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Innate lymphoid cells (ILCs) are a diverse family of cells that play critical roles in

mucosal immunity. One subset of the ILC family, Group 3 ILCs (ILC3s), has been

shown to aid in gut homeostasis through the production of IL-22. IL-22 promotes gut

homeostasis through its functional effect on the epithelial barrier. When gut epithelial

barrier integrity is compromised, such as in Human Immunodeficiency Virus (HIV)

infection and inflammatory bowel disease (IBD), microbes from the gut lumen translocate

into the lamina propria, inducing amultitude of potentially pathogenic immune responses.

In murine models of bacterial infection, there is evidence that bacteria can induce

pro-inflammatory IFNγ production in ILC3s. However, the impact of diverse translocating

bacteria, particularly commensal bacteria, in dictating IFNγ versus IL-22 production by

human gut ILC3s remains unclear. Here, we utilized an in vitro human lamina propria

mononuclear cell (LPMC) model to evaluate ILC3 cytokine production in response to a

panel of enteric Gram-positive and Gram-negative commensal and pathogenic bacteria

and determined potential mechanisms by which these cytokine responses were induced.

The percentages of IL-22-producing ILC3s, but not IFNγ-producing ILC3s, were

significantly increased after LPMC exposure to both Gram-positive and Gram-negative

commensal or pathogenic bacterial stimuli. Stimulation of IL-22 production from ILC3s

was not through direct recognition of bacterial antigen by ILC3s, but rather required

the help of accessory cells within the LPMC population. CD11c+ myeloid dendritic

cells generated IL-23 and IL-1β in response to enteric bacteria and contributed to ILC3

production of IL-22. Furthermore, ligation of the natural cytotoxicity receptor NKp44 on

ILC3s in response to bacteria stimulation also significantly increased the percentage

of IL-22-producing ILC3s. Overall, these data demonstrate that human gut microbiota,

including commensal bacteria, indirectly modulate colonic ILC3 function to induce IL-22,

but additional signals are likely required to induce IFNγ production by colonic ILC3s in

the setting of inflammation and microbial translocation.
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INTRODUCTION

Innate Lymphoid Cells (ILCs) descend from the
lymphoid lineage, but unlike T cells and B cells lack rearranged
antigen receptors (1). Rather than responding to antigen
priming, ILCs respond in an antigen-independent manner
through cytokine stimulation to produce effector cytokines (2) or
through engagement of germline encoded receptor stimulation
(3–5). ILCs are categorized into three groups based on the
expression of specific master transcription factors and effector
function (6). Group 1 ILCs (ILC1, NK cells) express T-bet and
produce the pro-inflammatory cytokine IFNγ in response to IL-
12 and IL-18; Group 2 ILCs (ILC2s) express GATA3 and produce
IL-4, IL-13, and IL-5 in response to IL-25 and IL-33; and Group
3 ILCs (ILC3s) express RORγt and AHR and typically produce
IL-22, GM-CSF, IL-17, and LT-α1β2 in response to IL-23 and
IL-1β (6). ILCs are constitutively found in the gastrointestinal
tract (7). ILC3s are of particular importance to gut mucosal
immunity (7–9) via the secretion of effector cytokines that
act directly on epithelial cells (10). Epithelial cells express the
IL-22 receptor (IL-22R) (11) and IL-22 production by ILC3s
promotes epithelium proliferation, survival, mucus production,
upregulation of fucosylation, and in some studies increased
gene expression of antimicrobial peptides (12–16). To date,
the majority of studies characterizing gut ILC3 function have
utilized murine models. Examination of human ILC3 function
have primarily focused on tonsil tissue and demonstrated that
the mechanisms contributing to IL-22 production include
stimulation by the cytokines IL-23 and IL-1β (3, 17, 18) with
synergistic enhancement of IL-22 production observed in the
presence of the natural cytotoxicity receptor NKp44 engagement
(3). Few studies have directly investigated factors driving IL-22
production by human gut ILC3s, although one study observed a
requirement for IL-23, IL-1β, and IL-7, with synergy again being
induced in the presence of NKp44 signaling (3).

Epithelial barrier damage and loss of function in gut-
associated diseased states have correlated with alterations in
ILC frequency and function. In Inflammatory Bowel Disease
(IBD), patients with Crohn’s disease have a loss of colonic
or ileum IL-22-producing ILCs (including ILC3s) (18, 19)
and an increase in IFNγ/IL-17A-producing ILCs (20–22).
In Human Immunodeficiency Virus (HIV) infection, loss of
colonic IL-22-producing ILCs has been reported (23). Similarly,
reduced frequencies of IL-22/IL-17-producing ILCs during
Simian Immunodeficiency Virus (SIV) infection (the non-human
primate model of HIV) were noted (24–28). Furthermore,
we and others have reported increased frequencies of IFNγ-
producing ILCs both in people living with HIV (PLWH)
who were not receiving anti-retroviral therapy (ART) (29) and
during SIV infection (27). Since IFNγ alters epithelial tight
junctions and upregulates epithelial cell expression of TNFα
receptor which results in further epithelial cell damage (30,
31), increased frequencies of IFNγ-producing ILC3s may be an

additional contributor to epithelial barrier breakdown. When the

epithelial barrier is compromised, translocation of gut-associated
bacteria into the lamina propria (LP) exposes immune cells
to bacteria of different species or magnitude than what these

cells typically encounter in the healthy human gut (32, 33). We
previously demonstrated that increased frequencies of colonic
IFNγ-producing ILCs in PLWH correlated with alterations in
mucosa-associated bacterial communities (dysbiosis), specifically
with increased relative abundance of Gram-negative commensal
Prevotella species (29). Understanding the bacteria-specific
cytokine responses of ILC3s and the mechanisms by which
protective or deleterious cytokines are produced are critical to
determining the effect of ILC3s on gut homeostasis, not only for
their role in enteric bacterial immunity, but also for their role in
influencing epithelial cell function in disease states.

Murine studies highlighted a complex role for gut microbiota
in ILC subset development and functional production of IL-
22 (13, 34, 35). IL-22 production by ILC3s protected against
an enteric pathogen Citrobacter rodentium (34, 36, 37), and
prevented systemic dissemination of the commensal Alcaligenes
species in mice (15). Fucosylation of epithelial cells induced
by ILC3 production of IL-22 contributed to host defense
against murine S. typhimurium infection (38). Furthermore,
murine ILC3s negatively regulated microbe-specific T cells in
the gut to limit pathological responses to commensal bacteria
(39, 40). While these studies support a homeostatic role for
ILC3s in microbiota-associated gut responses in mice, gut
inflammatory ILC3s in response to bacteria have been reported.
ILC3s produced IFNγ in response to infection with Salmonella
typhimurium (41) and IFNγ/IL-17 in response to infection with
the Helicobacter hepaticus (42). Furthermore, ILC3-associated
IFNγ/IL-17 production in response to H. hepaticus was linked
to the development of colitis (42) highlighting a potentially
deleterious role of ILC3 cytokine production. In vitro exposure
of human ILC3s have also suggested a plasticity in cytokine
production with the capacity to produce IFNγ or IL-22
dependent on the cytokine milieu (18, 21). These observations
raise the possibility that human gut ILC3s may also have the
capacity to produce IL-22 or IFNγ in response to exposure to
different types of bacteria.

In this study, we hypothesized that pathogenic enteric
bacteria would induce pro-inflammatory cytokine production
(IFNγ) from human lamina propria ILC3s, whereas commensal
bacteria would primarily elicit protective (IL-22) cytokine
production. To address this, we utilized an in vitro human
colonic mononuclear cell model (43, 44) to investigate ILC3
cytokine profiles induced in response to a panel of whole
Gram-negative and Gram-positive, commensal and pathogenic
bacteria and the mechanisms driving these responses. Overall,
our observations provide insight into the ILC3 role in enteric
bacteria immunity and their contribution to the inflammatory
environment in disease states where microbes translocate
through a compromised epithelial barrier.

MATERIALS AND METHODS

Human Tissue Samples
Human colonic tissue samples were acquired from patients
undergoing elective abdominal surgery at the University of
Colorado Hospital and are categorized as discarded tissue
from macroscopically normal sites. Samples from patients
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that underwent chemotherapy or radiation within 8 weeks of
tissue collection were not included in the study. Other criteria
for tissue exclusion include those with Inflammatory Bowel
Disease, HIV infection or treatment with immunosuppressive
drugs. Intraepithelial mononuclear cells (IEMC) or lamina
propria mononuclear cells (LPMC) were isolated from tissue
samples as previously described (43, 44) and stored in liquid
nitrogen until use. Human tonsillar tissue samples were
acquired from pediatric patients from Colorado Children’s
Hospital. Tonsillar mononuclear cells (TMCs) were isolated
as previously described (45). All patients undergoing surgery
signed a release to allow unrestricted use of discarded tissue and
protected patient information was de-identified to the laboratory
investigators. This research was reviewed by the Colorado
Multiple Institutional Review Board (COMIRB) at the University
of Colorado Anschutz Medical Campus and was granted exempt
research status.

Preparation of Bacterial Stocks
Growth of anaerobic bacteria was performed using a BD
GasPak EZ Anaerobe Pouch System according to manufacturer’s
instructions (BD Diagnostics, Franklin Lakes, NJ). Prevotella
stercorea (DSM No. 18206, Braunschweig, Germany) was grown
in liquid chopped meat broth (Hardy Diagnostics, Santa Maria,
CA) supplemented with 1% Trace Minerals (ATCC), 1% Vitamin
Supplements (ATCC), 0.05% Tween80, 29.7mM acetic acid,
8.1mM propionic acid and 4.4mM butyric acid (Sigma-Aldrich)
under anaerobic conditions at 37◦C for 5–7 days. Ruminococcus
bromii (ATCC# 27255) was grown in liquid chopped meat broth
(Hardy Diagnostics) under anaerobic conditions at 37◦C for 1–
2 days. The long term stock of Bifidobacterium longum subsp
infantis (ATCC 15697) was grown in liquid chopped meat broth
(Hardy Diagnostics) under anaerobic conditions at 37◦C for 2–
3 days and the working stock was grown on Brucella plates
(Teknova, Hollister, CA) under anaerobic conditions at 37◦C for
2–3 days. Acinetobacter junii (ATCC 17908) was grown using
Nutrient Agar plates (Edge Biologicals, Memphis, TN) under
aerobic conditions at 26◦C for 1–2 days. Salmonella typhimurium
(ATCC 35986) was grown on LB agar plates (Sigma-Aldrich)
under aerobic conditions at 37◦C for 1–2 days. Long term stocks
of all bacteria were prepared using 10% glycerol and single-use
working stocks were prepared using DPBS. All stocks were stored
at−80◦C and bacterial cell counts were determined using the BD
Cell Viability Kit (BD Bioscience).

In vitro Stimulation of LPMCs With
Whole Bacteria
For the in vitro stimulations, human colonic LPMCs were thawed
as previously described (43, 44) and cultured in RPMI with
10% human AB serum (Gemini Bioproducts, West Sacramento,
CA), 1% Penicillin/Streptomycin/Glutamine (Life Technologies,
Grand Island, NY), and 500µg/ml Zosyn (Piperacillin and
Tazobactam, Wyeth, Madison, NY) at a concentration of 1.0 ×

106 million cells per mL in a 48 well plate. LPMCs were exposed
to a panel of Gram-positive and Gram- negative bacteria detailed
in Supplemental Table 1 including mucosa-associated colonic
bacteria previously shown to be increased or decreased in relative
abundance during HIV-1 infection (46, 47): Gram-negative

Prevotella stercorea and Acinetobacter junii (increased) and
Gram-positive Ruminococcus bromii (decreased), as well as the
Gram-positive probiotic Bifidobacterium infantis and the Gram-
negative pathogen Salmonella typhimurium. Broad spectrum
antibiotics including Penicillin, Streptomycin, Piperacillin, and
Tazobactam were present throughout the time in culture to
prevent bacterial overgrowth.

For assays examining ILC3 responses, whole bacteria were
added to cell cultures at a ratio of 2.5 bacteria to 1 LPMC and
incubated for 16 h at 37◦C + 5% CO2, followed by the addition
of Golgi Plug Transport Inhibitor (BD Bioscience) for 4 h. Cells
were then collected for flow cytometry as described below.

For blocking experiments: human colonic LPMCs were
first exposed to blocking antibodies targeting IL-23 p19, IL-
1β (R & D Systems, Minneapolis, MN) or IL-7 (Biolegend)
at 5 ug/mL or NKp44 (Biolegend) at 10 ug/mL for 30min
followed by incubation with A. junii as described above. Cells
were then collected for flow cytometry as described below.
The concentration of blocking antibodies was optimized for
use by measurement of IL-22 + ILC3s or IL-22 + Lineage
negative cells (for IL-7) in response to recombinant cytokine
stimulation (50 ng/mL of IL-23, IL-1β, or IL-7) or bead ligation
(for NKp44) with a dose curve of blocking antibody treatment
(Supplemental Figure 1). The addition of recombinant IL-7
prevented the identification of ILC3s (defined as CD127+ which
is IL-7Rα) and instead gating for IL-22 was determined on
lineage- cells. Antibodies and controls used to block are listed in
Supplemental Table 2.

For depletion experiments: CD11c+ cells (mDC) or CD3+ (T
cells) were depleted from LPMCs using the EasySep PE Positive
Selection Kit according to manufacturer’s instructions (StemCell
Technologies, Vancouver, Canada) and the antibody PE-CD11c
(Biolegend, San Diego, CA) or PE-CD3 (Tonbo, San Diego,
CA) followed by incubation with A. junii as described above.
Greater than 90.25% of CD11c+mDCs were depleted from total
LPMCs. Greater than 91.92% of CD3+ T cells were depleted
from total LPMCs. Cells were then collected for flow cytometry
as described below.

For the measurement of secreted cytokines, LPMCS were
plated at a concentration of 2.0× 106 million cells per mL in a 96
well plate and exposed to whole bacteria R. bromii or A. junii at a
ratio of 2.5 bacteria to 1 LPMC and incubated for 24 h at 37◦C+

5%CO2. Supernatant was collected and saved at−20◦C until use.
IL-23, IL-1β, and IL-7 were measured in the supernatant using
the U-PLEX Assay according to manufacturer’s instructions and
quantified on the QuickPlex SQ 120 Instrument (Mesoscale
Discovery, Rockville, MD).

For assays examining antigen presenting cell responses (mDC,
B cell, and Macrophages), whole bacteria were added to cell
cultures at 2.5 bacteria to 1 LPMC and incubated for 4 h at 37◦C
+ 5% CO2, followed by the addition of Golgi Plug Transport
Inhibitor (BD Bioscience) for 16 h. Cells were then collected for
flow cytometry as described below.

In vitro Stimulation of LPMCs With
Bacterial Cell Surface Components
Human colonic LPMCs were exposed to either 1µg/mL of the
TLR2 ligand, lipoteichoic acid (LTA) from B. subtilis (InvivoGen,
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San Diego, CA), or the TLR4 ligand, lipopolysaccharide (LPS)
from E. coli (InvivoGen) for 16 h at 37◦C+ 5% CO2, followed by
the addition of Golgi Plug Transport Inhibitor (BD Bioscience)
for 4 h. Cells were then collected for flow cytometry as
described below.

In vitro Stimulation of LPMCs With
Recombinant Cytokines or
NKp44 Activation
Human colonic LPMCs were exposed to 50 ng/mL IL-23 or
IL-1β (R & D Systems), or the combination of both, or IL-
2 or IL-7 (Tonbo) for 16 h at 37◦C + 5% CO2 followed by
the addition of Golgi Plug Transport Inhibitor (BD Bioscience)
for 4 h. For NKp44 activation experiments; 20 ug/mL of anti-
NKp44-biotin (clone P44-8, Biolegend) was combined with
Anti-Biotin MACSiBead Particles (Miltenyi Biotec) according
to manufacturer’s instructions. The beads were then added to
LPMCs at a ratio of 5 beads to 1 LPMC for 16 h at 37◦C+ 5%CO2

followed by the addition of Golgi Plug Transport Inhibitor (BD
Bioscience) for 4 h. Cells were then collected for flow cytometry
as described below.

In vitro Stimulation of Tonsil
Mononuclear Cells
Human tonsil mononuclear cells (TMCs) were cultured in
RPMI with 10% human AB serum (Gemini Bioproducts),
1% penicillin/streptomycin/glutamine (Life Technologies), and
500µg/ml Zosyn (Wyeth) at a concentration of 1.0× 106 million
cells per mL in a 48 well plate. TMCs were exposed to whole
bacteria added to cell cultures at a ratio of 2.5 bacteria to 1 LPMC,
or to the combination of 50 ng/mL IL-23 and IL-1β, or NKp44
activation beads at a ratio of 5 beads to 1 TMC and incubated
for 16 h at 37◦C + 5% CO2, followed by the addition of Golgi
Plug Transport Inhibitor (BD Bioscience) for 4 h. Cells were then
collected for flow cytometry as described below.

Flow Cytometry Protocol for Surface and
Intracellular Staining
Using flow cytometry, viable CD45+ single cell lymphocytes were
identified followed by identification of ILC3s as follows: Lineage-
CD127+CD117+. The lineage negative cocktail comprised
antibodies targeting CD3, CD20, CD13, CD123, CD303, CD34,
FCεR1α, CD11c, and CRTH2. All data were acquired on an
LSRII flow cytometer (BD Biosciences). Routine quality control
using the Cytometer Setup and Tracking feature within the
BD FACSDiva software version 6.1.2 (BD Biosciences) was
performed daily. All antibodies and clones used for staining are
listed in Supplemental Table 3.

For ex vivo phenotyping of ILC3s: IEMCs or LPMCs
were thawed and surface stained to identify ILC subsets for
expression of NKp44, CD56, CCR6, TLR2, TLR4, and TLR5 and
intranuclear stained for the transcription factors RORγt, AHR,
T-bet and EOMES using the Foxp3/Transcription Factor buffer
set according to manufacturer’s instructions (Thermo Fisher
Scientific, Frederick, MD).

For in vitro culture examination of ILC3s; LPMCs were
collected after stimulations described above and surface stained
to identify ILC3s and subsets (NKp44) followed by intracellular
staining for cytokines IL-22, IFNγ, and IL-17 using Fix and
Perm Cell fixation and permeabilization buffer set according
to manufacturer’s instructions (Thermo Fisher Scientific,
Frederick, MD).

For in vitro culture examination of antigen presenting cells;
cells were collected after stimulation and surface stained to
identify mDCs (CD45+ Viable Myeloid CD3- CD19- HLA-
DR+ CD11c+), B cells (CD45+ Viable Lymphocyte CD3-
CD19+) or Macrophages (CD45+ Viable Myeloid CD3- CD19-
HLA-DR+ CD11c-) [as defined by Smith et al. and Bain
and Mowat (48–50)] followed by intracellular staining for
cytokines IL-12/IL-23 p40, IL-23p19, and IL-1β using Fix and
Perm Cell fixation and permeabilization reagents according to
manufacturer’s instructions (Thermo Fisher Scientific). Only cells
that expressed both subunits of the cytokine IL-23 (IL-12/IL-
23p40 and IL-23p19) were considered to be IL-23+ cells.

In vitro Stimulation of Purified ILC3s
ILC3s were isolated from colonic LPMCs and on average purified
to 91.79% purity (Supplemental Figure 2) by sorting using the
MoFlo Astrios EQ (Beckman Coulter, Indianapolis, IN). ILC3s
were sorted fromViable CD45+ single cell lymphocytes that were
Lineage-CD127+CD117+ as described above. Purified ILC3s
were then exposed to either 50 ng/mL IL-23 and IL-1β (R & D
Systems) or whole bacteria at a ratio of 1 bacteria to 1 ILC3 and
incubated for 24 h at 37◦C+ 5% CO2. Supernatant was collected
and saved at −20◦C until use. Secreted IL-22 was measured in
the supernatant using the IL-22 U-PLEX Assay according to
manufacturer’s instructions and quantified on the QuickPlex SQ
120 Instrument (Mesoscale Discovery, Rockville, MD).

Data Analysis
Each patient who provided a tissue specimen for research is
considered a single sample for data analysis, and figure legends
indicate how many samples were examined for each assay using
the following terminology: N = number of patients samples.
All flow cytometer data analysis was done using FlowJo v10.0.
All statistical analysis and graphing were performed using
GraphPad Prism v6.00 for Windows (GraphPad Software, La
Jolla California). Paired t-test was used to determine statistical
differences between conditions as indicated in figure legend. Data
sets without a minimum number of 25 ILC3 events captured
using flow cytometry were excluded from analysis.

RESULTS

ILC3s Are Phenotypically Similar in the
Intraepithelial and Lamina Propria Layers
of the Human Colon
Human ILC1 subsets were previously shown to be phenotypically
different between the colonic layers (22). We therefore sought
to determine if ILC3s that reside in the intraepithelial layer
(IE) of the human colon (closer to the intestinal lumen where
gut bacteria reside) are phenotypically different to ILC3s that
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reside within the lamina propria layer (LP). The frequency and
phenotype of ILC3 in these locations were determined with ILC3s
in colonic human tissue identified as CD45+ viable Lineage-
CD127+ CD117+ (Figure 1A). ILC3s were more frequent as a
fraction of CD45+ cells in the LP (1.16% ± 0.27) compared to
the IE layer (0.40%± 0.09) (Figure 1B).

NKp44, CD56, and CCR6, have previously been utilized to
identify subsets of ILC3s (17, 24, 29, 41) therefore expression of
these markers was next evaluated on colonic ILC3s. The majority
of ILC3s expressed NKp44 or CCR6 in both layers (NKp44: IE:
79.13%± 5.25, LP: 74.21%± 5.04; CCR6: IE: 66.68%± 8.40, LP:
68.61% ± 3.27) (Figures 1C,D). On average, less than half of LP
and IE ILC3s expressed CD56 (LP: 45.08% ± 6.68; IE: 33.58% ±

5.04) (Figures 1C,D).
As expected (51), the majority of ILC3s expressed the master

transcription factor RORγt (IE: 60.60% ± 12.07, LP: 61.42% ±

10.10) and frequencies of RORγt + ILC3s as a percent of viable

CD45 + lymphocytes were not significantly different between
the IE and LP layers (Figure 1E and Supplemental Figure 3).
Expression of AHR in ILC3s was lower than that of RORγt
(Figure 1E and Supplemental Figure 3) but similar between
tissue layers (LP: 18.23% ± 4.24, IE: 9.35% ± 1.77). Of the
AHR-expressing ILC3s, the majority also co-expressed RORγt
(LP: 76.77% ± 8.84, IE: 82.44% ± 9.74). Less than 1% of ILC3s
expressed T-bet in both layers of the colon (LP: 0.15% ± 0.06,
IE: 0.67% ± 0.49) (Figure 1E and Supplemental Figure 3). Low

frequencies of EOMES expressing ILC3s were also quantified
in both layers (LP: 1.56% ± 0.62, IE: 3.16% ± 0.91). Overall,
of the markers examined, ILC3s were phenotypically similar
between the intraepithelial and lamina propria layer in the
normal human colon.

Enteric Bacteria Stimulate Production of
IL-22 but Not IFNγ From ILC3s When
Exposed to Total LPMCs
Mimicking the state where the epithelial barrier is damaged and
LP immune cells are exposed to bacteria from the colonic lumen,
we utilized an in vitro model of lamina propria mononuclear
cells (LPMCs) to investigate the ILC3 response to whole enteric
bacteria. LPMCs were exposed to a panel of whole bacteria
representing Gram-positive and Gram-negative commensal
bacteria reported to be altered in various diseases associated
with epithelial barrier damage (Supplemental Table 1). This
panel included commensal Gram-positive Ruminococcus bromii
(Rb) which is decreased in relative abundance in colonic
mucosa of people living with HIV (PLWH) and Gram-negative
Acinetobacter junii (Aj) and Prevotella stercorea (Ps), which
were increased in relative abundance (46, 47). The enteric
gram-negative pathogen Salmonella typhimurium (St) which
may contribute to the onset of IBD symptoms (52) and
to which PLWH are at an increased risk of acquiring S.
typhiumurium-bacteremia (53, 54) as well as the probiotic

FIGURE 1 | ILC3s are phenotypically similar between the intraepithelial and lamina propria layers of the human colon. (A) Representative flow cytometry gating

strategy to identify ILC3s in human colonic tissue. (B) Frequencies of ILC3s in the colon in the intraepithelial (IE) and lamina propria (LP) layer as a percent of viable

CD45+ cells. IE: N = 6, LP: N = 6. (C) Representative flow plots gated on ILC3s for the expression of surface markers NKp44, CD56, or CCR6. (D) Percentages of

ILC3s expressing the surface markers NKp44, CD56, or CCR6 ex vivo. IE: N = 6, LP: N = 6. (E) Percentages of ILC3s expressing the transcription factors RORγt,

AHR, T-bet, or EOMES ex vivo. IE: N = 7, LP: N = 7. Bars are mean + S.E.M. Statistical analysis performed was paired t test. **p < 0.01.
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Gram-positive Bifidobacterium longum sp infantis (Bi), which is
used therapeutically to reestablish a protective microbiome (55,
56) were also included. Bacterial experiments were performed
in the presence of broad spectrum antibiotics in order to
inhibit bacterial overgrowth. All bacteria tested, irrespective of
gram-staining and commensal or pathogenic nature, induced
production of IL-22 in a fraction of ILC3s relative to the
no stimulation condition (Bi: 30.0% ± 7.13, Rb: 18.76% ±

6.43, Aj: 21.61% ± 3.02, Ps: 28.58% ± 3.54, St: 32.21% ±

4.65) (Figures 2A–C). Of the bacteria tested, none induced a
significant increase in IL-17A+ ILC3s above the no stimuli
control (data not shown: less than 0.80% IL-17+ ILC3).

To determine if bacterial surface components were important
in driving the ILC3 IL-22 response to whole bacteria, LPMCs
were exposed to Gram-positive and Gram-negative bacterial cell
surface components (LTA and LPS, respectively). The percentage
of IL-22+ ILC3s was similarly increased in response to both
bacterial surface antigens (LTA: 17.98% ± 3.09, LPS: 15.18% ±

2.44) (Figure 2D).
ILC3s that produced IFNγ were associated with inflammatory

responses in murine infection with bacteria (41) or bacteria-
driven murine colitis (42). We next measured the frequencies

of IFNγ-producing LP ILC3s in response to whole bacteria.
Low frequencies of IFNγ expressing ILC3s were observed in
response to exposure of LPMC to each bacteria (Bi: 0.63%
± 0.50, Rb: 0.06% ± 0.04, Aj: 1.51% ± 0.81, Ps: 0.50% ±

0.35, St: 1.77% ± 0.68), however no significant increase above
the no stimuli control was detected (Supplemental Figure 4).
Furthermore, IFNγ+ ILC3s were not induced by exposure to LTA
and LPS (data not shown). Overall, these data indicate that the
bacteria tested did not drive the production of IFNγ by ILC3s in
our in vitro culture system.

Purified ILC3s Do Not Produce IL-22 in
Response to Enteric Bacteria
To assess if ILC3s produced IL-22 in direct response to bacteria,
ILC3s were purified from the LP (Supplemental Figure 2) and
exposed in vitro to either Gram-positive (R. bromii), or Gram-
negative (A. junii) bacteria or to recombinant IL-23 and IL-1β.
After 24 h, the levels of secreted IL-22 were measured. Exposure
of isolated ILC3s to IL-23 and IL-1β induced IL-22 production
(86.74 pg/mL ± 29.60), whereas purified ILC3s did not produce
IL-22 in response to either bacterial species compared to no
stimulation control (C: 0.92 pg/mL ± 0.19, Rb: 1.00 pg/mL ±

FIGURE 2 | ILC3s produce IL-22 in response to Gram-positive and Gram-negative enteric bacteria. (A) Representative flow cytometry demonstrating cytokine

staining for IL-22 gated on ILC3s after LPMC exposure to enteric bacteria in vitro. (B,C) Percentages of IL-22+ ILC3s after LPMC exposure to enteric bacteria or no

bacterial control. N = 6–10. (D) Percentages of IL-22+ ILC3s after LPMC exposure to lipoteichoic acid (LTA) or lipopolysaccharide (LPS) or no stimulation control.

Representative flow cytometry demonstrating cytokine staining for IL-22 gated on ILC3s after LPMC exposure to bacterial cell surface components. N = 6. Bars are

mean + S.E.M. Statistical analysis performed was paired t test as indicated. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. n.s., not significant.
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FIGURE 3 | ILC3s do not respond directly to bacteria by producing IL-22. (A) Quantification of IL-22 (pg/mL) in the supernatant of purified ILC3s exposed to

recombinant IL-23+ IL-1β (50 ng/mL) or R. bromii (Rb) or A. junii (Aj) in vitro at a ratio of 1 ILC3 to 1 bacterium or no stimulation control. N = 3. (B) Percentages of

LPMCs stained ex vivo for TLR2, TLR4, or TLR5 expression gated on ILC3s or Lineage positive non-lymphoid cells. N = 6. N.D., not detected. Bars are mean +

S.E.M.

0.24,Aj: 1.42 pg/mL± 0.38) (Figure 3A). In keeping with the lack
of response to direct bacterial stimulation, cell surface expression
of bacterial Pattern Recognition Receptors (PRRs) TLR2, TLR4,
and TLR5 on colonic ILC3s ex vivo were low or not detected
(TLR2: 0.94%± 0.36, TLR4: 0%, TLR5: 0.60%± 0.29) compared
to Lineage+ non-lymphoid cells (TLR2: 10.23% ± 1.68, TLR4:
4.28% ± 1.22, TLR5: 7.12% ± 2.96) (Figure 3B). These data
suggest that human colonic ILC3s do not produce IL-22 in direct
response to the enteric bacteria tested, but require additional
stimulation from accessory cells in LPMCs to induce IL-22.

IL-23 and IL-1β Contribute to the ILC3
IL-22 Response to Gut Bacteria
Given that recombinant IL-23 and IL-1β stimulated production
of IL-22 from purified ILC3s, the levels of secreted IL-23
and IL-1β following exposure of LPMCs to commensal Gram-
positive (R. bromii) or to Gram-negative (A. junii) bacteria were
next evaluated. R. bromii and A. junii significantly induced
the secretion of IL-23 (Rb: 21.57 pg/mL ± 3.54, Aj: 234.4
pg/mL ± 57.23) from LPMCs (Figure 4A) above background.
Both bacteria also induced significant production of IL-1β (Rb:
34.86 pg/mL ± 7.62, Aj: 247.6 pg/mL ± 74.49) from LPMCs
(Figure 4B). Although both commensal bacteria stimulated
significant production of these cytokines, A. junii induced 10.8
fold more IL-23 and 7.1 fold more IL-1β than R. bromii
(Figures 4A,B).

To evaluate the relative contribution of IL-23 and IL-1β
independently and in combination to ILC3 induction of IL-22,
LPMC were exposed to recombinant IL-23 and/or IL-1β. Both
recombinant cytokines individually significantly increased the
percentage of IL-22+ ILC3s (C: 1.28% ± 1.22, IL-23: 17.59%
± 4.20, IL-1β: 17.41% ± 7.06) compared to the unstimulated
control (Figure 4C). Although the combination of recombinant
IL-23 and IL-1β significantly increased the percentage of IL-22+
ILC3s (11.07% ± 3.66) compared to unstimulated control, the
combination response was not synergistic (Figure 4C).

To determine if production of IL-23 and/or IL-1β from
LPMCs drives IL-22 induction in ILC3s in response to bacteria,
blocking antibodies directed against IL-23, IL-1β, or both
cytokines were added to LPMC cultures before exposure to the

commensal A. junii. The frequency of IL-22 producing ILC3s
in response to A. junii was significantly reduced by an average
of 38.0% when blocking IL-23 and 38.5% when blocking IL-
1β compared to stimulation with A. junii and the control IgG
antibody (Figure 4D). The combination of blocking both IL-23
and IL-1β also significantly reduced the frequencies of IL-22 +

ILC3s in response to A. junii by 40.1% (anti-IL-23: 14.46% ±

3.30, anti-IL-1β: 16.13% ± 4.71, anti-IL-23+ anti-IL1β: 15.28%
± 4.04), but did not lead to a synergistic reduction (Figure 4D).

Given the lack of complete abrogation of the ILC3 IL-
22 response to bacteria when blocking IL-23 and IL-1β, the
role of other cytokines (IL-7, IL-2) reported to promote ILC3
phenotype (57) were next investigated. Although secreted IL-
7 was detected in unstimulated LPMC cultures, levels of IL-
7 did not increase after LPMCs were exposed to commensal
Gram-positive bacteria (R. bromii) or to Gram-negative bacteria
(A. junii) (Supplemental Figure 5A). In keeping with this
lack of production in presence of bacteria, blocking IL-
7 alone did not reduce the frequency of IL-22+ ILC3s
(Supplemental Figure 5B). Blocking IL-7 in combination with
blocking IL-23 and IL-1β did not further reduce the frequency
of IL-22+ ILC3s compared to blocking IL-23 and IL-1β
(Supplemental Figure 5B). T cells are a major producer of IL-
2 among other cytokines, however, depletion of CD3+ T cells
from LPMCs did not alter the percentage of IL-22+ ILC3s
generated in response to A. junii (Supplemental Figure 5C)
and the addition of recombinant IL-2 to LPMCs did not
significantly increase the percentage of IL-22+ ILC3s (data
not shown). Altogether these data indicate that IL-2 and IL-
7 do not have a major role in LPMCs in promoting IL-22
production by ILC3s in response to enteric bacteria in this
culture system.

Myeloid Dendritic Cells Contribute to IL-22
Production of ILC3s in Response to
Bacteria by Production of IL-23 and IL-1β
To identify potential cellular sources of IL-23 and IL-1β in
response to A. junii and R. bromii, production of IL-23 and IL-
1β by mDCs (CD3- CD19- HLA-DR+ CD11c+), macrophages
(defined as CD3- CD19- HLA-DR+ CD11c-) (48–50) and
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FIGURE 4 | IL-23 and IL-1β modulate the ILC3 IL-22 response to enteric bacteria. (A) Quantification of IL-23 (pg/mL) or (B) IL-1β (pg/mL) in the supernatant of

LPMCs exposed to R. bromii (Rb) or A. junii (Aj) or no bacteria control. N = 5. (C) Percentages of IL-22+ ILC3s after LPMC exposure to recombinant IL-23, IL-1β, or

IL-23+ IL-1β (50 ng/mL) or no stimulation control. N = 5. (D) Percentages of IL-22+ ILC3s after LPMC exposure to no bacteria control or A. junii (Aj) in the presence

of 5 ug/mL blocking antibodies targeting IL-23 and/or IL-1β or the antibody isotype control IgG. N = 8. Bars are mean + S.E.M. Statistical analysis performed was

paired t-test as indicated. *p < 0.05, **p < 0.01.

CD19+ B cells in LPMCs were determined by intracellular
cytokine staining and flow cytometry following exposure to
bacteria (Figure 5A). A. junii, but not R. bromii significantly
increased the percentage of IL-23+ mDCs (Figure 5B and
Supplemental Figure 6A). Although low frequencies of IL-23+
macrophages following A. junii stimulation were detected,
this was not statistically different compared to no bacteria
stimulation (Supplemental Figures 7A,B). Both R. bromii and
A. junii significantly increased the percentages of IL-1β+
mDCs compared to no bacteria stimulation (Figure 5C and
Supplemental Figure 6B). Exposure of LPMC to R. bromii
or A. junii did not significantly induce IL-1β+ macrophages
above no stimuli although IL-1β+ macrophages were detected
(Supplemental Figures 7D,E). No significant increases in IL-
23+ or IL-1+ B cells were observed in response to either
bacteria stimuli (Supplemental Figure 7). Taken together, these
observations suggested that mDCs in LPMCs were a major
producer of the canonical cytokines known to drive IL-22
production by ILC3s. To verify the contribution of these cells
to bacteria-induced IL-22 production by ILC3s, CD11c+ mDCs
were depleted from LPMCs followed by exposure to A. junii

and frequencies of IL-22+ ILC3s were determined. Depletion
of mDCs significantly reduced the frequency of IL-22+ ILC3s
in response to A. junii by 40.9% compared to total LPMCs
(Figure 5D).

NKp44 Ligation Contributes to the Gut
ILC3 IL-22 Response to Enteric Bacteria
Recent work suggests a functional role for the natural cytotoxicity
receptor NKp44 in driving cytokine responses of ILC3s (3),
thus we sought to determine if NKp44 is critical to the
IL-22 response of human colonic ILC3s to enteric bacteria.
As noted previously, the majority of colon ILC3s expressed
Nkp44 directly ex vivo (Figure 1C). Following exposure to
enteric bacteria in vitro, a small increase in the percentage of
ILC3s expressing NKp44 was noted (Figure 6A). Examination
of the IL-22+ ILC3s after stimulation with bacteria revealed
that the majority of IL-22-producing cells were also NKp44+
(Figure 6B). Direct ligation of NKp44 by crosslinking beads
led to a significant increase in the percentage of IL-22+ ILC3s
compared to the no bead control (Figure 6C). To evaluate
the contribution of NKp44 to the ILC3 IL-22 response to
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FIGURE 5 | Myeloid dendritic cells producing IL-23 and IL-1β contribute to the ILC3 IL-22 response to bacteria. (A) Representative flow cytometry demonstrating

gating strategy to identify antigen presenting cells (mDC; myeloid dendritic cells, B: B cells, M8; macrophages) after LPMC exposure to bacteria in vitro. (B)

Percentages of IL-23+ or (C) IL-1β+ mDCs after LPMC exposure to R. bromii (Rb) or A. junii (Aj) or no bacteria control. N = 4. (D) Percentages of IL-22+ ILC3s after

LPMC exposure to A. junii (Aj) or no bacteria control with CD11c mDC depletion and no depletion control. N = 3. Bars are mean + S.E.M. Statistical analysis

performed was paired t-test. *p < 0.05, **p < 0.01. n.s., not significant.

bacteria, NKp44 was blocked in the presence of commensal A.
junii. Compared to the IgG control, blocking NKp44 during
A. junii stimulation resulted in a significant (IgG control:
31.08% ± 4.69, anti-NKp44: 25.52% ± 3.63) but incomplete
reduction of IL-22+ ILC3s (Figure 6D). To determine if NKp44
promotion of IL-22 in ILC3s in response to bacteria was
complementary or redundant with IL-23 and IL-1β, NKp44
was blocked in combination with blocking of IL-23 and IL-
1β. Blocking Nkp44, IL-23, and IL-1β in combination did not
further reduce the percentage of IL-22+ ILC3s generated in
response to A. junii compared to only blocking IL-23 and IL-1β
(Figure 6D).

Bacteria-Induced IL-22 Production by
ILC3s Is Enhanced in LPMCs Relative
to TMCs
To evaluate if the ILC3 IL-22 response to bacteria is unique
to the colonic environment, tonsil mononuclear cells (TMCs)
were stimulated with commensal bacteria R.bromii and A.junii
as well as the combination of recombinant IL-23 + IL-1β
or NKp44 activating beads and induction of IL-22 by ILC3s

determined by flow cytometry. The combination of IL-23+IL-1β
significantly induced IL-22 production by tonsillar ILC3s as
expected (Figure 7A). A small but significant increase in the
percentage of IL-22+ ILC3s was observed following exposure
to both commensal bacteria tested, whereas a similarly small
increase in IL-22+ ILC3s following ligation of NKp44 was
not statistically significant (Figure 7A). NKp44 expression on
tonsillar ILC3s was characterized ex vivo and was not found
to differ significantly from NKp44 expression on colon ILC3s
(T: 60.17% ± 4.19, L: 74.21% ± 5.05) (Figure 7B). Despite the
majority of the tonsillar ILC3s expressing the receptor NKp44,
stimulation with NKp44 activation beads resulted in significantly
lower percentages of IL-22+ ILC3s (T: 1.11% ± 1.11, L: 16.89%
± 0.12) compared to the colon (Figure 7C). Furthermore, when
stimulated with bacteria, the percentage of tonsillar IL-22+ ILC3s
was significantly lower in response to R. bromii (T: 1.11% ±

0.37, L: 18.67% ± 5.41) and A. junii (T: 0.93% ± 0.30, L: 21.38%
± 2.81) compared to the colon (Figures 7D,E). Although there
was minimal induction of IL-22+ ILC3s in response to NKp44
ligation in tonsil cultures, the canonical cytokines, IL-23+IL-
1β similarly induced ILC3 IL-22 responses (T: 8.15% ± 1.61, L:
10.79%± 3.11) between the colon and the tonsil (Figure 7F).
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FIGURE 6 | NKp44 contributes to the gut ILC3 IL-22 response to bacteria. (A) Percentages of NKp44 + ILC3s after LPMC exposure to enteric bacteria or no bacteria

control. N = 5. (B) Percentages of NKp44+ when gating on IL-22 + ILC3s after LPMC exposure to enteric bacteria. N = 5. (C) Percentages of IL-22+ ILC3s after

LPMC stimulation with NKp44 cross-linking beads. N = 3. (D) Percentages of IL-22+ ILC3s after LPMC exposure to no bacteria control or A. junii (Aj) in the presence

of blocking antibodies targeting IL-23 and IL-1β (5 ug/mL) or NKp44 (10 ug/mL) or the antibody isotype controls IgG. N = 5. Bars are mean + S.E.M. Statistical

analysis performed was paired t-test. *p < 0.05, **p < 0.01, ****p < 0.0001.

DISCUSSION

Numerous murine studies have highlighted the importance of

gut ILC3s in immunity to bacteria, but few studies have directly
investigated how human lamina propria ILC3s respond to enteric
bacteria, particularly commensal bacteria, and the mechanisms

driving these responses. The major findings of the present study
demonstrate that: (1) both Gram-positive and Gram-negative
commensal and pathogenic bacteria induced similar frequencies

of IL-22-producing ILC3s, (2) ILC3 production of IL-22 was
not mediated through direct ILC3 recognition of bacteria, but
rather mediated indirectly by mDCs, (3) IL-22 production was
partly dependent on IL-23 and IL-1β, (4) and ligation of the

NKp44 receptor stimulated IL-22 production. Overall, this work
expands on the basic biology of human gut ILC3s and provides
insight into their contribution to the innate immune response to
enteric bacteria.

Similar frequencies of IL-22-producing ILC3s were induced
irrespective of bacterial cell surface structure by Gram stain (i.e.,
Gram-positive or Gram-negative) or characterization as a human
commensal or pathogenic bacteria suggesting a commonality

between bacteria which drive ILC3 cytokine responses. In the
context of gut ILC3 biology, this suggests that different enteric
bacteria induce immune responses by LPMCs that are then
“sensed” by ILC3s as the same. Using purified ILC3s, we
demonstrated that induction of IL-22 was not due to direct
recognition of bacteria or bacterial antigens. Presumably, direct
recognition of bacteria by purified ILC3s would occur through
external expression of TLRs specific to bacterial ligands. In
keeping with this concept and a lack of direct induction of
IL-22 by bacteria, we detected minimal expression of bacteria-
associated TLRs on colonic ILC3s. This contrasts to a previous
report demonstrating TLR2 expression by ILC3s in human
duodenum (58) suggesting possible tissue site differences in PRR
expression. Importantly, production of IL-22 by tonsillar ILC3s
in response to TLR2 ligand required co-stimulation with IL-2,
IL-15, or IL-23 (59).

We determined that IL-23 and IL-1β were important for
bacteria-driven IL-22 production by human gut ILC3s similar to
multiple murine studies highlighting IL-23-mediated regulation
of IL-22 production in the context of pathogenic C. rodentium
infection (12, 36) and responses to bacterial flagella (60, 61).
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FIGURE 7 | Tonsillar and gut ILC3 IL-22 responses to stimulation. (A) Percentages of IL-22+ ILC3s after TMC exposure in vitro to R. bromii, A. junii, NKp44

cross-linking beads, recombinant IL-23+ IL-1β (50 ng/mL) or no stimulation control. N = 5. Bars are mean + S.E.M. Statistical analysis performed was paired t-test.

*p < 0.05, n.s., not significant. (B) Percentages of ILC3s expressing NKp44 ex vivo. TMC: N = 3, LPMC: N = 9. (C) Percentages of IL-22+ ILC3s after TMC or LPMC

stimulation in vitro with NKp44 cross-linking beads. TMC: N = 5, LPMC: N = 3. (D) Percentages of IL-22+ ILC3s after TMC or LPMC stimulation with R. bromii. TMC:

N = 5, LPMC: N = 7. (E) Percentages of IL-22+ ILC3s after TMC or LPMC stimulation with A. junii. TMC: N = 5, LPMC: N = 11. (F) Percentages of IL-22+ ILC3s

after TMC or LPMC exposure to recombinant IL-23 + IL-1β (50 ng/mL). TMC: N = 5, LPMC: N = 6. Bars are mean + S.E.M. Statistical analysis performed was

unpaired t-test. *p < 0.05, ***p < 0.001, ****p < 0.0001, n.s., not significant.

IL-1β signaling through the IL-1R1 and MyD88 pathway was
also shown to be critical for murine ILC3 production of IL-22
(62) and in human secondary lymphoid tissue, continuous IL-1β
signaling was required to preserve the ILC capacity to produce
IL-22 (63). Interestingly, in our in vitro model, frequencies of
IL-22-producing ILC3s were not synergistically increased by
the combined addition of IL-23 and IL-1β or decreased with
antibody-mediated blocking of both cytokines in the context of
bacteria exposure, suggesting that IL-23 and IL-1β may stimulate
colonic ILC3 production of IL-22 in a redundant manner.
Alternatively, ILC3s that express the IL-23R could also be the
same subset that express the IL-1R indicating that only a fraction
of ILC3s have to capacity to be stimulated in this manner. Taken
together, these observations highlight a role for accessory cell
mediated production of IL-23 and IL1β in regulating IL-22 from
human gut ILC3s in response to enteric bacteria.

The importance of crosstalk between accessory cells such as
mDCs and ILCs for induction of IL-22 has been implicated in
a number of studies including the observation that a loss of
a subset of mDCs correlated with a loss of IL-22-producing
ILCs during SIV infection (25). Additionally, mouse intestinal
mDC production of IL-23 in response to flagella derived from
Salmonella was important in the stimulation of IL-22 from
ILC3s (60, 61) and a need for physical contact between DCs
and ILCs was necessary for the protective IL-22 response to

infection with C. rodentium (64). We provide evidence that
depletion of mDC resulted in a decrease in IL-22 production
by ILC3s; however, purified colonic ILC3s responded directly to
IL-23 and IL-1β, suggesting that contact dependence between
human colonic ILC3s and mDCs may not be a requirement
for induction of IL-22. Importantly, despite removing mDCs,
complete abrogation of the bacteria-induced IL-22 response in
ILC3s was not achieved, highlighting that other accessory cell
types may contribute to the regulation of bacteria-specific ILC3
responses in the colon. Indeed, we detected low percentages
of IL-23 and IL-1β-expressing macrophages in response to
representative commensal bacteria in a subset of donors,
suggesting that macrophages have the potential to contribute to
the ILC3 IL-22 response to bacteria. A number of studies have
implicated monocytes in driving IL-22 production. For example,
soluble factors from LPS-activated human monocytes stimulated
IL-22 from tonsillar ILC3s (17). In murine studies CX3CR1

+

phagocytes (including mDCs and macrophages) stimulated a
protective IL-22 ILC3 response during C. rodentium infection
(65, 66) andmice deficient in CX3CR1

+ phagocytes had impaired
IL-22 production by ILC3s leading to increased microbial
translocation and bacterial dissemination (65). Thus, exposure
of multiple types of human gut antigen presenting cells to
bacteria and the subsequent induction of IL-23 and IL-1β likely
contributes to the production of IL-22 by ILC3s.
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In Crohn’s disease patients, loss of NKp44+ ILC3s from
the ileum correlated with an increase in pro-inflammatory T
cell subsets implying a role for NKp44+ ILC3s in mucosal
regulation (67). In our study, we show that the majority of IL-
22-producing ILC3s expressed the NKp44 receptor and direct
ligation of the NKp44 receptor induced IL-22 from colonic
ILC3s. Interestingly, the role of NKp44 in directly driving IL-22
production was unique to the gut and not observed with tonsillar
ILC3s in keeping with a previous report on NKp44 ligation of
tonsillar ILC3s (3). This is intriguing since we show that there are
similar percentages of NKp44-expressing ILC3s ex vivo, as well
as, similar percentages of IL-22-expressing ILC3s after in vitro
exposure to exogenous IL-23 and IL-1β in both the tonsil and
colon. In the context of bacterial stimulation, blocking NKp44
signaling partially reduced the percentage of IL-22-producing
ILC3s demonstrating that NKp44 also plays a contributory
role in cytokine stimulation of ILC3s. Ligands for NKp44 have
been identified during pathological conditions such as tumor
development or immortalized cell lines of cancerous origin, and
include an isoform of the proteinMLL5, proliferating cell nuclear
antigen (PCNA), and platelet derived growth factor (PDGF)-DD
(5, 68, 69). Further studies will be needed to determine if these,
or yet to be identified ligands, can stimulate IL-22 production by
ILC3s in our in vitromodel. Interestingly, NKp44 has been shown
to directly bind to bacteria (70) as well as viral hemagglutinin of
influenza (71), thus, investigations will need to be undertaken to
determine if enteric bacteria are an additional source of NKp44L.
It is possible that other factors not identified here may contribute
to the IL-22 response by ILC3s by bacteria. A recent study
determined that IL-18 production by mDCs, in conjunction with
IL-15, was able to induce IL-22 in tonsillar ILC3s after longer
term exposure (14 days) to these cytokines (72). It is therefore
possible, that similar combinations of signals could induce IL-22
from colonic ILC3s, although if there is a role for enteric bacteria
in initiating this signaling cascade would need to be determined.

Reports have indicated that IFNγ production by ILC3s is
possible in the context of murine models of GI bacterial
infection (41, 42). Furthermore, in vitro human tonsillar ILC3s
can be functionally plastic in terms of cytokine production
including a switch from IL-22 to IFNγ production dependent
on the cytokine milieu (18, 21). In this current study, exposure
of LPMC to enteric bacteria did not induce a significant
increase in IFNγ+ ILC3s suggesting that while our in vitro
model has the appropriate microenvironment to drive IL-22
production from ILC3s, additional signals would be required for
robust IFNγ production. It is possible that cellular movement
as is seen in vivo could promote interactions that may be
needed for IFNγ induction in response to bacteria, and the
in vitro model used in this study may not recapitulate those
interactions. It is also important to note that in ourmodel system,
broad spectrum antibiotics were present to prevent bacterial
overgrowth. Thus, functional responses are likely driven by static
whole bacteria and/or processed bacterial antigens. Perhaps when
bacteria are able to be metabolically active and/or replicate,
additional components (such as virulence factors in regards to

S. typhimurium) would be produced leading to the subsequent
production of IFNγ from ILC3s.

To the best of our knowledge, this study is the first to
undertake an extensive evaluation of the mechanisms by which
in vitro exposure to whole enteric commensal and pathogenic
bacteria drive human colonic ILC3 cytokine production. Here
we demonstrate that IL-22 production was driven indirectly in
LPMCs, mediated in part by mDCs, and driven by multiple
mechanisms including IL-23, IL-1β, and NKp44 signaling. The
complexity of the gut environment was emphasized by the
observation that the combination of these processes did not
fully account for all of the bacteria-driven IL-22 responses.
Remarkably, IL-22 production from ILC3s were induced in
response to all bacteria tested, potentially highlighting an
evolutionarily conserved response by ILC3s to both commensal
and pathogenic bacterial antigens. IL-22 has important gut
homeostatic functions and thus the production of IL-22 by
ILC3s would be a critical component of the innate response
to enteric pathogenic challenge. This function of ILC3s may
serve as a means to repair the epithelial barrier during
disease states when there is a breach in epithelium integrity
to prevent the induction of further inflammation and damage
by translocating microbes. Our in vitro observations highlight
that production of IL-22 by ILC3s in response to commensal
bacteria is also likely a significant component of GI tract
bacterial immunity.
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