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Abstract

In this paper, we propose a secure system for performing deep learning with distributed

trainers connected to a central parameter server. Our system has the following two distinct

features: (1) the distributed trainers can detect malicious activities in the server; (2) the dis-

tributed trainers can perform both vertical and horizontal neural network training. In the

experiments, we apply our system to medical data including magnetic resonance and X-ray

images and obtain approximate or even better area-under-the-curve scores when compared

to the existing scores.

1 Introduction

Deep learning is a set of machine learning techniques that has gained much interest in recent

years, owing to its potential applications in many fields. In the field of medicine, deep learning

applications such as the classification of skin cancer [1], detection of diabetic retinopathy [2],

and detection of pneumonia [3] and COVID-19 [4] using chest X-rays, have recently shown

considerable potential to improve the quality of healthcare for patients worldwide.

Medical data are by nature vastly distributed, as they often originate from several hospitals

and medical centers throughout the world. It is reported in [5] that thousands of exabytes

(1018 bytes) of medical data will be generated. To accelerate the availability and accuracy of

deep learning in healthcare through the use of this kind of big data, deep learning systems

using distributed data should be designed and examined. However, because medical data are

personal and sensitive, serious attention should be paid to securely protect these data.

Pioneering efforts for designing deep learning systems with distributed data have been in

the works of Recht et al. [6] and Dean et al. [7], whose systems are then considered and

expanded in the security and privacy domain by Shokri and Shmatikov [8]. All of these works

assume a central parameter server that is responsible for updating the parameters of the neural

network model in the deep learning systems. Specifically, in [6, 7], the server is assumed to be

completely honest in operation, whereas in [8] the server is semi-honest (i.e. honest-but-curi-

ous) which signifies that it is honest in operation but curious in extracting sensitive informa-

tion. Subsequent works with security improvements include [9, 10] which also assume a semi-

honest parameter server. The systems of federated learning in [11, 12] have been experimen-

tally demonstrated to be able to handle non independent and identically distributed (non-iid)
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data experimentally; however the systems are not for vertical training due to the average calcu-

lation of neural network weights over the central parameter server.

1.1 Our contributions

In this work, we propose a secure system for deep learning using distributed datasets. Our sys-

tem has the following features:

• Detection of malicious activities in the parameter server: Our system is designed so that a

malicious parameter server is detected with overwhelming probability. This is made possible

by a novel use of authenticated encryption, in which the encryption part protects communi-

cation secrecy whereas the authentication part detects any changes in the communication.

• Both vertical and horizontal training: Our system can handle both vertical and horizontal

training by design. For vertical training, we mean a training model produced by one trainer

on a dataset can be re-used by another trainer on an entirely different dataset after proper

modifications. For horizontal training, we mean a shared model is trained in a distributed

manner using local datasets of the trainers. It is also worth noting that, besides improving

the utility of the system, the combination of vertical and horizontal model training can pro-

duce robustness with respect to noisy labels as discussed in Section 3.3.

• Experimentation with distributed medical data: On chest X-ray images [13] and magnetic

resonance imaging (MRI) images [14, 15], we demonstrate that our securely distributed sys-

tem either approximates or outperforms existing results in the literature in which the data

had to be centralized. Indeed, as showed in Table 1, the learning utility scores of our system

in terms of area-under-the-curve (AUC) are very close to (or better than) the best known

scores in non-distributed (centralized) training, as seen in Table 1. More detailed compari-

sons of AUC scores are given in Tables 3 and 4, again showing that the AUC scores of our

system are very similar and in some cases superior to the best known scores.

1.2 Related works

All existing systems in [8–12] cannot detect malicious activity of the parameter server due to

the fact that plaintexts or malleable ciphertexts are directly handled by the server. For example,

in [9], a homomorphic ciphertext HEncðGÞ of a gradient vector G encrypted by a homomor-

phic encryption scheme HEnc is sent to the parameter server. If the server is malicious, it can

modify that ciphertext by the following homomorphic calculation

HEncðGÞ þ HEncð�Þ ¼ HEncðGþ �Þ;

where � is a vector intentionally selected by the server. In turn, the distributed trainers obtain

G + � instead of G without noticing, which is undesirable.

Likewise, the system in [10] cannot detect malicious activities in the server due to the use of

symmetric malleable encryption such as the Cipher Block Chaining (CBC) mode with the

Advanced Encryption Standard algorithm. Indeed, the encryption of a vector W in the first

Table 1. Comparison of area-under-the-curve (AUC) scores.

Learning utility AUC score (!) Dataset (#) Our system (securely distributed) Best known (centralized)

MRI (Stanford, Croatia) 0.924 0.911

X-ray (ChestX-ray14) 0.839 0.841

https://doi.org/10.1371/journal.pone.0272423.t001
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block of the CBC mode by a symmetric key K is of the form

IV;AESKðIV �WÞ;

and the malicious server can modify that ciphertext into

IV � r;AESKðIV �WÞ;

where r is selected by the server. The decryption of the modified ciphertext is

ðIV �WÞ � ðIV � rÞ ¼W � r;

which is obtained by a distributed trainer instead of W without any awareness. This subse-

quently affects other blocks in the decryption and the entire training process, and a distributed

trainer cannot identify whether the malfunctions originate from the server or other trainers.

The proposed system in this paper extends [10] in the following directions of both security

and learning utility: (1) we introduce authenticated encryption into the system to handle the

malicious parameter server; (2) we make vertical training possible at each distributed trainer;

(3) we perform experiments on medical imaging data to demonstrate the learning utility of the

system in terms of AUC scores. However, it significantly deviates from [9] which is based on

[7] (whose system is later restructured into TensorFlow [16].)

Techniques for differential privacy [17–21] or anonymous transmission [22] can be used

locally at each distributed trainer in our system to protect the privacy or the origin of the trans-

mitted weights. Likewise, each distributed trainer can deploy preventive measures such as in

[23] if necessary. These techniques are useful for protecting the weight privacy to the greatest

extent possible while maintaining the learning utility of the system. It is also worth noting that

requiring the weight to contain no information on the data can be fulfilled if each trainer con-

tinues transmitting uniformly random weights; however this kind of “perfectly private” system

has no learning utility at all. Requiring the neural network weight sent from an honest trainer

to contain no information on the data, while maintaining the learning utility of the system, is

impossible in the setting of collaborative training [24].

Model weight inversion attacks such as in [25, 26] have limited impacts and they do not

necessarily entail a privacy breach as discussed in [27]. Similarly, the use of generative adver-

sarial networks for attack on collaborative training systems [28] has been reported to be unre-

alistic in [29]. In addition, it is known in the literature that attacks on neural network weights

are apparently more difficult than neural network gradients, on which various attacks and cor-

responding defenses exist (e.g. [9, 28, 30, 31]). In contrast, weights can be viewed as a large

aggregation of gradients and are thus more resistant to attacks as observed in [10, 32].

Secure linear models have been studied in several works [33–38] with threat models ranging

from semi-honest to malicious adversaries. For example, the system in Zheng et al. [34] utilizes

threshold homomorphic encryption, zero knowledge proofs, and malicious multi-party com-

putation to deal with malicious adversaries.

Aiming to achieve both secrecy and differential privacy, Aono et al. [39, 40] have designed

systems for privacy-preserving linear and logistic regression, in which a semi-honest central

server is used to handle homomorphic ciphertexts. Semantic security with homomorphism

allows their system to achieve data secrecy (with respect to the central server) and differential

privacy (with respect to publishing the final result) simultaneously. However, their technique

of polynomial approximation of non-linear functions as in [40] appears to have limitations

when applied to deep neural networks with multiple layers.

Using two non-colluding servers on the cloud, Mohassel and Zhang [41] have proposed

protocols for privacy-preserving linear regression, logistic regression, and multilayer
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perceptron in which secure-computation-friendly activation functions are employed. Subse-

quently, Mohassel and Rindal have also considered a three-server model in [42], in which data

owners secretly share their data among three servers that train and evaluate models on the

combined datasets using three-party computation.

Several works [43–48], especially in the framework of secure outsourced computation, have

examined the problem of secure neural network prediction in which predicted probabilities

for individual data items can be obtained in a secure manner. This vein of research on secure

prediction is orthogonal to the topic in this paper which focuses on securely distributed

training.

Chang et al. [49] have proposed a system for distributed deep learning and experimented

with medical datasets, without a central parameter server. The system and the experiments are

designed for horizontal training. Gupta and Raskar [50] have designed a method for distrib-

uted training where pieces of information such as data labels and neural network gradients are

transmitted among distributed trainers. McClure et al. [51] have considered distributed train-

ing with a specific neural network only. These works have no explicit security considerations.

Various machine learning algorithms involving multiple parties can be securely operated

over completely trusted hardware. However, even in such setting, care should still be taken to

guard the algorithms from memory access patterns that depend on data, as examined in [52].

Techniques for federated learning (e.g., [12, 53]) and subsequent works (e.g., [54–58]) can be

used for distributed data, but they do not consider malicious central server as in our setting.

Generic secure multiparty computation (MPC) using secret sharing [59, 60] can securely

compute any function represented as arithmetic circuits. The known weakness of such proto-

cols is in the communication costs [11]. To address the issue, a dedicated protocol for secure

aggregation in federated learning has been also proposed in [11]. In works such as [11] or sub-

sequent [61], the server learns the full or partial sum of the trainers’ inputs; which is orthogo-

nal to our work in which the server cannot learn that kind of information. Works combining

differential privacy with MPC (e.g., [62]), often admitting accuracy degradation due to noise

addition, are also orthogonal to our work.

2 Preliminaries

We recall a few preliminaries on cryptography and machine learning in this section.

Authenticated encryption

Symmetric encryption schemes consist of the following (possibly probabilistic) polynomial-

time algorithms: KGenð1kÞ takes a security parameter κ and generates secret key K;

EncðK;mÞ, also written as EncKðmÞ, produces c which is the ciphertext of message m; and

DecðK; cÞ or DecKðcÞ returns message m encrypted in c.
The security notion of ciphertext integrity (INT-CTXT) [63] requires that it be computa-

tionally infeasible to produce a ciphertext not previously produced by the holder of key K. In

addition, ciphertext indistinguishability against chosen plaintext attacks (IND-CPA) ensures

that no information is leaked from ciphertexts. Our system employs symmetric encryption

with both ciphertext integrity and ciphertext indistinguishability.

A generic construction that achieves INT-CTXT and IND-CPA simultaneously is the com-

position of encrypt-then-mac, where mac refers to message authentication code. Namely, an

authenticated encryption scheme can be constructed as follows

EncKekKa
ðmÞ ¼ CkMACKa

ðCÞ

where C ¼ Enc
cpa
Ke
ðmÞ where Enc

cpa
Ke
ð�Þ is an encryption algorithm in an IND-CPA-secure
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symmetric encryption scheme, and MACKa
ð�Þ is a message authentication code. The keys for

encryption and authentication Ke and Ka must be independent and generated uniformly at

random by the key generation algorithm KGenð1kÞ. It has been proved in [63] that when the

message authentication code is strongly unforgeable then the encrypt-then-mac composition

satisfies both INT-CTXT and IND-CPA notions of security. It should be noted that a weaker

notion of integrity called plaintext integrity in [63] can also be used if one only needs to deter-

mine whether the plaintext (i.e. neural network weight) inside the ciphertext has been modi-

fied. This weaker notion of integrity leads to broader compositions of cryptographic primitives

for authenticated encryption that can be used in our proposed system.

Neural networks

In each distributed trainer is a neural network. The neuron (including the bias) nodes are con-

nected via weight variables W, which can be considered a real vector. In a deep learning neural

network structure, there can be multiple layers each containing thousands of neurons. Each

neuron node (except for the bias node) is associated with an activation function f. Typical exam-

ples of f can be f(x) = max{0, x} (rectified linear), and f ðxÞ ¼ ex
exþ1

(sigmoid). The nonlinearity of

these activation functions is important for the network to learn complex data distributions.

Given a training dataset, the learning task is to determine these weight variables to mini-

mize a predefined cost function such as the cross-entropy cost function detailed later in each

experiment in Section 4.

3 Our system

3.1 System description

The proposed system makes use of an authenticated encryption scheme (KGenð1kÞ, EncKð�Þ,

DecKð�Þ) with ciphertext integrity [63], where κ is a security parameter and K is a symmetric

key generated by the key generation algorithm KGenð1kÞ. A figurative and algorithmic illus-

tration is provided in Fig 1. The system follows and generalizes the system in [10] in the fol-

lowing ways: (1) we introduce authenticated encryption into the system to address a malicious

parameter server; (2) we insert vertical training into the distributed trainers so that they can

handle more types of datasets.

Below, M �Mi denotes a modification of model M by distributed trainer i. Specifically, if M
has a inputs and b outputs, and Mi has b inputs and c outputs, then M �Mi is the composed

model of a inputs and c outputs. Mathematically, if M : Ra ! Rb and Mi : Rb ! Rc then M �
Mi : Ra

! Rc
as the composed model. A visualization is given in the neural network model of

trainers in Fig 1.

The proposed system:

• Initialization (for all distributed trainers): common model and cryptographic key setup.

This can be done by Trainer 0 in the system.

• Generate a common neural network model M.

• Generate a cryptographically symmetric key K using KGenð1kÞ.

• Share model M and key K to all distributed trainers (but not the parameter server) via a

secure channel.

• Central parameter server:

• When receiving ciphertext E from a distributed trainer, store it.
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• When receiving a request from a distributed trainer, send E to that trainer. It is also possi-

ble that the server decides which trainer to send E. Initially, when E does not exist, send?.

If E has been sent, wait for the encrypted post-trained weight from the requested trainer.

• Each distributed trainer i:

• Generate neural network model M �Mi where Mi is a model generated by trainer i.

• Obtain encrypted weight E from the central parameter server. If E =?, initialize the weight

for M �Mi. If E 6¼ ?, decrypt E to obtain the pre-trained weight W � V, namely

W � V ¼ DecKðEÞ.

• Starting from W � V, train the neural network model M �Mi using the local data of trainer

i to obtain the post-trained weight W0 � V0. Set W � V W0 � V0.

• Send the encrypted E ¼ EncKðW � VÞ to the central parameter server.

Particular usage of our system: Vertical then horizontal training. The initial trainer (e.g.,

Trainer 0) queries the server and obtains E =?, so it proceeds to train M �M0 where M0 is

null so that the model M �M0 = M, namely the model is unchanged. Therefore Trainer 0 ini-

tializes weight W and trains model M with W on its data to obtain the post-trained weight W0.
Trainer 0 sets W W0 and sends E ¼ EncKðWÞ to the central parameter server.

The next trainer (e.g. Trainer 1) queries the server and gets E ¼ EncKðWÞ. It then decrypts

the ciphertext and obtains weight W as the pre-trained weight for model M. Trainer 1

Fig 1. Our system of deep learning for both horizontal and vertical training that can detect malicious activities in the server.

https://doi.org/10.1371/journal.pone.0272423.g001
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generates M1 and composes M �M1. It then initializes V and feeds W � V into M �M1. Starting

from W � V, Trainer 1 trains model M �M1 using its local data to obtain W0 � V0. It then sets

W � V W0 � V0 and sends E ¼ EncKðW � VÞ to the central parameter server so that other

trainers can continue the training process. Other trainers (Trainers 2, . . ., N) behave similarly

to Trainer 1.

3.2 Security considerations for our system

Our system has a stronger security guarantee against the central parameter server than previ-

ous systems in [9, 10]. Details are provided below.

Detecting a malicious server by any trainer. By a malicious server, we mean a server inter-

ested in extracting information about the data of the trainers. To accomplish that goal of infor-

mation extraction, the server may even try to modify the incoming ciphertext before sending it

to another trainer. In our system, if the central parameter server maliciously modifies cipher-

texts uploaded by the trainers, the trainers can detect the malicious activity.

This is by design; because the ciphertexts have integrity, thus it is computationally infeasible

to produce a ciphertext not previously produced by the trainers. Specifically, if the mode of

encrypt-then-mac [63] is used, then the message authentication code (e.g. HMAC [64]) can

detect whether a ciphertext has been changed or not. Let K = (Ke, Ka) consist of the keys for

symmetric encryption Ke and message authentication code Ka. As described in Section 2,

EncKekKa
ðW � VÞ ¼ CkMACKa

ðCÞ

for the weight vector W � V. As a result, any change to C and weight vector W � V can be

detected by the distributed trainers with the common authentication key Ka of the MAC.

Security for a trainer against malicious trainers and server, and their collusion. This sce-

nario is identical to that in [10] black (Section IV); thus our proposed system inherits the secu-

rity results in [10]. In particular, our system ensures security in terms of onewayness for any

honest trainer to the greatest extent possible. As mentioned in Section 1.2, requiring that the

neural network weight sent from an honest trainer possesses no information on the data, while

maintaining the learning utility of the system, is infeasible in the setting of collabo-rative train-

ing [24]. Regarding this point, various defenses have been discussed in [10], including the use

of differential privacy (e.g. [20]), anonymous transmission (e.g. [22]), and adversarial regulari-

zation [23] to protect the weight (and its origin) of the honest trainer. The honest trainer does

not send individual gradients of small batch sizes; thus it can resist attacks on gradients such as

in [9, 28, 30, 31].

It is also worth remarking that, if a malicious trainer injects noise into the training process,

then the noise can also be manually detected by an honest trainer by locally observing training

indicators such as training loss and AUC scores.

Nonetheless, it should be noted that our system is in the cross-silo scenario, in which train-

ers are large organizations such as medical or financial institutions with certain responsibilities

required by regulations. Therefore, we expect that the case of malicious trainers (and server),

and their collusion, is less likely to happen than the case of a malicious server alone.

3.3 Learning utility robustness via vertical training

The vertical training of Trainer 0 on a dataset with clean labels can improve model robustness

against noisy labels of subsequent trainers. This is because deep neural networks have the abil-

ity to memorize patterns in the initial epochs (i.e. the vertical training phase in our context) as

observed in [65, 66]. This is particularly true in our experiments in which Trainer 0 employs

the ImageNet (http://www.image-net.org/) dataset, and other trainers use medical datasets
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that may have a portion (e.g. approximately 10% in the ChestX-ray14 dataset [13]) of inaccu-

rate labels due to the process of automatic labeling from texts via natural language processing.

To the best of our knowledge, this property of learning utility robustness has not been achieved

in previous works [8–12] whose systems assume that labels are clean and accurate.

4 Experiments with medical data

All experiments employ a machine with Intel(R) Xeon(R) CPU E5-2699 v4 @ 2.20GHz and

GPU NVIDIA P-100; with Python 3.7.2 distributed in Anaconda 4.5.11. We assume a standard

1 Gbps channel between the trainers and the server.

For authenticated encryption, the encrypt-then-mac method [63] is employed in which

AES-256-CBC encryption is for the encryption part and HMAC-SHA512 (in OpenSSL 1.1.1a)

is for the message authentication code part. Using more dedicated modes or hardware for

authenticated encryption can improve the speed of encryption and decryption.

4.1 Experiment with MRI datasets

Trainers and datasets. In this experiment we suppose 3 distributed trainers:

• Vertical trainer 0 with the ImageNet dataset,

• Horizontal trainer 1 with an MRI dataset collected from Stanford University Medical Center

[14], and

• Horizontal trainer 2 with an MRI dataset from Clinical Hospital Centre Rijeka (Croatia)

[15].

The MRI dataset from Stanford contains 1130 exams, of which 208 exams have anterior

cruciate ligament (ACL) tear, whereas the others (1130−208 = 922) do not. In addition, while

each exam contains various types of images, only sagittal ones are compatible with the sagittal

images from Croatia, and thus selected for distributed training in our system.

The Croatia training dataset contains 552 exams with sagittal series of images, of which 139

has label 1 and 413 has label 0. The Croatia validation dataset contains 38 exams of label 1 and

143 exams of label 0. The test dataset has 50 exams of label 1 and 134 exams of label 0. These

distributions of labels are summarized in Table 2.

Neural network model. Following [14], we employ AlexNet [67] as the base neural network

model in our system. Trainer 0 trains AlexNet using the ImageNet dataset. The trained weight

from Trainer 0 is sent securely to Trainer 1 via the central parameter server. Trainer 1 and 2

modify M as follows: each MRI series of images s × 3 × 224 × 224 is passed through a feature

extractor based on AlexNet (= M) to obtain a s × 256 × 6 × 6 tensor; a global average pooling

layer and max pooling are then applied sequentially to reduce that tensor to s × 256 tensor and

256 real numbers respectively; the last layer has one node fully connected with 256 nodes of

the previous layer. These neural network models of Trainer 1 and 2, denoted as M �M1 and

M �M2, contains 61,101,097 trainable parameters, having an approximate size of 234 MB

when saved to disk.

Table 2. Label distribution in MRI datasets.

Label 1 quantity Label 0 quantity

Stanford dataset [14] 208 922

Croatia dataset [15] 139 413

https://doi.org/10.1371/journal.pone.0272423.t002
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Authenticated encryption of model weights. We use encrypt-then-mac method which is

proved to be authenticated encryption [63], whose running time is less than 3 seconds when

applied on a model weight of size 234 MB. The ciphertext is also of 234 MB when saved to

disk, and needs less than 3 seconds to be transmitted to the central parameter server. It is

worth noting that the running times of encrypt-then-mac (3 seconds) and encrypted weight

transmission (3 seconds) are relatively small when compared with the time for training (feed-

forward and backpropagation on GPU), which are approximately 13 seconds for one epoch on

the Croatia training dataset, and 39 seconds for one epoch on the Stanford training dataset.

Loss function for training. Trainers 1 and 2 use the same loss function of binary cross

entropy with weights depending on the number of labels in the (joint) training set. More pre-

cisely, for a single data item (X, y) in the training set, the loss function is defined as

LðX; yÞ ¼ � wð1Þ � y � log Pr½Y ¼ 1jX�

� wð0Þ � ð1 � yÞ � log Pr½Y ¼ 0jX�

in which

wð1Þ ¼
139þ 208

552þ 1130
� 0:2063

wð0Þ ¼ 1 � wð1Þ � 0:7937

because 139 (out of 552) and 208 (out of 1130) are the numbers of 1 in the Croatia and Stan-

ford datasets respectively.

Training details. Trainer 1 and 2 follow the training procedure in [14] to optimize the

above loss function for 20 central epochs. Each trainer executes at most two local epochs on its

data before encrypting and sending the trained weight. For example the order of training can

be: (1, 2, 2, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 1, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1,

2) in which (1, 1) or (2, 2) means the trainer performs the training for 2 subsequent local

epochs; and does only 1 local epoch in the case of (1, 2) or (2, 1).

The Adam optimizer is used with an initial learning rate of 10−5, weight decay of 10−2 at

each trainer, as in [14]. The learning rate is reduced on a plateau after 5 central epochs with a

factor of 0.3. The trainers save and test every checkpoint of the model on the test dataset of

Croatia. If the validation dataset of Croatia can be shared among the trainers, they can only

save the checkpoint with the smallest validation loss to save disk space, if necessary. The AUC

scores on the Croatia test set are given in Table 3. The scores demonstrate that our system out-

performs previous results, which confirms the merits of greater quantities of data when using a

deep learning approach. Additional experiments have also been done with Adam variants

(AMSGrad [68], AdamX [69]), yielding similar AUC scores approximately 0.924 and all are

superior to the previous best AUC score of 0.911 on the Croatia test set. The entire training

time of our proposed system is less than 20 minutes, and the communication (including

upload and download) of the encrypted weight from each distributed trainer with the server is

approximately 234 ðMBÞ � 20� 2 ¼ 9:36 ðGBÞ.

Table 3. Area-under-the-curve (AUC) scores of learning methods on MRI datasets.

Paper Method AUC score

Stajduhar et al. [15] Support Vector Machine 0.894

Bien et al. [14] Neural Network 0.824

Bien et al. [14] Neural Network 0.911

This work (our system) Neural Network 0.924

https://doi.org/10.1371/journal.pone.0272423.t003
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4.2 Experiment with ChestX-ray14 dataset

ChestX-ray14 dataset and its partition. The ChestX-ray14 dataset [13] contains 112,120 fron-

tal-view chest X-ray images individually labeled with 14 different thoracic diseases: Atelectasis,

Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneumothorax, Consolida-

tion, Edema, Emphysema, Fibrosis, Pleural Thickening, Hernia. Following previous works [3,

13, 70, 71], this dataset is split into three partitions of training, validation, and test datasets

with a ratio of 70:10:20 approximately. The number of images are 78468 (of 21528 patients),

11219 (of 3090 patients), 22433 (of 6187 patients) respectively in the datasets. There is no

patient overlap between the sets.

Let us set the number of distributed trainers to N = 5, for concrete discussion. Trainer 0 has

the ImageNet dataset. Other trainers (1, . . ., 4) possess approximately 78468/4 images from the

training dataset described above.

Neural network models. Vertical trainer 0 trains DenseNet-121 [72] as the model M with

the ImageNet dataset. In addition, horizontal trainers (1, . . ., 4) utilize the code given in [71]

which also employs DenseNet-121 as the common neural network model M. However, the last

layer of DenseNet-121 of 1000 neural nodes (for ImageNet) is replaced by 14 nodes equipped

with sigmoid nonlinearity as described in Section 2, corresponding to the predicted probabili-

ties of the 14 thoracic diseases listed above. These replacements in DenseNet-121 form the

neural network models M �M1, M �M2, M �M3, M �M4 of the 4 distributed trainers. These

models have 6,968,206 trainable parameters, of size 28 MB when saved to disk.

Authenticated encryption of weights. We use encrypt-then-mac method which is proved

to be authenticated encryption [63], whose running time is less than 0.2 seconds when applied

to a model weight of 28 MB. The ciphertext is also of 28 MB when saved to disk, and needs less

than 1 second to be transmitted to the central parameter server. It is worth noting that the run-

ning time of encrypt-then-mac (0.2 seconds) and encrypted weight transmission (1 second) is

negligible when compared with the time for training (feedforward and backpropagation on

GPU) of approximately 60 seconds. Therefore, the overhead added by cryptographic opera-

tions and communications can be very small.

Early sharing for improved accuracy. Because each trainer has unbalanced classes, and the

data are not independent and not identically distributed (non-iid), each trainer decides not to

train on its entire local dataset but train on a part of the dataset before sending out the weight.

This helps improve accuracy because the trained weight is expectedly not biased toward a par-

ticular local dataset. In particular, each trainer in our system uniformly at random splits its

local data into 20 parts (each of which has approximately 78468/(4 × 20) = 980 images), trains

the neural network on a partition each time and sends the weight out after one pass over that

partition.

Loss function for training. The distributed Trainers 1, . . ., 4 use the same loss function of

binary cross entropy. More precisely, for a single data item (X, y) in the training set, the loss

function is defined as

LðX; yÞ ¼
X14

c¼1

½� yc � log Pr½Yc ¼ 1jX�� ð1 � ycÞ � log Pr½Yc ¼ 0jX��

where y = (y1, . . ., y14) is a label, Pr[Yc = 1|X] is the predicted probability that the image con-

tains pathology c given X, and Pr[Yc = 0|X] is the predicted probability that the image does not

contain pathology c given X.

Training details. Each trainer uses a batch size of 8 images, selects a random parti-tion of

980 images of its local data, and makes one pass (of feedforward and backpropagation) over

that partition, which requires approximately 60 seconds. Each image is downscaled to a size of
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224 × 224, and normalized based on the mean ([0.485, 0.456, 0.406]) and standard deviation

([0.229, 0.224, 0.225]) of images in the ImageNet training set. Data augmentation is applied as

follows: each image is horizontally flipped and randomly rotated by at most 45�. The stochastic

gradient descent (SGD) optimizer is used with a momentum of 0.9, initial learning rate of

0.01, and weight decay of 10−4. The number of central epochs is set to 15, which is the number

of times passing through all (i.e. 78468) original training images. The learning rate lr in each

central epoch is decreased by the following rule, for 0 � ce � 14,

lr ¼ lr� ð0:5bce=2cÞ

where bce=2c is the integer part of ce=2.

Our system with the above distributed trainers produces an AUC score of 0.8397, which is

smaller than that in [3] but larger than those in [13, 70, 71] as reported in Table 4. It should be

noted that our AUC score is based on distributed training while the others are based only on

centralized training. The total running time and ciphertext communication of our system are

approximately 20 hours and 34 GB for 15 central epochs.

5 Conclusion

In this paper, we design a secure system for distributed learning with the following features:

(1) distributed trainers can detect malicious activities in the server via authenticated encryp-

tion; (2) distributed trainers can perform both vertical and horizontal neural network training.

We conduct experiments with datasets of MRI and X-ray images and obtain promising AUC

scores for our proposed system when training with the datasets.
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