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The CXCR4 receptor upon binding its ligands triggers multiple signaling pathways that
orchestrate cell migration, hematopoiesis and cell homing, and retention in the bone
marrow. However, CXCR4 also directly controls cell proliferation of non-hematopoietic
cells. This review focuses on recent reports pointing to its pivotal role in tissue
regeneration and stem cell activation, and discusses the connection to the known
role of CXCR4 in promoting tumor growth. The mechanisms may be similar in all
cases, since regeneration often recapitulates developmental processes, and cancer
often exploits developmental pathways. Moreover, cell migration and cell proliferation
appear to be downstream of the same signaling pathways. A deeper understanding of
the complex signaling originating from CXCR4 is needed to exploit the opportunities to
repair damaged organs safely and effectively.
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INTRODUCTION

The binding of chemokines to G protein-coupled receptors (GPCRs) typically directs cell
movement and traffic in and out of specific tissues in developing embryos and adult animals. They
are also involved in tumor metastasis and invasion, and in the extension of neurites and axons of
neurons (a part of a cell moves, while the cell body stays put). How chemokines and their receptors
recruit hematopoietic cells to injured sites and tumors has been intensely investigated, whereas their
involvement in the control of cell proliferation is less explored (1). Among chemokine receptors,
CXCR4 is the most widely expressed, and is involved in numerous physiological and pathological
conditions. CXCR4 is expressed by most cells, including hematopoietic and endothelial cells (ECs),
neurons and stem cells (embryonic and adult). Increased levels of CXCR4 are present in cancer cells
compared to the normal cells (2, 3). The focus of this mini-review is the emerging role of CXCR4
and its ligands in tissue repair and regeneration, and its relation to cancer cell proliferation. The role
of CXCR4 in differentiation, retention, mobilization, migration, and polarization of hematopoietic
cells is covered by other excellent reviews (4, 5).

CXCR4 AND ITS LIGANDS

CXCR4 is a 352 amino acid rhodopsin-like GPCR, comprising an extracellular N-terminal domain,
7 transmembrane (TM) helices, 3 extra-cellular loops (ECL), 3 intra-cellular loops (ICL) and
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an intracellular C-terminal domain (6). CXCR4 can exist in the
plasma membrane as a monomer, dimer, higher-order oligomer
or nanoclusters (7), although the partitioning and relevance of
these different multimerization states has not been addressed
in vivo. Several crystal structures of CXCR4 bound to agonists
and small molecules are in accordance with the ability of CXCR4
to form homodimers via interactions of the TM5 and TM6 helices
(6). TM6 is also implicated in nanoclustering (7). CXCR4 can also
form heterodimers with ACKR3 (a related GCPR also known as
CXCR7), which have distinctive signaling properties (8).

The canonical ligand of CXCR4 is CXCL12, also known
as stromal cell-derived factor 1 (SDF-1) (9, 10). A single
gene, CXCL12, codes for six protein isoforms in human
(three in mouse), all deriving from alternative splicing of the
fourth and final exon. The various forms are differentially
expressed and have different affinities to glycosaminoglycans
present on the cell surface and in the extracellular matrix
(11). CXCL12α, an 89 amino acid protein, is the shorter
and most expressed isoform (12, 13). Notably, CXCL12α can
exist in monomeric and dimeric forms. CXCL12 only binds
to chemokine receptors CXCR4 and ACKR3, itself a CXCR4
interactor; such a restricted receptor selectivity is unusual
among chemokines.

The structure of the CXCR4/CXCL12 complex has not yet
been determined; a model integrating homology modeling,
experimentally derived restraints, and charge swap mutagenesis
(14) highlights several contacts between the N-terminal tail of
CXCR4 and CXCL12, and the interaction of the N-terminus of
CXCL12 with the cavity delimited by the TM helices.

High mobility group box 1 protein (HMGB1) is the archetypal
damage-associated molecular pattern (DAMP) molecule; DAMPs
are released from dead or severely stressed cells to alert their
microenvironment and the innate immune system. HMGB1 can
form a heterocomplex with CXCL12 (HMGB1·CXL12) that also
binds to CXCR4; of note, the conformational rearrangements
of CXCR4 differ when triggered by CXCL12 alone or by
HMGB1·CXCL12, and the complex is over one order of
magnitude more potent than CXCL12 alone in inducing cell
migration (15). Only the reduced form of HMGB1, where the pair
of cysteines in the HMG-box domain A do not form a disulfide
bond, binds CXCL12 and interacts with CXCR4 (16). However,
a designer form of HMGB1 called 3S-HMGB1, where serines
replace all three cysteines, binds to CXCR4 directly and is as
effective as HMGB1·CXCL12 in promoting cell migration and
muscle regeneration (17).

CXCR4 also binds macrophage migration inhibitory factor
(MIF), a cytokine involved in the regulation of innate immunity
(18). MIF binds to the N-terminal tail of CXCR4 and to the
exterior side of TM helices, but not inside the TM pocket
(18, 19). MIF also binds to other receptors, including CXCR2,
CD74/CD44, and ACKR3 (20), which complicates the dissection
of its activities.

Extracellular ubiquitin (eUb), also considered a DAMP, is a
CXCL12 antagonist (21). Molecular modeling and mutagenesis
suggest that it binds to CXCR4 inside the cavity delimited by
TMs (22), but makes contact to CXCR4 residues that are not
contributing to CXCL12 binding (23).

Beta-defensin-3 (HBD3) also competes with CXCL12 for
CXCR4 binding, and promotes internalization of CXCR4 without
inducing calcium flux, ERK phosphorylation, or chemotaxis (24).

Although the above list of actors is long, and multimeric
complexes and multiple interactions increase complexity,
genetics originated the widespread idea of CXCR4 and
CXCL12 as a biunivocal couple: deletion in mice of either
the Cxcr4 or Cxcl12 genes causes fetal lethality, defective
B-cell lymphopoiesis, impaired bone-marrow myelopoiesis,
and abnormal development of the cardiac septum and of the
cerebellum (25, 26).

CXCR4 AND CXCL12 IN TISSUE
REGENERATION

Mice lacking CXCL12 or CXCR4 were first generated in the
1990s; since both die in utero, their ability to regenerate injured
tissues was not investigated until later. Depletion of either
CXCR4 or CXCL12 with small interfering RNAs injected in
injured muscle impairs its regeneration, as does local injection
of the CXCR4 antagonist AMD3100 (27), consistent with the
expression of both CXCR4 and CXCL12 in skeletal muscle (28),
and with impaired myogenesis and depletion of satellite cells in
CXCR4 deficient mice (29). Satellite cells are the direct targets of
CXCL12 (27).

More recently, CXCR4 and CXCL12 have been shown to
control the regeneration of multiple organs and tissues, including
lung, heart, liver, and the nervous system.

Surgical removal of one lung or part of it (pneumonectomy,
PNX) is compensated by alveolar regrowth/regeneration in the
remaining lung. After PNX, activated platelets trigger lung
regeneration by binding to pulmonary capillary endothelial
cells (PCECs) and supplying CXCL12 to activate CXCR4 and
ACKR3 on their surface (30). PCECs activate AKT, proliferate
and express the membrane metalloproteinase MMP14, which
releases ligands that promote the proliferation of progenitor
type II alveolar epithelial cells, and eventually alveolar regrowth.
Endothelial cells are direct targets of CXCL12 via CXCR4, since
genetic silencing of Cxcr4 and Ackr3 in PCECs impairs lung
regeneration.

The mammalian heart cannot regenerate in adults, but it can
in neonate mice (31). In myocardial infarction (MI), coronary
arteries get obstructed, and must regenerate to support continued
heart function. A unique CXCR4/CXCL12-dependent process
termed “artery reassembly” allows the formation of an alternative
(collateral) artery network to bypass obstructed or severed
coronary arteries (32). In the mouse, within a few days after
ligation of the left coronary artery on day 2 after birth, individual
arterial endothelial cells (ECs) migrate out of the existing arteries,
proliferate and then coalesce with capillaries, forming collateral
arteries that connect branches of the right and left coronary
arteries. A similar process reconnects severed arteries after the
resection of the apex of the neonatal heart. Artery reassembly
does not occur in adult hearts, but injection of a single dose
of CXCL12 in the infarcted area promotes collateral formation
and functional recovery of the heart. Notably, deletion of Cxcl12
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capillary ECs or Cxcr4 in arterial ECs impairs artery reassembly;
CXCL12 is not basally expressed in ECs, but hypoxia induces its
expression. Thus, during artery reassembly different ECs are both
source and target of CXCL12, via CXCR4.

Adult zebrafish hearts do regenerate, and coronary
revascularization initiates within hours of injury. After
cryoinjury, new coronaries regenerate both superficially around
the injured area and intra-ventricularly toward the cardiac
lumen, and act as a scaffold for proliferating cardiomyocytes (33).
Epicardial cells express Cxcl12b after injury, as a consequence
of hypoxia and HIF-1α activation. ECs in both superficial and
intra-ventricular coronaries have a common origin and both
express CXCR4, but inhibiting CXCR4 pharmacologically or
deleting Cxcr4 in the whole heart limits superficial, and not
intra-ventricular, regeneration.

The liver is capable of continuous turnover and regeneration,
which is overridden by fibrosis, cirrhosis and hepatic failure only
after chronic or overwhelming injury. CXCL12 is constitutively
expressed in healthy liver, and its expression increases following
acute or chronic injury. Liver sinusoidal endothelial cells (LSEC)
and hepatic stellate cells (HSC) are important sources of
CXCL12 in liver disease. HSC and mesenchymal stem cells
mainly respond via CXCR4, while LSEC express both CXCR4
and ACKR3. CXCL12 can activate HSC and recruit bone
marrow mesenchymal cells, which promote liver fibrosis; in
LSEC, CXCL12 signals via the physical association of CXCR4
and ACKR3 to activate eventually the transcription factor
Id1, which orchestrates pro-regenerative responses, such as
production of Wnt2 and hepatocyte growth factor (HGF) (34).
Liver regeneration is abrogated by genetic silencing of either
ACKR3 or CXCR4 in LSEC, or by chronic injuries that lead
to excessive CXCR4 and reduced ACKR3 expression. In vitro,
CXCL12 induces dose-dependent proliferation of human liver-
derived stellate LX-2 cells, mediated by PI3K/Akt and Erk1/2
pathways (35).

The peripheral nervous system has retained throughout
evolution the capability to regenerate. Recently, CXCL12 was
found to promote the structural and functional recovery of
the neuromuscular junction after degeneration of the motor
axon terminal (36). CXCL12 is synthetized and released by
peri-synaptic Schwann cells, and acts on CXCR4 re-expressed
upon injury on the tip of the motor axon. CXCL12 also
supports the functional and anatomical recovery of the sciatic
nerve after crush injury; of special note, the small molecule
NUCC-390, a CXCR4 agonist (37), also promotes nerve
regeneration (38).

The central nervous system, in contrast, has a limited ability to
regenerate, mostly dependent on neural progenitor cells (NPCs).
Astrocytes are the main source of CXCL12 in the brain (39);
CXCR4 is expressed on NPCs and CXCL12 appears to stimulate
directly their in vitro proliferation and differentiation into
neurons (40–42), via PI3K-Erk1/2 (43) and/or AKT/FOXO3α

(44) activation. However, Li at al. (45) found no CXCL12-induced
proliferation of NPC cells from E12 mouse embryos. CXCR4
activation by CXCL12 promotes the differentiation of human
embryonic stem cells into neural stem cells (46) and then helps
to maintain their stemness (47).

Overall, these studies implicate CXCR4 and CXCL12 in the
regeneration of multiple organs, via CXCL12 release from various
sources and CXCR4 activation on endothelial and progenitor
cells, which then go on to proliferate; so far, a role of CXCR4
activation on parenchymal cells is not convincingly proven nor
excluded. Hematopoietic and mesenchymal cells also contribute
to tissue regeneration, but in this case the role played by
the CXCL12/CXCR4 system appears limited to directing their
chemotaxis to the damaged site.

THE HMGB1·CXCL12 COMPLEX

The existence of the HMGB1·CXCL12 complex was first inferred
from the ability of HMGB1 to promote the migration of
endothelial, hematopoietic and mesenchymal cells (15) via
CXCR4; the complex was then biochemically characterized (48).
The complex was also found to promote the regeneration
of skeletal muscle, since the reduced HMGB1 expression in
Hmgb1+/− mice delays muscle regeneration (49), whereas the
injection of exogenous reduced HMGB1 accelerates muscle,
bone and liver repair in mouse (17, 50). Several cell-specific
responses are involved, including the proliferation of satellite
cells, skeletal stem cells and hepatocytes. The requirement for
HMGB1, as opposed to CXCL12 alone, is supported by several
observations: injection of CXCL12 alone promotes abnormal
bone regeneration, with a larger fracture callus without a
concomitant increase in bone mineral density and mechanical
strength (50); local injection of glycyrrhizin, a HMGB1 inhibitor
(51), delays bone fracture healing; injection of 3s-HMGB1, a
mutant form of HMGB1 that can bind to CXCR4 in the absence
of CXCL12, mimics the biological effects of HMGB1·CXCL12,
including the promotion of in vitro myogenesis (17).

Remarkably, systemic injection of fully reduced HMGB1
(frHMGB1) or 3S-HMGB1 predisposes muscle and bone to
regeneration/repair even if injected 2 weeks before injury (50),
by inducing the transitioning of resting stem cells to a dynamic
state of the cell cycle, intermediate between G0 and G1, termed
“GAlert” (52). In contrast to deeply quiescent G0 stem cells, GAlert
stem cells are more metabolically active, contain higher levels of
ATP and mitochondrial DNA, are larger and poised to enter the
cell cycle when exposed to activating signals. Activation mTORC1
is both necessary and sufficient for the transitioning to the GAlert
state (53), and rapamycin, an mTORC inhibitor, interferes with
HMGB1-induced transitioning to GAlert (54). Multiple stem cell
types (SSCs, satellite cells and hematopoietic stem cells) in mice
subject to bone fracturing or muscle damage transition to the
GAlert state, and this requires HMGB1·CXCL12, since stem cells
in HMGB1-deficient mice do not transition to the GAlert state
after injury unless exogenous HMGB1 is provided.

Thus, HMGB1·CXCL12 has similar activities to those reported
for CXCL12 in muscle regeneration, but is absolutely required
in GAlert transitioning of stem cells. In this context, two
questions arise: is HMGB1·CXCL12 (as opposed to CXCL12
alone) responsible for the regeneration of most or all tissues?
Does HMGB1·CXCL12 also promote the proliferation of ECs?
Indeed, HMGB1 has been shown to promote the proliferation of
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ECs of different origin, although the involvement of CXCR4 as
the cognate receptor was not investigated (55).

CXCR4/CXCL12 IN CANCER GROWTH

Tumor is an illegitimate tissue that grows out of control because
of an altered expression and behavior of pro-proliferative and
pro-survival signals. Precisely because tumor tissue is out of
balance with the surrounding legitimate tissues, it is also in a state
of distress, similar to an injured tissue, and recruits inflammatory
cells that support it. Famously, it has been said that a tumor is
wound that never heals (56).

Chemokines and their receptors not only drive the trafficking
of leukocytes inside the tumor mass but also contribute to most
aspects of tumor cell biology (1). High expression of CXCR4 is
observed in hematological malignancies (57–59) and in many
types of solid tumors, including melanomas and kidney, lung,
brain, prostate, breast, pancreas and ovarian tumors (2, 3),
where it correlates with poor prognosis (59). Interestingly, the
normal tissue adjacent to the CXCR4 overexpressing tumor
shows normal or no CXCR4 expression (41), which suggests
a differential response of cancer cells to microenvironmental
conditions. Expression of CXCR4 and CXCL12 in cancer cells is
also controlled by specific microRNAs: CXCL12 by miR-1 (60),
miR-9 (61, 62), miR-126 (63), miR-146a (64), and miR-150 (65),
whereas miR-200a can increase CXCR4 expression (66).

The expression of CXCR4/CXCL12 in tumors is partially
dependent on the hypoxic tumor microenvironment, in a HIF-
1α dependent manner (42). As a consequence of CXCL12
release, tumor-associated CXCR4-expressing ECs proliferate
(67). CXCR4 is also expressed on putative cancer stem cells
populations in various tumors, including renal (68), prostate (69)
and non-small lung cancer (70), and affects their clonogenicity
and spherogenicity, with adverse effects on prognosis. These
CXCL12/CXCR4 effects are similar to the promotion of
endothelial and stem cell proliferation in injured tissue.

Moreover, many reports indicate that binding of CXCL12
to CXCR4 on tumor cells of various types enhances their
proliferation, both in vitro and in vivo, either via MAPK or
PI3K/Akt pathways (54, 71, 72).

Table 1 lists a sample of reports on the role of CXCR4/CXCL12
in tumor cell proliferation (mostly tumor cell lines) (53, 69, 72–
80). Targeting of CXCR4 with antibodies or specific inhibitors,
most commonly AMD3100, has been intensely investigated;
however, AMD3100/Plerixafor/Mozobil has been approved for
bone marrow transplantation, but not as anti-cancer treatment.

CXCR4 SIGNALING

The preceding sections have highlighted that CXCR4 activation
can drive both cell migration and cell proliferation, at least in
vascular, progenitor and tumor cells. We will now review current
information on the signaling involved.

Ligand binding to CXCR4 induces conformational changes
that lead to the activation of multiple signaling pathways

(Figure 1), originating proximally from the dissociation of
heterotrimeric G proteins and from the phosphorylation of
the C-terminal cytoplasmic tail of CXCR4. CXCR4 is mainly
bound to heterotrimeric Gi proteins, although other G protein
classes may transduce CXCR4 binding as well (81). Upon
ligand binding, the Gi heterotrimer detaches from the CXCR4
intracellular loops and dissociates into GTP-bound αi and
βγ subunits (82, 83). The βγ subunits directly bind and
activate phosphatidylinositol-3-OH kinases (PI3K) β or γ,
which produce phosphatidylinositol triphosphate (PIP3), and
phospholipase C β (PLC-β), which produces inositol-(1,4,5)-
trisphosphate (IP3) and diacylglycerol (DAG). The Gαi subunit
induces calcium release from intracellular stores and indirectly
activates the PI3K-AKT and MEK1/2-Erk1/2 axes (84). Via the
production of PIP3, PI3Ks activate the serine-threonine kinase
AKT, which can then can phosphorylate many target proteins,
most notably glycogen synthase kinase 3 (GSK3), tuberous
sclerosis 2 (TSC2), caspase 9 and PRAS40 (AKT1S1), which
explains its wide spectrum of downstream effects in promoting
cell proliferation, differentiation, apoptosis, angiogenesis, and
metabolism (85).

CXCR4 ligand binding induces JAK/STAT activation in a Gα-
independent manner (86). GPCR kinases (GRKs) phosphorylate
multiple serines/threonines in the cytoplasmic tail of CXCR4.
Phosphorylated CXCR4 recruits β-arrestin-1 and -2, which
promote CXCR4 internalization (87). Thereafter, CXCR4 can be
recycled back to the plasma membrane or sorted to the lysosomes
for degradation (88). Of note, the recruitment of β-arrestins to
CXCR4 also activates Erk signaling (89).

The binding of CXCL12 to CXCR4-ACKR3 heterodimers
activates G protein-independent signaling cascades originating
from β-arrestins that potentiate cell migration (8).

Overall, the activation of PI3Ks and Akt supports the
proliferation and survival of both normal and cancer cells.
mTORC activation underpins the anabolic metabolism that is
required for cell growth; indeed, mTORC activation is also
necessary for the transitioning of stem cells to the GAlert state.

Notably, the CXCR4-activated pathways that direct cell
movement and migration are exactly the same that are involved
in cell proliferation, and both processes can be inhibited
by the same small molecules. For example, rapamycin is an
mTORC inhibitor that blocks cell proliferation, but it inhibits
cell migration as well (90, 91). The same is true for PI3K
inhibitors (92).

Although the various pathways originating from CXCR4 are
known, there is ample scope for cell specificity. The human
genome encodes 18 different Gα proteins, 5 Gβ proteins and
12 Gγ proteins, and multiple PI3Ks and PLCs, with ample
variation of expression in different cell types. Moreover,
signaling is enhanced or dampened by dozens of modulators,
including scaffold proteins that facilitate the physical
interactions of kinases and other enzymes that introduce
post-translational modifications. We are unaware of studies
that delineate the CXCR4-initiated signaling pathways in
cell proliferation down to the specific isoforms and post-
translational modifications of the signal transducers involved.
Cancer is not the most amenable biological system, since
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TABLE 1 | CXCR4/CXCL12 axis is involved in cancer cell proliferation.

Tumor type Cancer cell lines Pathway involved References

Glioblastoma Glioblastoma cell lines GB1690, 5GB, HTB-16 – Sehgal et al. (72)

Glioblastoma cell lines U87-MG, DBTRG-05MG ERK; AKT Barbero et al. (70)

Non-small cell lung cancer
(NSCLC)

NSCLC cell lines L3, L4, A549 ERK Wald et al. (73)

Malignant mesothelioma (MM) MM cell lines H28, 211H, H2052, ms-1, H290, H513 AKT/mTOR Li et al. (74)

Breast cancer Breast cancer cell line MCF-7 – Hall et al. (75)

Ovarian cancer Ovarian cancer cell lines BG-1, SKOV3 – Hall et al. (75),
Guo et al. (76)

Colorectal cancer (CRC) CRC cell lines HT-29, CaCo21, Colo320 PI3K/AKT Ma et al. (77)

Pancreatic cancer Pancreatic cancer cell lines AsPC-1, SW1990, BxPC-3 – Gao et al. (78)

Esophageal squamous cell
carcinoma (ESCC)

ESCC cell line EC9706 (in vitro and ESCC mouse
xenograft model)

G0/G1 cell cycle arrest and
apoptosis induction

Wang et al. (79)

Extrahepatic hilar
cholangiocarcinoma (hilar-CCA)

Hilar-CCA cell line QBC939 – Tan et al. (80)

Prostate cancer Prostate cancer cell lines DU145 and PC3 PI3K/AKT Dubrovska et al. (67)

Many primary tumors overexpress CXCR4 and CXCL12 compared to their normal cells. The activation of CXCR4/CXCL12 in tumor cells leads to cell proliferation.
–, not known.

FIGURE 1 | Schematic representation of the signaling pathways activated by CXCR4. Ligand binding to CXCR4 activates G protein subunits and the downstream
Ca2+ mobilization from intracellular stores and PI3K/Akt, PLC, and ERK1/2 pathways. This results in gene transcription, cell migration, proliferation and survival.
CXCR4 oligomerization can also activate the G-protein independent JAK/STAT pathway. β-arrestins are recruited following GRK phosphorylation of CXR4 and
mediate its internalization. ACKR3 is another receptor for CXCL12 that can induce β-arrestin-mediated signaling both by itself or as a heterodimer with CXCR4.

cancer cells have accumulated a number of genetic and
epigenetic alterations, often including those of PI3Ks. Cell-
specific conditional mutants could be used to investigate
CXCR4-controlled proliferation following injury, and this
would provide a list of parts in specific cells; even so, we
would still miss mechanistic details such as the interaction
with modifiers, possible feed-forward and feedback loops
and time-dependent signal adaptations like those involving

Rac (93) or oscillatory behaviors like those described for NF-κB
and p53 (94, 95).

CONCLUSION

We have discussed several reports showing that CXCR4 can
control cell proliferation in addition to directing cell retention
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and movement, both in physiological processes, such as
development and tissue regeneration, and in pathological ones,
such as cancer growth. The mechanisms and pathways involved
may be broadly similar in all cases, since regeneration often
recapitulates developmental processes, and cancer often exploits
developmental pathways.

Signal transduction pathways downstream CXCR4 eventually
control both cell movement and cell proliferation, which are
both dependent on PI3K-Akt and mTORC signaling; the details,
however, may vary from cell to cell and in different settings.

So far, the interest has focused on cancer and on drugs that
block CXCR4-initiated signaling; we suggest that small molecules
that activate CXCR4 signaling or can dissect the effects on cell
migration and proliferation may be as useful.
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