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Background:More children are now surviving severe acutemalnutrition (SAM), but evidence suggests that early-
life malnutrition is associated with increased risk of long-term cardio-metabolic disorders. To better understand
potential mechanisms, we studied the metabolite profiles of children seven years after treatment for SAM.
Methods:We followed-up children (n=352) treated for SAM in 2006–2007, at Queen Elizabeth Central Hospital,
in Malawi. Using nuclear magnetic resonance spectroscopy, tandemmass spectrometry and enzyme-linked im-
munosorbent assay, we measured circulating metabolites in fasting blood in a subset of SAM survivors (n=69,
9·6 ± 1·6 years), siblings (n= 44, 10·5 ± 2·7 years), and age and sex-matched community controls (n = 37,
9·4 ± 1·8 years). Data were analysed using univariate and sparse partial least square (sPLS) methods. Differ-
ences associated with SAM survival, oedema status, and anthropometry were tested, adjusting for age, sex,
HIV, and wealth index.
Findings: Based on 194measuredmetabolites, the profiles of SAM survivors were similar to those of siblings and
community controls. IGF1, creatinine, and FGF21, had loading values N0·3 and ranked stably in the top 10
distinguishing metabolites, but did not differ between SAM survivors and controls with univariate analysis. Cur-
rent stunting was associated with IGF1 (β=15·2, SE=3·5, partial R2 = 12%, p b 0·0001) and this relationship
could be influenced by early childhood SAM (β=17·4, SE= 7·7, partial R2= 2·8%, p=0·025). Nometabolites
were associated with oedema status, duration of hospital stay, anthropometry measured during hospitalization,
nor with changes in anthropometry since hospitalization.
Interpretation: In this group of survivors, SAM was not associated with longer-term global metabolic changes
7 years after treatment. However, SAM may influence the relationship between current stunting and IGF1. Fur-
ther risk markers for NCDs in SAM survivors may only be revealed by direct metabolic challenge or later in life.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Research in context

Evidence before this study

Following the concept of “developmental origin of health and dis-
ease” (DOHaD), evidence from studies of prenatal malnutrition
suggests that early-life insults can increase long-term risk of dis-
ease. With more children surviving episodes of severe acute mal-
nutrition (SAM), there is growing concern for the longer-term
consequences. However, few studies have followed-up survivors
of SAM, especially beyond 1 year post-treatment, as described in
our 2016 publication of growth and functional outcomes for this
Malawi cohort (“ChroSAM study”). Previously, we showed that
Malawian survivors of SAM have a “thrifty” growth trajectory, re-
duced lean mass levels, and reduced muscle strength, seven
years after treatment. A small number of studies have looked at
metabolism of SAM children during treatment and found hepatic
steatosis, abnormal glucose homeostasis, and changes in several
classes of metabolites or proteins, including acylcarnitines, in-
flammatory cytokines, fatty acids, amino acids, sphingolipids
and hormones related to appetite and energy metabolism. Some
of these changes have been associated with the development of
type 2 diabetes 12 years prior to onset and a number of
sphingolipids have been linked to insulin resistance and metabolic
syndrome. However, it is not currently known whether metabolic
disturbances seen during SAMand immediate recovery persist be-
yond treatment.

Added value of this study

We report the first quantitative metabolomics study of long-term
SAM survivors and show that 7 years after treatment, metabolic
profiles of SAM survivors are similar to those of sibling and com-
munity controls. We also found that measures of stunting in
largely prepubescent children were associated with low IGF1
and, having experienced childhood SAM modulated this
relationship.

Implications of all the available evidence

The evidence therefore suggests that SAM has long-term implica-
tions for growth, body composition and muscle strength, and
stunted SAM survivors have even lower IGF1 levels than other
stunted children from similar low socioeconomic communities.
These outcomes are all associated with greater non-
communicable disease (NCD) risk in later life. However, without
evidence of metabolic profile changes or other early signs of
NCD development, we do not know whether SAM survivors
have been subject to epigenetic changes, as is the case for low
birth weight survivors, nor whether they are at greater risk of
NCDs if their metabolic “load” remains low (i.e. they remain short
and thin). Future research is needed, such as comparing SAM sur-
vivors to healthier and wealthier children in the same contexts,
and assessing the response of SAM survivors to metabolic chal-
lenges. Public health programmers and policy makers need to be
mindful of the potential long-term consequences of SAM; survival
alone is no longer sufficient for affected children.
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1. Introduction

Severe acute malnutrition (SAM) affects approximately 18 million
children under the age of 5 years and remains a significant contributor
tomortality, resulting in at least 500,000 deaths/year [1]. Currently, pro-
gram protocols are focused on the urgent challenge of preventing mor-
tality through the use of ready-to-use therapeutic foods (RUTF) for
treatment of SAM and this effort has been largely successful [2,3]. How-
ever, with more children surviving episodes of SAM, there is growing
concern for the longer-term consequences. Following the concept of
“developmental origin of health and disease” (DOHaD), increasing evi-
dence suggests that early-life insults can increase long term risk of dis-
ease. For example, foetal undernutrition, manifested as low birth
weight, has been associated with increased rates of type 2 diabetes, hy-
pertension and related complications, such as coronary heart disease
and stroke in adulthood [4–6]. The mechanisms involved are not fully
understood, but environmental exposures could alter development by
driving changes in epigenetic marks or organ structure resulting in fu-
ture physiological consequences [4].

The length of the “window of plasticity” for when insults can occur
and cause these epigenetic changes is not yet clear. There is strong evi-
dence for insults in utero, but less evidence for the long-term effects of
insults in infancy, such as SAM. However, acute post-natal malnutrition
has been associated with profound metabolic disturbances such as he-
patic steatosis and abnormal glucose homeostasis [7–9]. SAM, both dur-
ing the acute episode or during the immediate recovery phase, is
associatedwith changes in several classes of metabolites or proteins, in-
cluding acylcarnitines, inflammatory cytokines, fatty acids, amino acids,
sphingolipids and hormones related to appetite and energymetabolism
[10,11]. Some of these changes, such as increased branched chain amino
acids, have been associated with the development of type 2 diabetes
12 years prior to onset [12] and a number of sphingolipids (particularly
ceramides) have been linked to insulin resistance and metabolic syn-
drome [13].

Previously, we showed that Malawian survivors of SAM showed a
“thrifty” growth trajectory and reduced lean mass levels, seven years
after treatment. These phenotypic changes are similar to those de-
scribed in low birth weight children and are associated with future car-
diovascular and metabolic disease [14]. Taken together, this evidence
suggests that SAM may induce metabolic changes linked to long-term
risk of NCDs. However, the extent to which these SAM-related changes
persist or whether they are mechanistically linked to NCDs is unknown.
Also, it remains unclear how the severity, duration and clinical pheno-
type of the SAM episode (oedematous versus severe wasting) influence
the cardio-metabolic risk profile subsequent to severe malnutrition.

This study aimed to better understand the longer-term metabolic
consequences of SAM and identify early markers that could inform pre-
ventive interventions. Using a large-scale targeted metabolomics ap-
proach with a focus on glucose and hepatic metabolism previously
associated with NCDs, we characterized the profiles of SAM survivors
from the “ChroSAM cohort” [14] seven years post-discharge and com-
pared them to community and sibling controls.

2. Materials and methods

2.1. Study design and participants

As detailed in the flow diagram (Supplemental Fig. 1), an initial co-
hort of 1024 patients were admitted for treatment of SAM between
July 2006 and March 2007 at Queen Elizabeth Central Hospital in Blan-
tyre, Malawi. Median age at hospitalization was 21·5 months (IQR
15–32). At that time, SAM was defined as weight-for-height (WHZ)
b 70%of themedian (NCHS reference), ormid-upper armcircumference
(MUAC) b 11 cm, or presence of nutritional oedema [15]. Patients were
followed-up after seven years (n=352); 217 siblings and 184 age-and-
sex matched community controls were also recruited [14]. Siblings
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were defined as being closest in age to the case child, age 4–15·9 years
with no history of SAM. Community controls were recruited randomly
by spinning a bottle at the case child's house and going door to door
in that direction [16]. Eligibility criteria were: living in the same com-
munity, of the same sex, aged within 12 months of the case child and
with no history of SAM. Not all SAM survivors had eligible sibling and
community controls. Written informed consent was obtained from the
child's guardian and additional assent was sought from children older
than 13 years.

2.2. Ethics statement

Ethical approval for the study was granted by the Malawi College
of Medicine Research and Ethics Committee (reference P.02/13/1342),
the Hospital for Sick Children Research Ethics Board (refer-
ence1000049242) and the University College London Research Ethics
Committee (reference 4683/001).

2.3. Clinical data

Characteristics of the childrenwith SAM at initial hospital admission
are presented in Supplemental Table 1.WHZ, height-for-age (HAZ), and
weight-for-age (WAZ) z-scores were calculated using WHO 2006
growth standards for children under 5 years of age or the 2007 stan-
dards for those over 5. Anthropometric z-scores at initial hospitalization
were calculated using theminimumweight recorded during admission,
i.e., when oedemawas sufficiently regressed. HIV reactivity or exposure
in children b18 months of age was obtained by rapid antibody testing
and a broad panel of supplementary clinical variable was also recorded.

2.4. Sample collection and metabolite assay

Venous bloodwas taken after overnight fasting from consentingpar-
ticipants. Samples were spun within an hour of collection and plasma
stored at −80 °C. The Metabolomics Innovation Centre (TMIC) at the
University of Alberta, Canada, quantified the metabolites in a random
subset of samples using one of three approaches: 1) combined direct in-
jection and liquid chromatography coupled to tandem mass spectrom-
etry (MS/MS) 2) nuclear magnetic resonance (NMR) spectroscopy or
3) Enzyme-linked immunosorbent assay (ELISA).

2.5. Combined direct injection and liquid chromatography – tandem mass
spectrometry

A combination of direct flow injection and reverse-phase liquid
chromatography coupled to tandem mass spectrometry (MS/MS) was
performed using the AbsoluteIDQ™ Kit (BIOCRATES Life Sciences AG,
Austria). Supplemental Table 2 presents all quantified metabolites that
passed standard quality control cut-offs defined as having: 1) a mean
CV b 25% across experimental batches, 2) b10% missing values, and
3) a median value greater or equal to the lower limit of quantification
in study group.

2.6. NMR spectroscopy

NMR spectroscopy was used to identify 24 metabolites. All 1H NMR
spectra were collected on a 700 MHz Avance III (Bruker) spectrometer,
and then processed and analysed using the online Bayesil software
package which allows for qualitative and quantitative analysis of NMR
spectra.

2.7. Specific protein quantification

Two commercial Milliplex® Mag kits were used to measure set
panels of adipokine and liver metabolism proteins. The human
adipokine magnetic bead panel 2 (cat# HADK2MAG-61 K, Millipore,
Darmstadt, Germany) was used to quantify: 1) human nerve growth
factor (NGF), 2) interleukin 6 (IL6), 3) insulin, 4) leptin (LEP), 5) inter-
leukin 8 (Il8), 6) hepatocyte growth factor (HGF), 7) C\\Cmotif chemo-
kine ligand 2 (CCL2, a.k.a. MCP − 1), 8) tumor necrosis factor alpha
(TNF, a.k.a. TNF-α) and 9) interleukin 1 beta (IL1B). The human liver
protein magnetic bead panel (cat# HLPPMAG-57 K, Millipore) was
used to measure: 1) alpha fetoprotein (AFP), 2) angiopoietin like 3
(ANGPTL3), 3) angiopoietin like 4 (ANGPTL4), 4) angiopoietin like 6
(ANGPTL6, a.k.a. AGF), 5) hepatocyte growth factor (HGF), 6) fatty
acid binding protein 1 (FABP1), 7) fibroblast growth factor 19
(FGF19), 8) fibroblast growth factor 21 (FGF21), and 9) fibroblast
growth factor 23 (FGF23). Additional proteins were analysed as per
manufacturer's instructions using either standard or competitive
ELISA: 1) human growth hormone 1 (GH1, cat# DGH00, R&D Systems,
Minneapolis, USA), 2) insulin like growth factor 1 (IGF1, cat# DG100,
R&D Systems), 3) retinol binding protein 1 (RBP1, cat# EIA-5202, DRG
Diagnostics, Marburg, Germany), 4) total 25-OH vitamin D (25(OH)D,
cat# EIA-5396, DRG Diagnostics), 5) vitamin D binding protein (GC, a.
k.a. DBP, cat# DVDBP0, R&D Systems).

2.8. Statistical analysis

Sample sizewas constrained by the numbers of patients successfully
followed-up and by the budget for sample analysis. Based on mean dif-
ferences and standard deviations in metabolites (lysine and threonine)
at admission in children with kwashiorkor vs wasting [11], our sample
size is more than sufficient, with 90% power and 5% significance, to de-
tect differences of approximately 35 μmol/L between the groups. For the
primary analysis, metabolite profiles of SAM survivors were compared
to those of sibling and community controls. Secondary analyses was
conducted within the SAM surviving group only and searched for asso-
ciations betweenmetabolites andmeasures of: 1)wasting at initial hos-
pitalization, 2) severity of oedema at admission, 3) post-discharge
change in WAZ of SAM survivors and 4) measures of stunting
(i.e., HAZ) seven years post discharge. Metabolites and proteins were
analysed if above the limit of detection (LOD) in 80% of samples in at
least one experimental group; and the remaining concentrations
below the LODwere set to half the LOD [17]. Principal component anal-
ysis (PCA) was used on log transformed and standardized variables to
examine inherent clustering, metabolite correlation and sample out-
liers. Based on PCA and visual inspection of histograms and residuals,
33 outliers were removed out of 31,800 values (0·1%);mostwere phos-
phatidylcholine diacyls from one sample, which drove 57% of the vari-
ance in this metabolite class. Measured concentrations obtained from
Milliplex and ELISA assays were corrected for technical batch effects
using ComBat function as implemented in sva package [18]. Associa-
tions between metabolic variables and participant groups were tested
with linear models on log transformed variables while adjusting for
age (months), sex, HIV status and wealth quintile. Potential con-
founders were selected a priori based on biological plausibility and
baseline differences between the groups. Residuals were inspected
and obtained p-values were corrected using Benjamini and Hochberg
False Discovery Rate (FDR) due to the large number of models. sPLS-
DA or sPLS was conducted as implemented by the mixOmics package
[17]. These methods analyse multivariate correlations between metab-
olites, group differences or associations with anthropometric variables
while concurrently performing feature selection via ℓ1 regularization
(LASSO [19]). Penalized regression methods shrink coefficients to zero
leaving a subset of top features. For this, metabolites were log trans-
formed and adjusted for age, sex, HIV, andwealth; and standardized re-
siduals were analysed after missing values were imputed using
bagImpute in the caret package [20]. There is no critical threshold
established to attest significance of PLS components, however, negative
Q2 values indicate that the component is not predictive while empirical
values of at least 0·4 are deemed of acceptable predictive value for bio-
logical models [21]. After analysing all participants, sub analyses were



Table 1
Characteristics of participants in the metabolomics subset.

Descriptive data

SAM
survivors

Siblings Community
controls

n = 69 n = 44 n = 37

Clinical characteristics
Age, years* 9·1 [8·5–10·2] 11·5

[7·5–12·8]
8·7 [8·3–10·5]

Female, n (%) 30/69 (43%) 22/44 (50%) 15/37 (41%)
HIV positive, n (%) 20/64 (31%) 2/25 (8·0%) 2/25 (8·0%)
Started puberty, n (%) 2/69 (2·9%) 4/44 (9·1%) 2/37 (5·4%)
Weight, kg* 23·7

[21·3–26·2]
29·1
[20·4–36·2]

23·8
[22·1–26·3]

Height, cm* 124 [120–129] 134 [118–145] 126 [121–129]
MUAC, mm* 171 [162–180] 184 [165–205] 174 [166–185]
Weight-for-ageϮ, z-score −1·44 ± 0·93 −1·34 ± 0·85 −1·08 ± 0·88
Height-for-age, z-score −1·68 ± 1·2 −1·33 ± 0·98 -1·37 ± 1·0
BMI-for-age, z-score −0·79 ± 0·98 −0·69 ± 0·66 −0·51 ± 0·84
History of hospital
admission (not SAM)

14/69 (20%) 7/44 (16%) 9/37 (24%)

Family characteristics
Mother alive, n (%) 62/68 (91%) 38/41 (93%) 35/36 (97%)
Mother HIV positive, n (%) 22/53 (42%) 12/33 (36%) 6/31 (19%)
Mother literate, n (%) 41/67 (61%) 25/39 (64%) 26/37 (70%)
Children in family* 3·5 (2·8–4·3) 4 (3–5) 4 (3–4)
Families with children
who died

21/68 (31%) 12/41 (29%) 3/36 (8·3%)

Birth order* 2 (1–4) 3 (2–4) 2 (2–4)

Home environment
Bottom wealth asset
quintile, n (%)

10/69 (14%) 5/44 (11%) 4/37 (11%)

Cooking with fire, n (%) 66/69 (96%) 40/41 (98%) 37/37 (100%)
Cooking inside house,
n (%)

14/69 (20%) 9/41 (22%) 4/37 (11%)

Unimproved toilet, n (%) 54/69 (78%) 33/41 (80%) 28/37 (76%)

Data are presented as number and percentage, averages and standard deviation or with
median and interquartile range as indicated with stars (*). Ϯ Weight-for-age is calculated
only in children under 10 years of age. BMI, body mass index; MUAC, mid upper arm cir-
cumference; SAM, severe acute malnutrition.
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done in only cases with oedematous SAM, and those without HIV. Data
were analysed using R version 3.4.0 [22] and figures generated with
ggplot2 and Inkscape [23].

3. Results

3.1. Patient characteristics

Metabolite data was available for 150 participants; 69 SAM survi-
vors, 44 siblings and 37 community controls (Supplementary Fig. 1);
their characteristics are presented in Table 1. Community controls
were more likely to decline hospital assessments, including giving a
blood sample, than SAM survivors. 55% were male and none had
known underlying congenital conditions. Overall, 21% were HIV posi-
tive; but children who experienced early childhood SAM had a signifi-
cantly higher prevalence (31%) compared to controls (8%, p = 0·012).
The median age of SAM survivors was 9·1 years [interquartile range
(IQR), 8·5–10·2] which did not differ from community controls; how-
ever, siblings were older on average (11·5 years, [IQR, 7·5–12·8], p =
0·08). Between hospitalization and 7 year follow-up, SAM survivors
showed a mean gain of 2·3 (SD = 1·3) in WAZ; 1·6 (SD = 1·5) in
BMI-for-age z-score; and 1·5 (SD = 1·3) in HAZ, however they still
have significantly lower anthropometric z-scores than control groups.
Puberty onset did not differ between groups where a total of 8 children
reported to have reached puberty. Wealth asset quintiles were compa-
rable between groups and specifically the proportion of children in
the bottom wealth quintile did not differ. An exploration of anthropo-
metric and functional differences between groups at 1-year and 7-
years post-discharge has been published previously [14,24].

3.2. Detection and quantification of metabolites

Themedian concentrations of all 194measuredmetabolites are pre-
sented stratified by group in Supplementary Table 2. With targetedMS/
MS, 155 different endogenous metabolites were quantified including
amino acids (n = 18), acylcarnitines (n = 26), biogenic amines (n =
12), sphingolipids (n = 15), and glycerophospholipids (n = 84). NMR
spectroscopy was used to quantify an additional 24 metabolites classi-
fied as: organic acids and derivatives (n= 12); sugars, alcohols and de-
rivatives (n = 4), amino acids (n = 5), ketone derivatives (n = 1),
organic nitrogen compounds (n = 1), carnitines (n = 1). Summary
values of amino acids (i.e., total, essential, aromatic, branched chain,
glucogenic and ketogenic amino acids) and metabolite ratios such as
kynurenine-to-tryptophan and the Fischer ratio were calculated. With
the adipokine Milliplex panel, 6 proteins were quantified (i.e., NGF,
IL6, LEP, IL8, CCL2, TNF) but IL1B was under detection range in N63% of
samples. The liver Milliplex panel quantified 4 proteins (ANGPLT3,
ANGPLT4, FGF21 and FGF23) but HGF, FABP1 and FGF19were under de-
tection range in N38%, 93% and 94% of samples, respectively. ELISA was
used to quantify 5 additional molecules: total 25-OH vitamin D and 4
proteins (GH1, IGF1, RBP1, and GC).

3.3. Survivors of early childhood SAM were not metabolically distinct from
controls

The overall metabolite profile of SAM survivors did not differ from
those of either siblings or community controls and results were similar
when the control groups were combined. There were no significant dif-
ferences in concentrations of metabolites when compared using linear
regression with p-values corrected for FDR (Supplementary Table 2).
Using multivariate sPLS-DA, SAM and controls were indistinguishable
based on circulating metabolites or proteins and showed a maximum
distance balanced classification error rate of 54% (SD, 2·8%) with PLS-
component t1 explaining 5% of variance (Fig. 1). Table 2 presents the
subset of metabolites or proteins that were stably ranked as being
most discriminative between SAM and controls by sPLS-DA,
i.e., metabolites or proteins selected N80% of the time in the top10
with 10-fold cross validation and showing a PLS-t1 loading value N0·3.
This table also presents the linear model results for these selected top-
ranking features, including IGF1 the top ranked metabolite. These re-
sults show that the metabolite and protein profiles of SAM survivors
were not distinguishable from those of controls. Sub-analysis including
only children that experienced oedematous SAM or those without HIV
showed similar results. Supplementary Table 2 presents all the linear
models testing for differences between groups.
3.4. Circulating metabolites or proteins in SAM survivors were not associ-
ated with clinical characteristics at hospital admission nor with indicators
of anthropometric recovery since hospitalization

Metabolites or proteinswere not associatedwith severity of SAMex-
perience by survivors, i.e. lowest WHZ or WAZ during admission (Sup-
plemental Table 2). None of the metabolites or proteins showed a
relationship with duration of hospital stay or clinical phenotype of
SAM, i.e., having had severe wasting versus oedematous SAM, nor
with the severity of initial oedema at admission. Furthermore, circulat-
ing metabolites or proteins were not related to anthropometric recov-
ery in SAM survivors, i.e., with change in WAZ or BMI-for-age z-scores
between hospitalization and 7 year follow-up, norwith children catego-
rized as above or below the median anthropometric change (2·5 z-
scores) since hospitalization. Significant associations were only found
with known confounders such as age, sex, HIV and wealth.



Fig. 1. PLS-DA score plot showing clustering of SAM survivors at 7 years post-discharge and controls.

Table 2
Concentrations of top-ranked metabolites selected by sPLS-DA as most different between SAM survivors and controls with associated results from linear regressions.

SAM
n = 69

Siblings
n = 44

Community
n = 37

Stability1 Loading2 Group differences3

SAM vs community SAM vs siblings

β SE p FDR-p β SE p FDR-p

IGF1, ng/mL 89
[65–110]

120
[86–180]

100
[67–120]

0·9 −0·52 0·16 0·09 0·08 0·98 0·21 0·09 0·018 0·98

Creatinine, μmol/L 30
[16–43]

25
[18–38]

21
[12−32]

0·8 −0·53 −0·26 0·16 0·11 0·98 0·063 0·16 0·7 0·98

FGF21, ng/mL 0·15 [0·06–0·23] 0·1 [0·04–0·2] 0·09 [0·033–0·13] 0·8 0·33 −0·77 0·28 0·008 0·98 −0·32 0·29 0·27 0·98

Data are presented as median [IQR]. sPLS-DA was conducted on standardized log-transformed variables adjusted for age, sex, HIV and wealth. Metabolites were selected when ranked in
the top 10 at least 80%of the time across folds and having a N 0.3 PLS-component t1 loading value. Feature stability1 indicates the frequency atwhich themetabolite is selected in the top-10
with sPLS-DA across 10-fold cross-validation. The loading2 value indicates the correlation strength of the metabolite with PLS-component t1. Group differences3 were tested using linear
models on log transformedvariableswhile adjusting for age, sex, HIV andwealth.Multiple testing correctionwas done based on allmetabolites analysed using Benjamini &Hochberg false
discovery rate (FDR). Significance threshold: FDR-corrected p-values b0·05. sPLS-DA; sparse partial least square discriminant analysis.
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3.5. IGF1 was moderately associated with current stunting and this
relationship may be influenced by having survived childhood SAM

Based on sPLS, the overall metabolite profiles were not predictive of
current measures of stunting; (Q2, a measure of the external validity of
themodel= 0·002). However, IGF1 again ranked as the topmetabolite
correlating with current stunting, accounting for 20% of the variance in
Table 3
Metabolite concentrations of top-ranked variables related to current stunting as selected by sP

SAM Siblings Community

n = 69 n = 44 n = 37

1 IGF1,
ng/mL

89
[65–110]

120
[86–180]

100
[67–120]

2 PC aa
C38:6

56
[42–66]

52
[47–70]

62
[55–72]

3 PC aa
C40:6

25
[20–29]

22
[19–28]

25
[23−30]

Data are presented as median [IQR]. sPLS was conducted on log-transformed and standardized
least 80% of the time across folds and having a N 0·3 PLS-component t1 loading value. Feature sta
PLS across 10-fold cross-validation. The loading2 value indicates the correlation strength of the
z-scores were tested using linearmodels on log transformed variables while adjusting for age, s
using Benjamini & Hochberg's FDR. Significance threshold, FDR-corrected p-values b0·05. FDR
metabolites or proteins (Table 3) (loading value N0·5 on PLS-
component t1). Since IGF1 was top ranked and related to both stunting
and having experienced early childhood SAM, we further explored this
relationship using multivariate linear regression (Table 4 and Fig. 2).
Circulating levels of IGF1 showed a partial positive correlation with
HAZ of children at the time of ChroSAM (r = 0·35, R2 = 0·12, p b

0·0001) while adjusting for age, sex, HIV and wealth. Although model
LS with associated results from linear regressions.

Stability1 Loading2 Height-for-age, z-score

β SE FDR-p

1 0·79 0·16 0·03 b0·0001

1 −0·40 −0·054 0·021 0·15

1 −0·37 −0·064 0·021 0·1

variables adjusted for age, sex, HIV and wealth. Metabolites were ranked in the top 10 at
bility1 indicates the frequency atwhich themetabolite is selected in the top-10with sparse
metabolite with PLS-component t1. Associations betweenmetabolites and height-for-age3

ex, HIV andwealth.Multiple testing correctionwas done based on all metabolites analysed
, false discovery rate; sPLS, sparse partial least square analysis.



Table 4
Multivariate models exploring the relationship between IGF1, current stunting, and having survived childhood SAM.

Model 1: Current stunting in relation to IGF1

β (SE) Partial R2 p

Height-for-age, z-scores 15·9 (3·5) 0·12 b0·0001
Age, months 1·3 (0·15) 0·34 b0·0001
Wealth 5·9 (2·7) 0·027 0·03
Sex Female Reference

Male −35·3 (7·3) 0·14 b0·0001
HIV Non-Reactive Reference

Reactive −21·0 (9·9) 0·028 0·04
Unknown 6·4 (8·5) – 0·45

Group SAM survivor – – –
Control – – –

Summary Observations 148
Adjusted R2 0·489
Residual standard error 42·2
F Statistic 24·5 (df = 6; 141)
AIC 1536·3

Model 2: Current stunting in relation to IGF1 and SAM survival compared to combined controls
Height-for-age, z-scores 15·2 (3·5) 0·12 b0·0001
Age, months 1·2 (0·15) 0·33 b0·0001
Wealth 5·7 (2·6) 0·026 0·031
Sex Female Reference

Male −34·6 (7·2) 0·14 b0·0001
HIV Non-Reactive Reference

Reactive −15·1 (10·1) 0·002 0·14
Unknown 0·46 (8·8) – 0·96

Group SAM survivor Reference
Control 17·4 (7·7) 0·028 0·025

Summary Observations 148
Adjusted R2 0·504
Residual standard error 41·6
F Statistic 22·3 (df = 7; 140)
AIC 1533
Model 2 vs. Model 1 p = 0·025

Model 3: Current stunting in relation to IGF1 and SAM survival compared to community or sibling controls
Height-for-age, z-scores 15·2 (3·5) 0·11 b0·0001
Age, months 1·2 (0·15) 0·31 b0·0001
Wealth 5·7 (2·6) 0·026 0·032
Sex Female Reference

Male −34·2 (7·2) 0·13 b0·0001
HIV Non-Reactive Reference

Reactive −15·1 (10·1) 0·002 0·14
Unknown −0·30 (8·8) – 0·97

Group SAM survivor Reference
Sibling 21·9 (9·1) 0·027 0·018
Community 13·1 (9·0) – 0·15

Summary Observations 148
Adjusted R2 0·503
Residual standard error 41·6
F Statistic 19·6 (df = 8; 139)
AIC 1534·1
Model 3 vs. Model 2 p = 0·36

All multivariate models include adjustment for age, sex, HIV and wealth index. AIC; Akaike information criteria; β, regression coefficient; SE, standard error.
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fit was improved when SAM vs. controls were included (Model 1 vs.
Model 2, p=0·025), the partial correlation between IGF1 and SAM sur-
vival was weak and the variance explained was small (r = 0·19, R2 =
3·2%, p = 0·028). There was no evidence of interaction between
stunting and having survived early childhood SAM but survivors do
have lower circulating IGF1 levels. There was a significant age and sex
interaction, with girls showing a greater positive slope between HAZ
and IGF1 (p b 0·005) which could be due to earlier puberty in girls
influencing these relationships. However, incorporating self-reported
puberty did not improve model fit. Circulating levels of IGF1 were
belowmedian levels of European pre-pubertal children with idiopathic
short stature (92 ng/mL) [25] in 44% of children in the cohort and
this was more common in SAM survivors then in controls (53% vs.
36%, p = 0·047). With univariate analysis (Supplemental Table 1), no
other metabolite showed a significant relationship with stunting.

4. Discussion

Our study shows that, seven years post-treatment, childrenwho sur-
vived early childhood SAM have similar metabolite profiles to those of
sibling or community controls. Furthermore, there were no predictive
signatures associated with the type of SAM experience (i.e., severe
wasting vs. oedematous SAM) orwith the severity of SAMduring hospi-
talization. Current stunting was associated with low concentrations of
IGF1 in both SAM and controls, and this relationship was modulated
by having survived early childhood SAM.



Fig. 2. Correlation between stunting and IGF1 levels in children that survived early childhood SAM compared to controls.
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4.1. SAM survivors versus controls

Previous studies assessing the metabolic profiles of children being
treated for SAM have highlighted several changes in circulating metabo-
lites compared to community controls [11,26].While severalmetabolites
recovered with treatment, some differences persisted even after achiev-
ing stabilization (e.g., low sphingomyelins and phosphatidylcholines). It
was unclear if these persistent perturbations reflect a slow recovery of
hepatic and/or gut function which go unresolved post-discharge [11],
and could be mediated long term through epigenetic modification [27].
Indeed, SAM has been associated with both serious immediate conse-
quences, including reductive adaptation, marked immunosuppression,
and gutmicrobiota alterations, as well as long-term physiological conse-
quences [28,29]. For example, a cohort study of Jamaicans (aged
17–50 years) who survived early childhood SAM showed higher glucose
intolerance [30]; and we recently showed that our Malawian cohort of
SAM survivors (aged 7–20 years) likely have a greater long-term risk of
chronic disease, with greater stunting, and reduced leanmass, peripheral
adiposity andmuscle strength [14]. However, at this stage, these children
had little indication of overt disease, as detected by blood pressure, lung
function, cholesterol or glucose tolerance [14].

We report the first quantitative metabolomics study of long-term sur-
vivors of early childhood SAM, and shows that 7 years after treatment,
baseline metabolic profiles of SAM survivors are similar to those of sibling
and community controls.While this is reassuring, it is noteworthy that the
controls, like the SAM survivors, live in settings with high levels of adver-
sity – including stunting, morbidity and poor access to water and sanita-
tion facilities. These conditions are associated with ill health, which could
contribute tometabolic perturbations. For example, 20% of SAM survivors,
16% of siblings and 24% of community controls were hospitalized at least
once for issues unrelated to SAM, and mean HAZ of community controls
was−1·37 z-scores. In future studies, itwill be useful to include a compar-
ison of metabolic profiles of control children from higher socioeconomic
status living in the same regions but with less exposure to adversity.

Taken together, these data indicate that early childhood SAMmainly
impacts growth and muscle mass, rather than inducing persistent met-
abolic derangement that are detectable 7 years post-discharge. Early
childhood SAM either: 1) impedes growth during a crucial period
without long-term effects on epigenetics that regulate metabolism
(i.e. occurs beyond the critical window known to have high sensitivity
to epigenetic changes), or 2) induces subtle metabolic changes which
only manifest through acute metabolic challenges or increased “load”
induced by further aging or obesity [31].

4.2. Stunting and insulin-like growth factor I

In accord with previous studies [32,33], we showed that poor linear
growth (stunting)was associatedwith lower circulating levels of IGF1, a
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central hormonal growth mediator. Also, this relationship is likely
driven by a mechanism of growth hormone (GH) insensitivity since
GH itself was not associated with either current stunting or SAM sur-
vival. Interestingly, a recent study following Zimbabwean infants from
birth to 18 months found that levels of IGF1 were consistently lower
among stunted infants from as early as 6 weeks of age [33]. However,
this difference between stunted and non-stunted children was no lon-
ger apparent by 18 months. The authors hypothesized that IGF1 sup-
pression by chronic, low-grade inflammation during fetal and
postnatal life drives childhood stunting [34,35]. IGF1 can act directly
on growth plates [35], and low levels can steadily slow linear growth
during crucial developmental windows. SAM could impact the GH-
IGF1 axis as, for a given level of stunting, SAM survivors had lower
IGF1 compared to controls. Thus, either SAM survivors are slightly
more sensitive to IGF1 growthmaintenance or SAM induces a compen-
sation mechanism that is independently able to maintain growth de-
spite persistently low IGF1. We found that these relationships likely
vary significantly depending on age and sex. Thus, understanding the
impact of early childhood SAM on the GH-IGF1 axis would need to be
better contextualized around crucial developmental windows such as
puberty. Nonetheless, low IGF1 in early life is known to be associated
with later risk of NCDs, particularly diabetes [36], and could mediate
the hypothesized “thrifty phenotype” by regulating nutrition, growth
and metabolism [37].

Interestingly, we found no othermetabolites to be significantly asso-
ciated with HAZ. This contrasts with a previous study comparing
stunted and non-stunted children (aged 1–5 years) in Malawi which
found that stunted children had significantly lower circulating levels
of all nine essential amino acids, three conditional essential amino
acids, and citrulline [38]. This may be explained by the generally low
HAZ across our sample, including control children.

5. Strengths and limitations

The health and nutritional status of the control group is a possible
study limitation since they are also stunted and have a history of poor
health. Survivor bias should also be considered: SAM survivors are a se-
lect group as at least 46% of the original cohort have died since admis-
sion; half of these deaths occurred during admission and half since
discharge; the majority of deaths were among children with HIV [24].
In addition, we have no record of birth weight which is also a known
risk factor for developing NCDs in later life, and puberty onset was
self-reported rather than clinically assessed. The selection of control
children in the community did not always follow the systematic random
strategy intended due to the limited availability of eligible children. The
sample size limited further sub-group analysis or exploration of interac-
tions. For example, it would have been interesting to study the effects of
different timing of exposure to SAM. Lastly, our cohort of children were
all admitted for inpatient treatment of SAM but treatment has since
evolved and current standards for hospital admission differ.

There are however multiple strengths to our study including the
deep phenotyping of SAM survivors from admission to 7-years post-
discharge, the minimal loss-to-follow up, especially given the length
of the follow-up period, and the use of both sibling and community
controls.

6. Conclusion

In our cohort, SAMwas not associated with detectable differences in
baseline metabolism 7-years post-treatment, when compared to chil-
dren from similar low socioeconomic communities. Measures of
stunting in largely prepubescent children were associated with low
IGF1 and, having experienced childhood SAM modulated this relation-
ship. Low IGF1 in early life is known to be associated with later risk of
NCDs, particularly diabetes, and could mediate the hypothesized
“thrifty phenotype”. Future studies should consider whether SAM
occurs beyond the critical window for epigenetic changes, thus largely
affects growth, or whether metabolic dysregulations will only become
apparent after cumulating a greater metabolic “load” due to modern-
ized diets and aging.
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