fatality in “both drug and vaccine scenario”

decreases approximately linearly from 9.3 million to 138, 821 (98.507%, see Fig 16c) as the

drug supply increases from 0 to approximately 20 million, which constitutes the threshold

value. Note that for the star topology, the threshold value for “both drug and vaccine” is

approximately 4 times that of the corresponding single cluster since there are 4 clusters. This is

because the total population is 4 times the population for the corresponding single cluster.

Similarly, for the linear topology, the threshold is exactly five times that for single cluster since

the population size is 5 times as the number of clusters. Again, the threshold value is less than

that in the “drug only” scenario for the same reason as for single cluster. Table 1b and 1c estab-

lish the approximate linear nature of the decrease of the fatality with increase in supply for the
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“both drug and vaccine” scenario in star and linear cluster topologies respectively. For the lin-

ear topology, up to the threshold value of 20 million, the magnitude of the deviation of an

exact straight line from the fatality plot is less than 0.5% (Table 1c). The deviation is somewhat

higher for the star topology, but is still in acceptable range. For supply less than or equal to 16

million, the magnitude of the deviation of an exact straight line from the fatality plot is 0.96%

Table 1. The three tables respectively compare the actual fatality count and linear interpolations for the “both

drug and vaccine scenario” for 1) single cluster (Fig 16a), 2) star topology (Fig 16b), and 3) linear topology (Fig

16c). In these tables, the first column (A) represents the number of individuals in millions, who have been adminis-

tered the drugs, the second column (B) provides the actual fatality counts, the third column (C) provides the fatality

counts of a linear interpolation (i.e., straight line with the entries marked in bold as end-points), the fourth column

provides the percentage errors, i.e., 100 × (B − C)/B.

1

A B C Error (%)

0 1797843 1797843 0.0000

0.5 1564306 1571018 -0.4291

1 1340137 1344193 -0.3027

1.5 1114319 1117368 -0.2736

2 887008 890543 -0.3985

2.5 660891 663718 -0.4278

3 434887 436893 -0.4613

3.5 210066 210068 -0.0010

3.75 98147 96653 1.5222

2

A B C Error (%)

0 7409854 7409854 0.0000

1.75 6628341 6621237 0.1072

3.5 5843703 5832621 0.1896

5.25 5055937 5044004 0.2360

7 4265097 4255388 0.2276

8.75 3472994 3466771 0.1792

10.5 2681065 2678155 0.1085

12.25 1889538 1889538 0.0000

16 207160 199645 3.6276

3

A B C Error (%)

0 9132247 9132247 0.0000

2.5 8021838 8008540 0.1658

5 6903523 6884833 0.2707

7.5 5778566 5761125 0.3018

10 4649803 4637418 0.2664

12.5 3518485 3513711 0.1357

15 2388013 2390004 -0.0834

17.5 1260262 1266296 -0.4788

20 142589 142589 0.0000

(a) Single cluster. Average of the absolute value of the error in the above range is 0.4072%. The maximum of the

absolute value of error in 3.75–4 million range is 13.4121%, and is registered at 3.912 million.

(b) Four cluster star topology. Average of the absolute value of the error in the above range is 0.9648%. The

maximum of the absolute value of the error in 16–16.4 million range is 9.2907%, and is registered at 16.22 million.

(c) Five cluster linear topology. Average of the absolute value of error in this range is 0.2128%.

https://doi.org/10.1371/journal.pone.0256014.t001
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on an average and 3.63% at worst (Table 1b). In a subsequent interval of relatively small size,

16–16.4 million, leading up to the threshold value of 16.4 million, the deviation is higher, but

is still less than 10% in absolute value.

The fatalities for the scenarios not involving drugs naturally do not change with increase in

the availability of the drug. Also, note that when the drug supply is zero, i.e., no drug is avail-

able then the fatality in the “drug only” scenario equals that for the no countermeasure sce-

nario, and the fatality in “both drug and vaccine” scenario equals that for the “vaccine only”

scenario. For low value of the drug supply, the “vaccine only” scenario has lower fatality than

the “drug only” scenario, but as the drug supply increases, the fatality for the “drug only” sce-

nario falls below that of the “vaccine only” scenario. Thus, if the drug supply is low and if one

needs to choose between the countermeasures, vaccine is better with respect to fatality count.

And, high values of the drug supply substantially reduce the fatality count.

We had only considered the default Uniform distribution of the initially infected individu-

als in Fig 16 and Table 1. We now consider Central and Peripheral distributions, as also star

and linear topologies with different number of clusters, namely 8 and 5 clusters. Figs 17a, 17b,

18a and 18b, and the associated Table 2 reveal that for the default policy, namely policy 1

which was being considered above (under which all people with fever and rash receive drugs),

overall, the fatality decreases approximately linearly with increase in supply until a threshold

value for a wide range of topologies and distributions of the initially infected individuals. Spe-

cifically, for Table 2d corresponding to Fig 18b, the magnitude of the deviation of the fatality

plot from a straight line is small right up to the threshold value (20.01 million). For Table 2a

and 2b, corresponding respectively to Fig 17a and 17b, the magnitude of the deviation is small

except in a small region leading to the respective threshold values (i.e. 10.1, 25.5 million) in

which the deviation is considerable. Only for Table 2c which corresponds to Fig 18a, the devia-

tion is also somewhat greater for small values of supply. But, even considering this region, the

average deviation remains small in this case. We will discuss the plots for policies 2 and 3 in

Section 3.5.

In summary, considering the default policy for administering drugs, namely policy 1, our

numerical computations show that the most effective countermeasure consists of a combina-

tion of antiviral drugs and vaccines, but if only one countermeasure can be administered it

ought to be the former. Again, the fatality counts under different countermeasures are signifi-

cantly different, in particular, administering drugs substantially reduces the fatality count. We

also find that the fatality counts decrease approximately linearly with increase in supply of

drugs until the supply is enough to administer to everyone who develops symptoms (fever and

rash), and beyond that point these counts do not change with increase in the supply. Our find-

ings hold for different disease spread rates, initial cooperativities, numbers and organization of

clusters, distributions of the initially infected individuals and amount of availability of drugs.

3.4 Impact of topology

We now compare the fatality counts across topologies and identify patterns that emerge.

Towards this end, we consider the fatalities in star and linear topologies reported in Figs 8–12

and 16. We compare the per cluster fatality (total fatality count normalized by the number of

clusters) of the star and linear topologies for representative data points in the figures and

report in Table 3. In this table, we compare the fatalities for three distributions of initially

infected individuals across the clusters: Uniform, Central, Peripheral. To distinguish between

the cases that cooperatives convert non-cooperatives and non-cooperatives convert coopera-

tives, we add suffixes to the terms denoting the three distributions, that is, we denote the first

case by UniformC, CentralC, and PeripheralC, and the second by UniformNC, CentralNC,
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Fig 17. Policies for drug deployment (star topology). (a) Initially infected individuals are in the central cluster. (b)

Initially infected individuals are distributed uniformly across clusters.

https://doi.org/10.1371/journal.pone.0256014.g017
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Fig 18. Policies for drug deployment (linear topology). (a) Initially infected individuals are in a peripheral cluster.

(b) Initially infected individuals are distributed uniformly across clusters.

https://doi.org/10.1371/journal.pone.0256014.g018
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Table 2. The four tables respectively compare the actual fatality count and linear interpolations for policy 1 “both

drug and vaccine scenario” and 1) eight cluster star topology—Central (Fig 17a) 2) eight cluster star topology—

Uniform (Fig 17b) 3) five cluster linear topology—Peripheral (Fig 18a) 4) five cluster linear topology—Uniform

(Fig 18b). The columns A, B, C have the same significance as in Table 1.

1

A B C Error (%)

0 4469468 4469468 0.0000

4 2666804 2717588 -1.9043

6 1792914 1841648 -2.7181

7 1360330 1403678 -3.1866

8 928840 965708 -3.9693

8.5 714402 746723 -4.5242

9 500986 527738 -5.3399

9.5 289797 308753 -6.5411

10 89768 89768 0.0000

2

A B C Error (%)

0 11795114 11795114 0.0000

4 9849097 9962080 -1.1471

8 8031636 8129045 -1.2128

10 7121221 7212528 -1.2822

12 6210846 6296011 -1.3712

16 4392023 4462977 -1.6155

20 2580787 2629943 -1.9047

24 783938 796908 -1.6545

25 338650 338650 0.0000

3

A B C Error (%)

0 2288928 2005632 12.3768

2.5 1796369 1688907 5.9822

5 1372182 1372182 0.0000

6 1223365 1245492 -1.8087

7.5 1017290 1055457 -3.7518

8.5 887282 928767 -4.6755

10 698390 738733 -5.7766

12.5 394234 422008 -7.0451

15 105283 105283 0.0000

4

A B C Error (%)

0 9132247 9132247 0.0000

2.5 8021838 8008540 0.1658

5 6903523 6884833 0.2707

7.5 5778566 5761125 0.3018

10 4649803 4637418 0.2664

12.5 3518485 3513711 0.1357

15 2388013 2390004 -0.0834

17.5 1260262 1266296 -0.4788

(Continued)
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and PeripheralNC. When we consider only the first case, which is the default, we omit the suf-

fixes altogether. The columns titled Normalized Linear (denoted by P) and Normalized Star

(denoted by Q) respectively represent the per cluster fatalities for the Linear and Star topolo-

gies respectively. We obtain the difference between the per cluster fatalities of the star and the

linear topologies (Column titled R) and present the difference as a percentage of the former in

the tables (Column titled Change (%)). In Table 3a–3d, we consider the scenario in which both

drug and vaccine are administered (“Both”). In Table 3e, we additionally consider “drug only”,

“vaccine only”, and “neither” (no countermeasure) scenarios.

We consistently observe the following from the tables: 1) the per cluster fatalities of the two

topologies are about the same for the Uniform distribution; 2) the per cluster fatality is consid-

erably higher in the star topology for the Central and Peripheral distributions. The first hap-

pens because the initial number of infected individuals is the same in each cluster and the

mobility rates to and from each cluster are the same throughout. We conjecture that the per

cluster topologies will not significantly vary depending on the placement of the clusters for

Uniform distribution and symmetric mobility patterns. Now consider the Central and Periph-

eral distributions. The average distance between a central or a peripheral cluster to the other

clusters is lower for the star. Thus, if the initially infected individuals are concentrated in only

the central or the peripheral cluster, over time the infection spreads faster in the star as com-

pared to the linear leading to a greater number of per cluster fatalities in the former.

3.5 Drug administering policy has a significant impact

We compare various drug administering policies with respect to (1) fatalities (2) health care

load (number of doctor visits), considering the scenario in which both drug and vaccine are

administered.

First we consider only one cluster and then compare policy 1 (i.e., all people with fever and

rash receive drugs) and policy 2 (i.e., only people with rash receive drugs). Policy 1 preempts 3,

911, 245 people with antiviral drugs while 26, 752 people died. Policy 2 preempts 3, 455, 823

people with drugs while 241, 433 people died. Thus, the fatality under policy 2 is approximately

9 times the fatality under policy 1. We get the first indication that different policies for admin-

istering drugs substantially alter the fatality count. But, clearly, policy 1 will need greater num-

ber of drugs as it preempts a greater number of individuals. We therefore next compare

different policies for a finite supply of drugs.

We consider three different policies for multiple clusters and limited availability of drugs.

Policies 1 and 2 are as before. Under policy 3, drugs are administered to everyone in a cluster

once the number of patients with symptoms in the cluster exceeds a certain level. We consider

Table 2. (Continued)

20 142589 142589 0.0000

(a) Average of the absolute value of the error in the above range is 2.8412%. The maximum of the absolute value of

error in 10–10.1 million range is 28.02%, and is registered at 10.05 million.

(b) Average of the absolute value of the error in the above range is 1.4178%. The maximum of the absolute value of

error in 25–25.5 million range is 6.83%, and is registered at 25.358 million.

(c) Average of the absolute value of the error in the above range is 5.6191%. The maximum of the absolute value of

error in 15–15.6 million range is 29.92%, and is registered at 15.56 million.

(d) Average of the absolute value of the error in the above range is 0.2128%. The maximum of the absolute value of

error in 20–20.05 million range is 0.28%, and is registered at 20.01 million.

https://doi.org/10.1371/journal.pone.0256014.t002
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Table 3. Per cluster fatality. The five tables respectively compare the per cluster fatality counts for the “both drug and vaccine” scenario for different opinion spread rates

(α) (Table 3a and 3b), preemption scale factor (λ) (Table 3c), mobility rates (κ) (Table 3d), and drug supply (m) (Table 3e). In these tables, the first column (P) represents

Normalized linear, the second column (Q) represents Normalized star, and the third column (R) provides Q − P, the fourth column, Change = 100 × R/P.

a

Distribution P Q R Change (%)

Uniform/α = 0 27810 27747 -63 -0.227

UniformC/α = 1 19666 19598 -68 -0.346

UniformNC/α = 1 44122 44012 -110 -0.249

Central/α = 0 11138 15270 4132 37.10

CentralC/α = 1 4, 041 5, 067 1, 026 25.39

CentralNC/α = 1 18247 25093 6846 37.52

Peripheral/α = 0 8421 10879 2458 29.19

PeripheralC/α = 1 4006 4978 972 24.26

PeripheralNC/α = 1 13639 17660 4021 29.48

b

Distribution P Q R Change (%)

Uniform/α = 0 56, 309 56, 293 -16 -0.028

UniformNC/α = 1 62, 208 62, 176 -32 -0.051

Central/α = 0 33, 316 47, 038 13, 722 41.19

CentralNC/α = 1 36, 526 51, 542 15, 016 41.11

Peripheral/α = 0 22, 516 29, 657 7, 141 31.72

PeripheralNC/α = 1 24, 729 32, 561 7, 832 31.67

c

Distribution P Q R Change (%)

Uniform/λ = 0 4, 400, 000 4, 400, 000 0 0

Uniform/λ = 1 27, 758 27, 694 -64 -0.2306

Central/λ = 0 2, 687, 531 3, 823, 157 1, 135, 626 42.26

Central/λ = 1 10, 786 14, 815 4, 029 37.35

Peripheral/λ = 0 1, 800, 793 2, 373, 055 572, 262 31.78

Peripheral/λ = 1 8, 233 10, 611 2, 378 28.88

d

Distribution P Q R Change (%)

Uniform/κ = 0 27, 891 27, 694 -197 -0.7063

Uniform/κ = 1 27, 891 27, 694 -197 -0.7063

Central/κ = 0 2, 443 6, 952 4, 509 184.57

Central/κ = 1 15, 083 21, 034 5, 951 39.46

Peripheral/κ = 0 2, 443 6, 952 4, 509 184.57

Peripheral/κ = 1 14, 361 18, 528 4, 167 29.02

e

Distribution Normalized Linear Normalized star Difference Change (%)

Both/uniform, m = 0 1, 858, 493 1, 895, 512 37, 019 1.99

Both/uniform, m = 50 million 27, 764 28, 326 562 2.02

Drug/uniform, m = 0 4, 400, 000 4, 400, 000 0 0

Drug/uniform, m = 50 million 65, 808 65, 808 0 0

Vaccine/uniform, m = 0 1, 858, 493 1, 895, 512 37, 019 1.99

Vaccine/uniform, m = 50 million 1, 858, 493 1, 895, 512 37, 019 1.99

Neither/uniform, m = 0 4, 400, 000 4, 400, 000 0 0

Neither/uniform, m = 50 million 4, 400, 000 4, 400, 000 0 0

Both/central, m = 0 737, 058 1, 013, 650 276, 592 37.53

Both/central, m = 50 million 10, 803 14, 842 4, 039 37.39

(Continued)
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this level as 2000, that is, 0.02% of the population in each cluster. Drugs can be administered as

long as the supply lasts.

As shown in Figs 17 and 18, for a large range of the distributions of the initially infected

individuals and different topologies and number of clusters, policy 1 always has lower fatality

than policy 2. For low values of drug supply, policies 1 and 2 attain lower fatality as compared

to policy 3. Thus, policy 1 is the best in this case. Once the drug supply exceeds a certain level,

policy 3 attains the lowest fatality among all 3 policies. Intuitively, when the availability of

drugs is large, the policy that preemptively administers drugs to most individuals who are in

proximity of infected individuals would attain the lowest fatalities. This is what policy 3 does.

In contrast, when the drug availability is limited, policies that administer drugs to individuals

without symptoms as well will quickly exhaust their supplies and from then onwards not be

able to protect those who need it most, e.g., those with symptoms. Thus, policy 3 will not do

well under these circumstances, which is what we observe. But, when the drug availability is

low, it is unclear if it is better to reserve drugs for those in rash stage (policy 2) or administer

drugs to those with fever (policy 1). The model informs us that the latter is a better option in

this case, as by additionally preempting those with fever policy 1 reduces the number of infec-

tious individuals and thereby reduces the spread of the infection. Also, note that the size of the

supply at which fatality is lower under policy 3 substantially exceeds the threshold for policy 1

(recall that the threshold for a policy is the supply size at which its fatality plot flattens). Thus,

until its threshold value, policy 1 is the best choice.

The fatalities significantly differ depending on the policy we deploy. For instance, when the

initial infections are uniformly distributed across the star topology and the quantity of drugs

available is enough for the population, the ratio between the fatalities of the worst and best

Table 3. (Continued)

Drug/central, m = 0 2, 690, 869 3, 823, 159 1, 132, 290 42.08

Drug/central, m = 50 million 41, 522 57, 627 16, 105 38.79

Vaccine/central, m = 0 737, 058 1, 013, 650 276, 592 37.53

Vaccine/central, m = 50 million 737, 058 1, 013, 650 276, 592 37.53

Neither/central, m = 0 2, 690, 869 3, 823, 159 1, 132, 290 42.08

Neither/central, m = 50 million 2, 690, 869 3, 823, 159 1, 132, 290 42.08

Both/peripheral, m = 0 558, 877 721, 110 162, 233 29.03

Both/peripheral, m = 50 million 8, 242 10, 627 2, 385 28.94

Drug/peripheral, m = 0 1, 804, 136 2, 373, 052 568, 916 31.53

Drug/peripheral, m = 50 million 28, 028 35, 916 7, 888 28.14

Vaccine/peripheral, m = 0 558, 877 721, 110 162, 233 29.03

Vaccine/peripheral, m = 50 million 558, 877 721, 110 162, 233 29.03

Neither/peripheral, m = 0 1, 804, 136 2, 373, 052 568, 916 31.53

Neither/peripheral, m = 50 million 1, 804, 136 2, 373, 052 568, 916 31.53

(a) Per cluster fatality in Figs 8a, 8c, 9c and 9e. In Figs 8a, 8c, 9c and 9e, we consider a star topology with 4 clusters and a linear topology with 5 clusters respectively. C in

UniformC, CentralC, PeripheralC denotes cooperatives converting non-cooperatives. Similarly, NC in uniformNC, CentralNC, PeripheralNC denotes non-cooperatives

converting cooperatives. When α = 0, opinion does not spread, so the value for “C” and “NC” are the same. Thus, the prefixes are omitted.

(b) Per cluster fatality in Fig 9d and 9f. In these figures, non-cooperatives convert cooperatives and initial cooperativity is 0.2. In Fig 9d and 9f, we consider a star

topology with 4 clusters and a linear topology with 5 clusters respectively. NC in uniformNC, CentralNC, PeripheralNC denotes non-cooperatives converting

cooperatives.

(c) Per cluster fatality in Fig 10a and 10c. In Fig 10a and 10c, we consider a star topology with 4 clusters and a linear topology with 5 clusters respectively.

(d) Per cluster fatality in Fig 12. In Fig 12a and 12b, we consider a star topology with 4 clusters and a linear topology with 10 clusters respectively.

(e) Per cluster fatality in Fig 16. In Fig 16b and 16c, we consider a star topology with 4 clusters and a linear topology with 5 clusters respectively.

https://doi.org/10.1371/journal.pone.0256014.t003
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policies at any given point can become as high as 323 and that between the fatalities of the sec-

ond best and best policies at any given point can become as high as 35.6 as the figures reveal.

During the outbreak of an infectious disease, the number of visits of individuals to doctors’

office is an important measure of the health of a system. We consider that an individual will

visit the doctor’s office at the onset of fever (that is, prodrome state). Thus, the number of doc-

tor visits by individuals equals the number of individuals who enter the prodrome state. We

refer to this number as health care load and plot it as a function of drug supply for the three

policies under consideration. As Fig 19 shows, when the drug supply is 0, the three policies will

have equal health care load. This is anticipated as the policies differ only in the conditions

under which drug is administered. The health care load decreases only slightly with an increase

in drug supply for policy 2. This is because under policy 2 an individual is administered drug

only after he develops a rash, which happens after he develops a fever, regardless of the drug

supply. The slight decrease happens as greater drug supply enables the preemption of a greater

number of individuals who develop rashes and thereby reduces the spread of the disease. For

the other two policies, the health care load decreases considerably (and approximately linearly)

with an increase in the supply of drugs until the supply reaches a level beyond which the health

care load does not change with an increase in the availability of antiviral drugs. The pattern is

similar to how the fatality count changes for these policies as a function of the drug supply.

And, as the drug supply increases, the health care load under policy 2 becomes substantially

higher than those for the other two policies. As shown in Fig 19a, once the drug supply exceeds

a certain level, the health care load for policy 2 is respectively 8.94 and 350.9 times that for pol-

icy 1 and policy 3. Similarly, from Fig 19b, the health care load for policy 2 is respectively 9.04

and 276.2 times that for policy 1 and policy 3. For low values of drug supply, policy 1 attains a

lower health care load as compared to policy 3. Thus, policy 1 maximally reduces the health

care load among the 3 policies in this case. Once the drug supply exceeds a certain level, policy

3 attains the lowest health care load among all 3 policies. From Fig 19a, the health care load

under policy 1 is 39.2 times that for policy 3 in this region. From Fig 19b, the health care load

under policy 1 is 30.5 times that for policy 3 in this region. The explanation for this relative

performance is similar to that for fatality counts given in the previous paragraph.

In summary, considering 3 drug administering policies and a large range of the distribu-

tions of the initially infected individuals and different topologies and number of clusters, we

find that the fatalities under different administering policies are substantially different. Policy

1 (our default option) always has lower fatality than policy 2. Between policies 1 and 3, policy 1

has a lower fatality count unless the drug supply is very large and policy 3 has a lower fatality

count only when the supply is very large. Similar observations apply when one considers health

care load as the public health metric. Thus, policy 1 attains the best value of both public health

metrics in a wide range of operating conditions.

4 Discussions

We now summarize the important findings and articulate their significance on preventing the

spread of deadly infectious diseases.

From results of investigation of opinion dynamics

The joint spatio-temporal spread of an infectious disease and opinions that affect behavioral

dynamics pertinent to the spread of the disease, and the impact of one on the other, has not

been modeled to the best of our knowledge. Thus, public debates on the overlap between infor-

mation warfare and countering the spread of infectious diseases have largely been conducted

in the qualitative sphere. Considering the specific example combination of smallpox (as
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Fig 19. Health care load against drug availability. (a) Linear topology. (b) Star topology.

https://doi.org/10.1371/journal.pone.0256014.g019
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infectious disease) and vaccine hesitancy (as opinion that affects the spread of the disease), we

remedy this crucial void in the study of infectious diseases. We formulate a computationally

tractable mathematical model that captures the joint evolution of smallpox and vaccine hesi-

tancy aka cooperativity (Section 2). Using this model we have shown that the evolution of

cooperativity has a strong impact on fatality count. While it is intuitive that there would be

some correlation between the two, the magnitude of this correlation and the nature of its

dependence on the myriad of parameters that influence the evolution of the disease and opin-

ions, can not be ascertained without a quantitative formulation. This is what this paper accom-

plishes. We show that for a large range of combination of parameters, namely different

geographical topology of target region (number of clusters, organization of clusters), number

of initially infected individuals, stage of disease of the initially infected individuals, mobility

rates, preemption rates, overall fatality count sharply decreases (increases, respectively) with

increase in rate of spread of opinion, α between cooperatives and noncooperatives when the

former (latter, respectively) converts the latter (former, respectively). With increase in α, the

fatality count often changes by more than 50%. Thus, while the exact value of the fatality count

depends on the choice of the values of the large number of parameters that arise in practice

such as the above, we find that the pattern of the variation of fatality count with respect to α is

similar for different choices of other parameters, e.g. number and organization of clusters,

number and disease stage of the initially infected, origin cluster of the infection, mobility rate

(Section 3.1), preemption rate, (Section 3.2), etc. This stability is not apriori evident and con-

stitutes an useful artifact since the exact combination of the parameter values that arise in prac-

tice varies from one ambience to another. Given this stability, one can conclude based on

quantitative findings that influencing exchange of opinion towards enhancing receptivity to

vaccine incurs substantial public health benefits. Such influence may be attained through

health education seminars, workshops, vigorous dissemination of health information on

social, digital, and conventional media, and through direct engagement with influencers on

these platforms.

From results of investigation on mobility patterns and distribution of

initial infection

We now demonstrate that our model can assess the impact of various different key attributes

on the system above and beyond that of rate of exchange of opinions between individuals of

different opinion. This helps us anticipate as to how initial infection is likely to be seeded by

deliberate malevolent actors such as bioterrorists before they strike; such choices can not be

apriori inferred based on intuition. We have shown that other things being equal, fatalities are

(often, significantly) higher, when 1) the initial infections are uniformly distributed across var-

ious clusters than when all the initial infections only occur in one cluster; 2) the outbreak origi-

nates from the central cluster(s) than when it originates from the peripheral cluster(s) (Section

3.4). This rank ordering holds for a large number of choices of other parameters, namely,

number and organization of clusters, mobility rates, preemption rates, opinion exchange rates,

distribution of initial cooperatives etc (Section 3.4). The pattern is therefore stable. Even higher

rate of exchange of opinions between cooperatives and noncooperatives that convert the latter

to the former is least effective in reducing the fatalities when initially infected individuals are

distributed uniformly and most effective when the initially infected individuals are all in the

central cluster (Section 3.2). Also, when the initial infections are uniformly distributed, fatali-

ties in each cluster are the same irrespective of the mobility rates between the clusters (Section

3.2). On the other hand, when the initial infections occur in one cluster only, total fatalities

would escalate with an increase in mobility rates (Section 3.2). Thus, isolating regions from
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one another by reducing the mobility rates between them provides no public health benefits

when the initial infections are uniformly distributed. Considering all the above, including the

stability of the observed patterns, bioterrorist attacks will likely seed the initially infected uni-

formly across a region.

From results of investigations on impact of administering drugs and

various drug administration policies

Our model can assess the combination of various countermeasures and application policies.

We use it to investigate the impact of administering drugs and choose between various con-

ceivable policies for administering drugs. We choose drugs because: 1) vaccine hesitancy and

immunocompromise are widely prevalent and drugs are the only recourse in the former and

often more effective recourse in the latter; 2) models that consider the impact of administering

drugs to prevent and cure smallpox are rare (the only one we could find, namely [1], makes

several restrictive assumptions e.g., supply of drugs is unlimited, vaccine hesitancy does not

evolve with time, etc). Considering 3 drug administering policies, we find that the fatalities

under different administering policies are substantially different. Unless the drug supply is

very large, policy 1 has the least fatality count and health care load among these three policies.

Policy 3 has the least fatality count and number of health care load only when the supply is

very large. Thus, policy 1 (administering drugs to everyone with fever or rash) attains the best

value of both public health metrics in a wide range of operating conditions (Sections 3.3, 3.5).

These findings are not apriori evident.

We therefore study policy 1 in depth. Considering different numbers and organization of

clusters and also different distributions of the initially infected individuals, we find that the

fatality counts and health care load of policy 1 decrease approximately linearly with increase in

supply of drugs until the supply is enough to administer to everyone who develops symptoms

(fever and rash), and beyond that point these counts do not change with increase in the supply

(Sections 3.3, 3.5). While it may be guessed apriori that these counts would decrease with

increase in the supply of drugs, the linear nature of the decrease is not apriori evident. The sig-

nificance of linearity is as follows. Any linear plot can be fully constructed from the knowledge

of two points on it. Since the plots flatten after a linear phase, each such plot can be entirely

constructed from two points during the linear decrease phase (which provide the slope and the

starting point) and a third in the flat phase (which provides the ending value of the linear

phase). Thus, three points, which can be chosen anywhere respectively in the linear and flat

phases, provide the exact fatality count and health care load for a given amount of drug supply.

From the characterization of the linear expressions connecting the supply and the above

counts, the minimum supply needed to limit the above counts below acceptable limits can be

easily determined. For example, if fatality count is B − Ax where x is the supply, and A, B can

be determined as above from the characterization above, and C is the upper bound on fatality

that can be tolerated, the requisite supply is obtained by solving for x when B − Ax = C; it is (B
− C)/A. This simple characterization of the requisite supply has practical utility in public health

and can not be apriori guessed without the computations.

Next, considering policy 1, our numerical computations show that the most effective coun-

termeasure consists of a combination of antiviral drugs and vaccines, but if only one counter-

measure can be administered it ought to be the former (Section 3.3). Again, the fatality counts

under different countermeasures are significantly different, in particular, administering drugs

substantially reduces the fatality count. The nature of these findings can be explained after the

fact, but magnitudes of the differences can only be obtained through the computations. Finally,

we have shown that the fatalities substantially decrease if the delay in administering vaccines
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and delivering drugs to individuals decreases. This is consistent with commonplace intuition,

but the quantification of the amount of decrease allows for more founded public health policy

choices (since the delay is a function of availability of vaccines and drugs and health workers at

healthcare facilities).

From results of investigation on impact of topology

Considering various values of opinion exchange rates, mobility rates, preemption rates, disease

spread rates, initial cooperativities, we find that for each combination, other things being

equal, the star topology has 1) considerably higher fatalities per cluster than the linear topology

when the infection originates from one cluster; and 2) about same fatality counts per cluster as

the linear topology when the initially infected individuals are uniformly distributed (Section

3.4). In the two cases, the differences respectively are 1) 30–40% 2) below 2%. Thus yet again

there is a stable pattern (one that is consistent across the wide range of parameters mentioned

above). Neither the specific pattern nor its stability is apriori evident. Nonetheless, after the

fact, one can see that the underlying reason for the higher fatality is a higher spread in star

because it has a central cluster in the star topology which is adjacent to all other clusters, while

the central cluster in the linear topology is much farther off from the peripheral clusters. This

has important implications on pandemic sensitive urban design—topologies that have central

regions that are close to all other regions will be more vulnerable to an outbreak and hence bet-

ter avoided. If such topologies are inevitable because of legacy issues or because of fundamental

constraints such as geography, then there is a case to monitor those more closely and stock a

greater amount of drugs for the residents, and incentivize formation of consensus to accept

vaccines as and when available.

5 Conclusion and generalizations

In summary, we have formulated the first mathematical model for the joint spatio-temporal

spread of an infectious disease and an opinion that affects behavioral dynamics pertinent to

the spread of the disease. This model is flexible enough to incorporate the impact of various

attributes that determine the nature of the spread of the disease and pertinent opinion, namely,

spatial topology, different combinations of countermeasures, opinion spread rate, disease

spread rate, mobility rate, preemption rate, initial cooperativity, distributions of initially

infected individuals and initially cooperative individuals. It is also computationally tractable.

As such, it helps provide a quantitative basis to public discourse on various elements at the

intersection of spread of infectious diseases and information warfare that have hitherto been

conducted in only qualitative sphere. The numerical computations using the model confirm

various intuitions, quantifies public health metrics such as fatality, health care load, and reveal

patterns of their variations with respect to specific parameters, the patterns that are stable to

large scale variation of all other parameters. Such patterns can not be intuited apriori, and

their stability is invaluable because many of these parameters assume widely differing values in

different environments (that is, standard values can not be assumed). As such, stable patterns

of variations help us anticipate strategies that deliberate malevolent actors like bioterrorists

may adopt before the attacks are launched, and facilitates the designs of public health policies

that may thwart and defend against pandemics including but not limited to deliberate attacks.

We have chosen smallpox as an example of an infectious disease in designing the above

model because (1) it is highly infectious; (2) it has a high death rate; and (3) its disease progres-

sion parameters are known with reasonable certainty owing to years of research. We have cho-

sen vaccine hesitancy as an example of an opinion that influences the spread of an infectious

disease. But the model can be generalized to other infectious diseases which spread through
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proximity between the individuals, and other opinions that influence their spread. We now

describe the generalization to an arbitrary infectious disease. As for smallpox, first, consider

the case that all individuals are in the same neighborhood, that is, they interact with each other

at the same rate (homogeneous mixing). Each individual is either immunocompetent or

immunodeficient. Now, considering the case in which there are no countermeasures, individ-

uals in either category may be in a list of states, a list that is determined by the stages of pro-

gression of the disease in question. Susceptible, recovered and dead constitute stages for

almost all diseases. For smallpox, the additional stages were early incubation, late incubation,

prodrome, early rash, late rash. For another disease, COVID-19, for example, the additional

stages are latent, pre-symptomatic, symptomatic, asymptomatic (see Fig 20). In the latent

stage, an individual has been infected, but is not infectious; this stage is analogous to the incu-

bation stages. The individual is infectious in the pre-symptomatic, symptomatic, asymptom-

atic stages, and has symptoms only in the symptomatic stage. One can also conceive of stages

like hospitalized. For COVID-19, the immunodeficient characterization may be substituted by

high age or comorbidity which renders an individual vulnerable to severe forms of the disease.

Fig 20 depicts the interactional and the non-interactional state transitions pictorially.

The model for the cases in which drugs, vaccines can prevent and treat smallpox have been

developed building upon the model for the scenario in which there is no countermeasure. The

generalizations have been accomplished through addition of states such as preempted and

including descriptors such as cooperatives, non-cooperatives to denote their willingness to

receive vaccines. This methodology extends to other infectious diseases as well. Let us consider

the case of COVID-19 as an example. There is till date no therapeutic that prevents the disease,

though several have been developed for potentially reducing the severity once one develops the

disease [39]. Thus, as of today, in the “drug only” scenario, there would not be any preempted

state, but the probability of transition from hospitalized to dead or recovered will depend on

whether therapeutics are administered. In the “vaccine only” and “both drug and vaccine” sce-

nario we would have the preempted state, similar to Figs 3 and 4. The differences between

COVID-19 and smallpox are: 1) the stages of the disease would be drawn from Fig 20 instead

of Figs 1 and 2) the transition to the preempted state will only be due to vaccination and can

therefore happen only from the susceptible or latent stages; 3) immunocompetent and

Fig 20. COVID-19 state diagram. The symbol S denotes susceptibles, L denotes individuals in the latent stage, P
stands for pre-symptomatic, Is denotes symptomatic stage, Ia denotes asymptomatic stage, H stands for hospitalized, R
denotes recovered, and D stands for dead. The suffixes c and n respectively stand for cooperatives and non-

cooperatives e.g., Sc and Sn denote cooperative and non-cooperative susceptible individuals respectively. Similarly, Ica
and Ina stand for cooperative asymptomatic and non-cooperative asymptomatic individuals respectively.

https://doi.org/10.1371/journal.pone.0256014.g020
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immunodeficient would get the same vaccine (the immunodeficient are more likely to develop

severe forms of disease and have higher fatality rates). Thus, the “vaccine only” and “both drug

and vaccine” scenarios differ only in probabilities of transition from hospitalized to dead and

recovered. For COVID-19, the opinions of individuals regarding their willingness to receive

the vaccine will be represented by classifying them as cooperative and non-cooperative as for

smallpox. The interactional transitions due to 1) infection (from susceptible to latent stages);

or 2) exchange of opinions on whether to receive vaccine are similar to the “vaccine only” sce-

nario for smallpox (Fig 3). The latter constitutes transition from non-cooperative to coopera-

tive. Note that those with specific allergies should not receive COVID-19 vaccines, or at least

both doses of the vaccine [40]. The fraction of such individuals is small. One can either con-

sider a separate category for such individuals, or equivalently consider these individuals as

those for which vaccines do not provide immunity, and they do not transition to the pre-

empted state even after receiving the vaccines. In the latter case, the probability that the vaccine

provides immunity can be adjusted to account for the presence of these individuals. We adopt

the second approach in our pictorial depiction.

Like for the spread of smallpox, the impact of spatial heterogeneity can be captured for

other infectious diseases by dividing the target geographical area into clusters, and considering

the cluster an individual inhabits as part of his state description in addition to his cooperativ-

ity, stage of the disease, preemption, immunocompetency or immunodeficiency. Mobility

rates, infection rates and opinion exchange rates among clusters may be represented by matri-

ces as for smallpox.

We now outline the design of the CEDE representing the spatio-temporal evolution of the

system. Like for smallpox, each variable in the CEDE represents the fraction of the population

who are in a particular system state, each state representing the combination of the cluster

inhabited, the stage of the disease, immunocompetency, and cooperativity. Each differential

equation captures the evolution of a particular variable. The terms in the differential equations

are either quadratic or linear. The quadratic ones represent the interactional transitions (refer

to the terms in green color in CEDE equation (1)—(4), (16)—(19), and the terms in orange

color in (16)—(29)), and the linear ones represent the non-interactional transitions (refer to

the terms in red in (3)—(14), (18)—(29), and (31), blue terms in (1)—(13), (16)—(30), as well

as all the black terms in (15), (30), (32), and (33)). We omit the differential equations for brev-

ity. But, as for smallpox, their solution provides the fraction of individuals in different states at

given times, that is, the spatio-temporal distribution of the disease and opinion spread.

As the first work in this field, while developing a mathematical model for the joint evolution

of disease and opinions we have resorted to some simplifications so as to focus on the essences.

One such simplification has been to assume that the willingness to be vaccinated is a binary

indicator; but in practice, beliefs have different strengths. We outline some generalizations

that can render the model more realistic. One possibility is to consider different classes of non-

cooperative individuals, with the connotation that the classes have different degrees of

entrenchments in their beliefs. The classes that are more entrenched have lower probability of

transition to cooperative after each interaction with cooperative individuals. If the probability

of conversion is low in each interaction, a larger number of interactions would be required for

a conversion on an average. Thus more entrenched individuals become cooperative only after

several interactions with cooperatives. In this case, the state of an individual will denote which

class of noncooperation he belongs to if he is noncooperative, and the probability of conver-

sion upon interacting with a cooperative will depend on the class indicator. Another possibility

is to consider that noncooperatives transition across various classes, or stages, before becoming

a cooperative. Thus there are stages of conviction like stages of disease. That is, the noncoo-

peratives in the heavily entrenched stage transition to a less entrenched one upon interacting
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with a cooperative, and upon a subsequent interaction transition to an even less entrenched

stage. This process continues till a noncooperative becomes a cooperative. Thus, every interac-

tion with a cooperative increases the willingness of a noncooperative to receive the vaccine,

and eventually the willingness reaches the level at which an individual agrees to receive a vac-

cine. In this case, the state of an individual will again denote which stage of noncooperation he

belongs to and the interactional transitions will include transitions between these stages.

Finally, another limitation of our model has been to assume only one kind of transition for

opinion, that is either cooperatives convert noncooperatives or vice versa. In practice, both

transitions may proceed simultaneously, that is, cooperatives convert noncooperatives and

noncooperatives convert cooperatives. Such bidirectional transitions will include individuals

changing their opinions back and forth. The CEDE can be easily generalized to accommodate

this provision, we outline the last generalization in Appendix A.4 in S1 Appendix.

Supporting information

S1 Text. Proof of convergence of the stochastic state distribution to CEDE solution. The

proof proceeds in the following sequence. (1) We provide a Continuous Time Markov Chain

(CTMC) formulation for the stochastic version of our system. (2) We present a classical result

of probability theory that guarantees convergence of a CTMC to a system of differential equa-

tions provided the CTMC satisfies some regularity conditions. (3) and (4) We prove that the

CTMC for our system satisfies the regularity conditions. (5) We show that the system of differ-

ential equations in the classical result is the CEDE for our system.
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