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Eyes as the windows into 
cardiovascular disease in the era of big 
data
Yarn Kit Chan1, Ching-Yu Cheng1,2,3,4, Charumathi Sabanayagam1,2*

Abstract:
Cardiovascular disease (CVD) is a major cause of mortality and morbidity worldwide and imposes 
significant socioeconomic burdens, especially with late diagnoses. There is growing evidence of 
strong correlations between ocular images, which are information-dense, and CVD progression. The 
accelerating development of deep learning algorithms (DLAs) is a promising avenue for research into 
CVD biomarker discovery, early CVD diagnosis, and CVD prognostication. We review a selection 
of 17 recent DLAs on the less-explored realm of DL as applied to ocular images to produce CVD 
outcomes, potential challenges in their clinical deployment, and the path forward. The evidence for 
CVD manifestations in ocular images is well documented. Most of the reviewed DLAs analyze retinal 
fundus photographs to predict CV risk factors, in particular hypertension. DLAs can predict age, sex, 
smoking status, alcohol status, body mass index, mortality, myocardial infarction, stroke, chronic 
kidney disease, and hematological disease with significant accuracy. While the cardio-oculomics 
intersection is now burgeoning, very much remain to be explored. The increasing availability of big 
data, computational power, technological literacy, and acceptance all prime this subfield for rapid 
growth. We pinpoint the specific areas of improvement toward ubiquitous clinical deployment: 
increased generalizability, external validation, and universal benchmarking. DLAs capable of 
predicting CVD outcomes from ocular inputs are of great interest and promise to individualized 
precision medicine and efficiency in the provision of health care with yet undetermined real-world 
efficacy with impactful initial results.
Keywords:
Biomarker discovery, cardiovascular disease, cardiovascular risk stratification, deep learning, 
oculomics

Introduction

Big data – data that are high in volume, 
velocity, veracity, and variety[1] – and 

machine learning (ML) hold increasingly 
major roles in health care and research,[2] 
especially so in image‑heavy specialties 
such as radiology, dermatology, and 
ophthalmology.[3] Recent ophthalmologic 
innovations include accurate detection 
of refractive errors, diabetic retinopathy 
(DR),[4‑7] age‑related macular degeneration 
(AMD),[7‑9] and glaucoma,[7,10] using ocular 
images.[7]

Outside of ophthalmology, ML has also 
taken a foothold in the cardiovascular 
system (CVS) research. Cardiovascular 
disease (CVD) is the leading cause of 
death worldwide in 2020[11] and imposes 
significant socioeconomic burdens with its 
high morbidity rate. Most CVD cases and 
deaths have been identified to be caused by 
a small collection of modifiable risk factors 
that vary by the income level of a country, 
such as hypertension (HTN), diabetes, 
cholesterol level, and physical activity 
level.[12] Enabling earlier and more accurate 
screening of these risk factors may prevent 
or positively affect the management and 
outcome of CVD.
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Risk scores (RSs) that approximate CVD risk (for 
example, Framingham RS [FRS],[13] ASCVD risk 
estimator plus, pooled cohort equation [PCE], QRISK3,[14] 
and SCORE2[15]) are significant in the mitigation of 
delayed intervention.[16] However, the modalities they 
require as inputs do not directly measure CV health[17] 
and systematically underestimate risk in certain 
demographics.[18,19] This diagnostic problem is further 
exacerbated: there are no widely accepted biomarkers for 
screening purposes,[20] and the subclinical levels of CVD 
produce attenuated signs that require lower detection 
thresholds. With the rise of precision medicine, physicians 
are increasingly favoring methods that improve 
individualized treatment and outcomes.[3,21,22] Therefore, 
surrogate markers for screening are required to achieve 
reliable early interventions and reduce disease burden.[23]

Herein, we review the eye‑heart connection, CVD outcomes, 
and the subject matter of deep learning (DL). We evaluate 
selected latest peer‑reviewed applications to detail how 
the eyes act as a window into CVD biomarker discovery, 
risk factor stratification, and adverse event prediction. 
The motivation behind our study is on driving this 
interdisciplinary sphere forward by identifying research 
gaps; we, thus, weigh the balance of strengths and challenges 
and recommend further actions based on the evidence.

Methods

We performed a targeted literature search by combining 
keywords from ophthalmology (”ophthalmology,” 
“imaging,” “retinal vasculature,” “oculomics”), 
cardiovascular disease (”cardiovascular,” “disease,” 
“biomarker,” “prediction,” “risk stratification”), and 
artificial intelligence (”deep learning,” “convolutional 
neural network”). We independently combined each 
term with each term from another subset using the 
Boolean operators “AND” and “OR” on MeSH terms and 
all‑field search terms on PubMed, MEDLINE, and Google 
Scholar. Our inclusion criteria were original research 
articles, the perceived high quality of research that 
bridged both specialties, the emphasis on the DL aspect, 
oculomics, and CVD biomarker discovery, risk factor 
estimation, and/or predictive capability. We excluded 
case reports, case series, reviews, surveys, guidelines, 
and statistical models. We defined DL algorithms (DLAs) 
as algorithms that must accept ocular images as input 
and autonomously construct a representation model. All 
papers were available in English and full text only. We 
summarized and discussed the selected studies [Table 1].

The Current State of the Art

Cardio‑oculomics
The eye is a unique and singularly captivating organ. 
Noninvasively, it boasts the only directly observable 

vascular system in the human body: the retinal 
microvasculature, which is promoted as a surrogate 
indicator of CVD.[56] Changes in the shape, color, or 
caliber of the retinal vessels may be associated with ocular 
manifestations of CV health and systemic conditions like 
HTN,[57] or chronic kidney disease (CKD).[58]

Oculomics is an approach integrating big data as retinal 
images with DLAs. Clinical ophthalmology is spoiled for 
choice in imaging. Nonexhaustively, there exists direct, 
indirect, and indirect biomicroscopic ophthalmoscopy, 
ocular photography, retinal fundus photographs/
photography (RFP), fundus autofluorescence, optical 
coherence tomography (OCT),[59,60] and fluorescein or 
OCT angiography (OCT‑A). Of these, RFP and OCT have 
been heavily used in oculomics due to a confluence of 
factors: cost, ease of capture, and information density. 
RFPs are conveniently captured, noninvasive, and 
inexpensive. They provide high‑resolution images of the 
retinal blood vessels, retina, and optic nerve. Changes in 
these areas are significantly associated with CVD risk.[61] 
On the other hand, OCT uses low‑coherence light to 
capture high‑resolution images of ocular morphology. 
A recent review found 94 open‑access ocular datasets, 
with the most common modalities being RFP (54/94) 
and OCT/OCT‑A (18/94).[62] Our review observed the 
same trend with most of the DLAs assessed [Table 1].

Cardiovascular disease outcomes
While there are numerous types of CVDs (https://www.
nhs.uk/conditions/cardiovascular‑disease/, Accessed 
31 January 2023), the major ones targeted by DLA 
appear to be coronary artery disease (characterized 
by atherosclerosis), stroke, ischemic CVD, and 
cardiomyopathies. A recent review lists their ocular 
manifestations.[63] This could be because other CVDs 
lack sufficiently strong retinal manifestations or they 
warrant further investigation. Most of the reviewed 
DLAs target risk factor predictions and biomarker 
discoveries.

Deep learning
ML drives various facets of modern technology, from 
web searches to shopping recommendations and trip 
planning. It is pervasive in everyday devices such as 
smartphones and smart watches and can identify objects 
in images, transcribe speech to text, and monitor personal 
health. However, the capacity of ML techniques to ingest 
and use raw data is limited.

To function, the ML code must explicitly direct the 
algorithm to look for specified solutions (i.e., labels) in 
data that fit certain patterns. The significant degree of 
domain expertise and effort typically required to code 
these labels restricts their application. Researchers have 
developed DL, a newer generation of algorithms, to 
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surmount this problem and are now increasingly using 
them to analyze natural data autonomously [Figure 1].

DL – a more sophisticated subfield of ML – is a 
computational model built on ML that performs data 
representations with multiple levels of abstraction by 
creating artificial neural networks (NNs) and deep 
NNs. A DLA can automatically discover, delineate, and 
extract the features required for pattern recognition (i.e., 
representation learning).[64] It first creates a representation 
layer from raw data, which it uses to create the next 
representation layer at a higher abstraction level without 
requiring features to be explicitly coded for, unlike in 
ML [Figure 2]. This permits end‑to‑end learning on 
complex datasets and the discovery of subtle details that 
likely escape human attention. DLAs have produced 
significantly higher accuracies in several domains and 

key advances in solving problems that have bested ML 
algorithms.

One substantial problem facing the interpretability of 
DLA results is how the results were derived. A saliency 
map is an image highlighting how important each 
pixel of the input image was to a given convolutional 
layer, with the more influential pixels being colored 
brighter, for example. This sheds light on what the DLA 
sought in any input and should correspond to the key 
edges for object detection in the input. This takes the 
form of a heatmap superimposed on the input image, 
with colored pixels concentrated on pixels of interest 
to the DLA [Figure 3]. This visualization technique 
shows which intermediate DLA layers produced which 
patterns to explain the outcome. Some techniques to 
produce saliency maps include the deconvolutional 
network approach,[50] image‑specific class saliency,[65] 
guided backpropagation,[66] and Grad‑Class Activation 
Mapping.[67]

Discussion

We reviewed 17 recent studies that developed 
cardio‑oculomic DLAs that accept ocular images 
to predict CVD outcomes. We summarized the 
study descriptors and key findings in Table 1. Some 
studies generated and discussed saliency maps which 
highlighted the most relevant areas used for predictions. 
We summarized these areas of the eye in Figure 4.

Predicting cardiovascular disease risk
Nusinovici et al. developed a novel DLA (RetiAGE) 
using retinal photographs to measure the biological 
age (BA) that risk stratified into quartiles for 10‑year 

Figure 1: The progression of artificial intelligence. DL is a subset of ML, which 
is a subset of AI. DL uses statistical methods to abstract layers iteratively from 
unfiltered natural data without being explicitly instructed. We show the year of major 
progress in each generation at the bottom. DL: Deep learning, ML: Machine learning, 
AI: artificial intelligence

Figure 2: The workflow of a deep learning system. DL mimics the neuronal structure and is analogous to human learning. We can broadly divide it into the feature extraction 
and classification phases, which are performed unsupervised. Inputs (in blue) are first subsampled to generate feature representations (in red). The initial lower layers (light red) 
recognize basic features in the raw data, such as edges and objects, while the higher layers identify meaningful outputs (dark red). Iterating through this process nonlinearly 
composes sufficient layers to amplify relevant features and suppress irrelevant ones. This design was modeled on the neuronal structure of the human brain and analogous 
to how human learning functions: we learn the structure and laws of the natural world mostly by observation, not by explicit instruction. One aspect of DL that improves on 
previous neural networks is the ability to process hierarchical features to enable accurate feature classification (in red). The multitude of “interneuron” connections represents 
the nonlinear abstractions the model performs. Example eye image from https://commons.wikimedia.org/w/index.php?title = File: A_blue_eye.jpg&oldid=705280508 (accessed 
31 January 2023). DL: Deep learning
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all‑cause mortality, cancer mortality, and CVD mortality 
independent of chronological age and phenotypic 
markers. Compared to patients in the RetiAGE first 
quartile, patients in the RetiAGE fourth quartile had a 
67% higher risk of 10‑year all‑cause mortality (hazard 
ratio [HR] = 1.67 [95% confidence interval [CI] = 1.42–1.95]), 
60% higher risk of cancer mortality (HR = 1.60 [95% 
CI = 1.31–1.96]), and 39% and 18% higher risk of 
CVD and cancer events, respectively (HR = 1.39 [95% 
CI = 1.14–1.69]), all independent of chronological age 
and phenotypic markers. They determined that changes 
in the macula, optic disc margin, and arcade vessels 
were most responsible for the predictions. Nusinovici 
et al. externally validated this against one dataset: 
RetiAGE performance in predicting the probability of 
being ≥65 years old had an excellent result in their 
internal testing set (Korean; area under the receiver 
operating characteristic curve [AUROC] = 0.968 [95% CI 
0.965–0.970]), but a poorer performance in their external 
validation set due to ethnic differences (Caucasian; 
AUROC = 0.756 [95% CI 0.753–0.759]).[48] The main 
benefits of this study are: their novel approach to 
establish BA using retinal photographs (which is 
far less invasive, costly, and time‑consuming versus 
traditional BA biomarkers) and an extension to predict 
CVD‑related mortality and morbidity beyond traditional 
BA biomarkers. The decrease in AUROC in the external 
validation set was mainly attributed to ethnic differences 
and recall bias in the baseline CVD and cancer ground 
truth of the external validation dataset. The limitations 
of this study were the inability to risk stratify based on 
ethnicity and the inability to process poorer quality RFPs, 
which may limit the model’s real‑world performance, 
which usually includes a significant proportion of 
ungradable RFPs.[4]

Zekavat et al. discovered that lower (≥2 standard 
deviation below the mean) fractal branching or 
microvascular density was associated with a higher 
risk of incident mortality (HR, 1.83 [95% CI, 1.39–2.42]), 
stratified by type 2 diabetes mellitus (T2DM) or HTN. 
Lower fractal branching was more strongly correlated 
with incident mortality among patients with T2DM 
or HTN (HR = 1.83 [95% CI = 1.46–2.3]; P = 2.01 × 1−7) 
than those without either comorbidity (HR = 1.29 [95% 
CI, 1.03–1.62]; P = 0.03, Pheterogeneity = 1.36 × 10−20). 
Both findings were adjusted for age, age squared, 
sex, smoking status, and ethnicity. They extended 
their study to guide phenome‑wide association 
studies, genome‑wide association studies (GWAS), 
and Mendelian randomization analyses based on 
DLA findings and identified multiple new potential 
therapeutic targets. The strengths of this study are: DLAs 
may be used to understand retinal microvasculature, 
retinal microvasculature indices may be clinically 
relevant as CVD risk biomarkers, and the genetic origins 
of these indices may be avenues for novel therapies. 
Future cardio‑oculomic studies may consider adopting 
this extension of phenotypic and genotypic analyses. The 
limitations include the possibility of confounders from 
conditions that affect RFP quality (for example, cataracts, 
optical media opacities, and fundus pigmentation), the 
lack of external validation, and the irreproducibility of 
GWAS data due to a paucity of datasets.

Myocardial infarction
Diaz‑Pinto et al. developed a multimodal DLA trained 
on a binary dataset of retinal and cardiovascular 
magnetic resonance (CMR) images to predict future 
myocardial infarction (MI) accurately (area under the 
curve [AUC] = 0.80 ± 0.02, sensitivity = 0.74 ± 0.02, 
and specificity = 0.71 ± 0.03) using only retinal images 
and demographic data, through the left ventricular 
mass and left ventricular end‑diastolic volume, to a 
standard comparable to established CVD risk assessment 
models, externally validated against one dataset. The 

Figure 4: Ocular areas of importance in deep learning predictions of cardiovascular 
disease, risks, and risk factors. Saliency maps generated in the reviewed studies 
highlighted these areas [Table 1]

Figure 3: Example of a simple saliency map. (a) Source image. (b) Saliency map. 
Brightly colored pixels influenced the classification most significantly. The saliency 
map is concentrated on concentric circles that map closely to major edges in the 
source image, starting from the pupil in the middle to the edges of the iris immediately 
surrounding it, the edges of the sclera, and the general contour of the eye. Because 
the pixels in the pupil are the brightest, the pupils are more important in predicting 
the output of this classifier. We generated the saliency map using a convolutional 
neural network that is 19 layers deep pretrained on more than one million images 
from the ImageNet database, the VGG-19 ConvNet,[34] using PyTorch 1.13.1. Example 
eye image from https://commons.wikimedia.org/w/index.php?title=File: A_blue_eye.
jpg&oldid=705280508 (accessed 31 January 2023)

ba
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retinal vessels were the most contributory feature. 
Crucially, the external validation revealed that DLA 
performance improved with lower AMD severity and 
was maximized in the complete absence of AMD, which 
would otherwise have masked salient macula features. 
While they employed a novel approach of a previously 
unused multimodal DLA that jointly learned a latent 
space between RFPs and CMR images,[51] there is room to 
work toward granular stratification of CVD risk in these 
patients as this was a preliminary proof of concept study. 
Diaz‑Pinto et al. acknowledged that the availability of 
multimodal data was the primary limiting factor in their 
study design. This study strongly supports our view that 
there may be many important findings to be discovered 
at the intersection of cardio‑oculomics and that external 
validation may shed light on previously unconsidered 
performance‑impacting factors.

Stroke
Zhu et al. showed that DLA based on RFP alone gives 
estimates comparable to the clinical risk factor‑based 
model (AUC = 0.676 vs. AUC = 0.661, and P = 0.511) in 
stroke prediction based on targeting decreased central 
retinal artery equivalent (CRAE) and arteriolar‑to‑venule 
ratio, and that microvasculature may contain signs of 
ocular end‑organ damage. The authors defined the 
retinal age gap as the retinal age predicted from RFP 
minus chronological age, whereby a positive retinal age 
gap indicated a retina appearing “older” than expected. 
This study is novel in proving the association between 
the retinal age gap and stroke risk. However, the authors 
note that the UKBB training set they used leaned toward 
younger participants, which may limit generalizability in 
the stroke context. Although this study could benefit from 
external validation,[53] it supports the notion that the retina 
is a good window to systemic CVS changes.[68‑70]

Predicting cardiovascular disease risk factors
Several models showed predictive capability over 
the CVD factors of age, sex, smoking, body mass 
index (BMI), and dyslipidemia. The models picked up 
vessel features the most and investigated theCRAE and 
central retinal vein equivalent (CRVE) from a new angle. 
The single CVD most explored was HTN, among a broad 
spectrum of other morbidities [Table 1].

Hypertension, hyperglycemia, and dyslipidemia
Retinal microvascular abnormalities are manifestations 
of accumulative vascular damage from CVD risk factors 
such as HTN and aging.[56,71] Poplin et al. performed an 
early study showing that CVD risk factors of systolic 
blood pressure (SBP; mean absolute error [MAE] 
within 11.23 mmHg), age (MAE within 3.26 years), 
sex (AUROC = 0.97), smoking status (AUROC = 0.71), 
and major adverse cardiac events (MACE) (MACE; 
AUROC = 0.70) are present and accurately quantifiable in 

RFPs alone. The quantifiability of these signals forms the 
largest impact of this work, which was further improved 
when clinical parameters were integrated. However, 
Poplin et al. stopped short of evaluating if their DLA 
could prospectively predict incident CVD from RFP. 
This study was limited to images with a 45° field of 
view and a relatively small training dataset.[24] Dai et al. 
showed the same (AUROC = 0.6506, accuracy = 60.94%, 
specificity = 51.54%, precision = 59.27%, and recall = 70.48%), 
but the performance differed, possibly due to different 
ethnic populations, HTN phenotypes, and limited by 
a smaller training dataset.[30] Both studies produced 
saliency maps that agreed on vessel predominance, 
with Dai et al. emphasizing the arteriole branch points. 
Zhang et al. predicted hyperglycemia (AUROC = 0.880 
and accuracy = 78.7%), HTN (AUROC = 0.766 and 
accuracy = 68.8%), and dyslipidemia (AUROC = 0.703 and 
accuracy = 66.7%) accurately, but could not specify salient 
features. Poplin et al.’s study may have included bias in 
the form of self‑reported smoking status; likewise, Zhang 
et al.’s study may have included bias from self‑reported 
questionnaire results.[44] While Poplin and Dai et al.’s 
works support retinal vessel features being a window to 
CVS health, all three studies may benefit from external 
validation to gauge the extent of the generalizability of 
their novel findings.

Zhang et al. also performed a prospective study 
for  DLA performance  in  T2DM predic t ion, 
achieving excellent results on an external test set for 
metadata‑only (AUROC = 0.796 [95% CI, 0.779–0.814]), 
fundus‑only (AUROC = 0.854 [95% CI, 0.839–0.871]), 
and combined model (AUROC = 0.871 [95% CI, 
0.856–0.885]). Interestingly, they extended their study 
to include images captured through smartphones: 
metadata‑only (AUROC = 0.762 [95% CI, 0.732–0.786]), 
fundus‑only (AUROC = 0.820 [95% CI, 0.788–0.853]), and 
combined model (AUROC = 0.845 [95% CI, 0.822–0.869]), 
which show the robustness of their DLA in using 
suboptimally captured images. Further investigations 
suggested that DLA could detect T2DM through RFP 
before any apparent clinical manifestation of DR and 
that they could quantify the blood glucose levels from 
RFP alone. Saliency maps suggested scattered pixels of 
interest, with some corresponding to classic DR features. 
However, the authors noted that their DLA appeared 
to not rely heavily on the features described by the 
Early Treatment Diabetic Retinopathy Study (ETDRS) 
standards, as it performed comparably in patients 
without ETDRS‑defined DR.[72] They externally validated 
this on two datasets (dataset 1: R2 = 0.481, Pearson’s 
correlation coefficient (PCC) = 0.700, and MAE = 12; 
dataset 2: R2 = 0.327, PCC = 0.577, and MAE = 11.8).[45] This 
study supports the use of DLAs for earlier detection of 
disease, which is especially clinically useful for typically 
silent conditions like CKD (until its late stages).[35,73]
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Predicting subclinical markers
Atherosclerosis
Chang et al., using atherosclerosis as a proxy for 
HTN,[74] accurately predicted atherosclerosis from 
RFP (AUROC = 0.713, sensitivity = 0.583, and 
specificity = 0.891), showing that this prediction is an 
independent predictor of CVD mortality when adjusted 
for the FRS and an independent predictor of CVD 
mortality. Saliency maps showed the predominance of the 
retinal vessels, disc rim, cup‑to‑disc ratio, peripapillary 
atrophy, and cotton‑wool spots. The strengths of this 
study lie in the novelty of predicting atherosclerosis 
using RFPs, the cross‑sectional and longitudinal cohort 
study design, the use of novel over conventional risk 
factors, and the evaluation of concordance estimates 
of cohort analysis. These results were derived from a 
dataset that was skewed toward an older population, 
the DLA showed low accuracy and specificity at the 
designated atherosclerosis threshold, and had inaccuracy 
in estimating sudden CVDs.[39]

Son et al. demonstrated that DLA distinguishes patients 
with varying coronary artery calcium scores (CACS), 
with temporal retinal vasculature and the fovea being 
important features. Performance and distinguishing 
capability saturate at CACS >100, and patients with 
data from both eyes yielded more predictive results 
than patients with data from only one (bilateral RFP 
AUROC = 83.2% [95% CI 80.2%–86.3%], unilateral RFP 
AUROC = 82.3% [95% CI 79.5%–85.0%]). Interestingly, 
RFPs combined with existing patient biodata increased 
the AUROC to nearly 90%, which implied the presence 
of additional information within the RFPs that were 
unrelated to established risk factors. Both Chang and 
Son et al.’s studies were limited to the Asian ethnicity 
and warrant external validation.[42]

Next, Rim et al. developed a novel DLA (RetiCAC) to 
show that RFP can classify CACS, stratify CVD risk, 
and calculate ischemic CVD scores; the first study to 
compare DLA to clinical guidelines. They showed that 
RFP alone was sufficient for CAC prediction, with 
performance comparable to the current computed 
tomography (CT) scans (AUROC = 0.742, [95% CI 
0.732–0.753]). The three‑tier RetiCAC score ranged from 
0 to 1, with a high value suggesting a high probability 
of CAC. DLA showed an incremental prognostic 
performance over the PCE in borderline‑ and 
intermediate‑risk groups. DLA identified hemorrhage 
and cotton‑wool spots as important features.[37] This 
used very different datasets and algorithms from 
Chang et al. and Son et al.’s studies, albeit with similar 
results, suggesting the likelihood of possible common 
biomarker discovery between them.[39] However, it is 
still unknown if RFP can predict future CVD events. 
The strengths of this study include robust external 

validation against four datasets, which greatly 
increased its generalizability.

Cheung et al. developed a novel DLA (SIVA‑DL System) 
that performed similarly to expert graders in measuring 
CRAE and CRVE. This study confirmed previously known 
findings regarding wider CRVE and showed narrower 
CRAE is associated with increased CVD incidents but 
is novel as it employed a DLA quantification strategy 
to revisit CRAE and CRVE. Their multivariable linear 
regression analysis of CVD risk factors (dependent 
variable) and retinal vascular caliber (independent variable) 
includes age (coefficient of determination, R2 0.195–0.212), 
sex (R2 0.063–0.089), mean arterial blood pressure (R2 0.199–
0.201), BMI (R2 0.244–0.251), glycated hemoglobin (HbA1c, 
R2 0.202–0.215), smoking status (R2 = 0.045), and total 
cholesterol (R2 0.067–0.069). The strengths of this study 
comprise large and diverse clinical samples, training on 
images of varying quality and source, a complete DLA 
solution, and robust external validation against multiethnic 
10 datasets.[47]

Later, Tseng et al. built on previous work to validate 
RetiCAC as a marker for CVD (RetiCVD). Using the 
RetiCAC results as ground truth, RetiCVD stratified CVD 
risk in the general population with ≥10% 10‑year CVD 
risk, who are likely to benefit from the preventative CVD 
interventions. Patients with a QRISK3 score between 
7.5% and 10% could use RetiCVD as a risk stratification 
enhancer for identifying high‑risk patients for aggressive 
CVD intervention.[55]

Age and sex
Poplin et al. showed that the macula, optic disc, 
peripapillary area, and large blood vessels in the 
posterior pole were used by their DLA to predict 
age (R2 = 0.74) and sex (R2 = 0.82).[24] Kim et al. later 
proved that DLA‑detectable retinal changes triggered 
by aging, and those affected by systemic vascular 
diseases differ in pathophysiology. Their DLA‑predicted 
age (R2 = 0.92 and MAE = 3.06 years) and sex were 
accurate (AUROC > 0.96). However, their saliency maps 
did not explain which components affected sex and 
age classification.[32] Neither study conducted external 
validation. Rim et al. later concurred that optic disc 
and retinal vessels are biomarkers for age (R2 0.36–0.83 
and MAE 2.43–4.50) and sex (AUROC 0.80–0.96). They 
externally validated this study against four datasets.[37]

Smoking status
Vaghefi  et  al .  accurately predicted smoking 
status (AUROC = 0.86, sensitivity = 62.62%, and 
specificity = 93.87%) from RFPs with saliency maps 
showing retinal vasculature, perivascular region, and 
fovea predominance. This model suffered from low 
sensitivity and was not externally validated.[28]
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Alcohol status
Zhang et al. also predicted alcohol status (AUROC = 0.948 
and accuracy = 0.863), defined as individuals who 
currently consumed alcohol and had >12 drinks in the 
past year with the caveat that the ground truth was based 
on self‑reported drinking history, which may have been 
influenced by recall bias and/or patient candor.[44]

Body mass index
Rim et al. showed that optic discs are biomarkers for 
BMI (R2 0.01–0.17 and MAE 2.15–3.52) and externally 
validated this against four datasets.[37]

Detecting diseases
Chronic kidney disease
Homology between the eye and the kidney suggests that 
microvascular changes that result in the development of 
CKD are mirrored in both organs and that the targeting 
of at‑risk patients may be improved with oculomics.[68]

Sabanayagam et al. used two‑field retinal images 
to predict CKD (defined as glomerular filtration 
rate [eGFR] <60 mL/min per 1.73 m2), highlighting the 
saliency of venule dilatation, vessel rarefaction, and 
retinopathic changes (hybrid DLA for the validation set 
AUROC = 0.928 [95% CI 0.917–0.959], SP2 testing set 
AUROC = 0.733 [95% CI 0.776–0.844], and BES testing 
set AUROC = 0.858 [95% CI 0.794–0.922]). They extended 
the work to show that accounting for RFP images 
and risk factor metadata has comparable predictive 
power for CKD risk assessment (hybrid DLA for DM 
subgroup AUROC = 0.925 [95% CI 0.893–0.957] and 
HTN subgroup AUROC = 0.918 [95% CI 0.794–0.922]).[35] 
Extensions of this study could solidify the use of RFP to 
detect CKD in the community or primary‑care settings. 
This study was limited by the lack of albuminuria ground 
truth, multiple eGFR measurements (for accurate CKD 
classification), and cost‑effectiveness studies.

Zhang et  al.  predicted CKD onset (defined as 
eGFR ≥60 ml/min1 per 1.73 m2 with albuminuria 
or eGFR <60 ml/min per 1.73 m2) from physiologic 
baseline and showed that DLA could make diagnoses 
of early CKD from RFP on an external test set: 
metadata‑only (AUROC = 0.800 [95% CI 0.780–0.824]), 
fundus‑only (AUROC = 0.829 [95% CI, 0.811–0.849]), 
and combined model (AUROC = 0.848 [95% CI, 
0.828–0.869]). Their DLA highlighted the use of the 
optic nerve, vessel branch points, and arterial‑venous 
junctions. Once again, they extended their study 
to include images captured through smartphones: 
metadata‑only (AUROC = 0.817 [95% CI 0.785–0.842]), 
fundus‑only (AUROC = 0.870 [95% CI, 0.847–0.893]), 
and combined model (AUROC = 0.897 [95% CI, 
0.855–0.902]).[45] Both Sabanayagam and Zhang et al.’s 
studies were externally validated against two different 

datasets, but all datasets used comprised Asian 
individuals.

Hematological diseases
Anemia causes ocular hypoxia, resulting in increased 
venous tortuosity, inflammation, and extravascular 
lesions of exudates, hemorrhages, and cotton‑wool spots. 
Zhang et al.[44] showed that hematocrit (AUROC = 0.759 
and accuracy = 0.698) and mean corpuscular 
hemoglobin (MCHC) concentrat ion (MCHC; 
AUROC = 0.686 and accuracy = 0.605) could be predicted 
from RFP, paving the way for future hemato‑oculomic 
studies. This was not externally validated. Rim et al. later 
showed that retinal vessels are biomarkers for hematocrit 
(R2 0.09–0.57, MAE 2.03–2.81) and hemoglobin (R2 
0.06–0.56 and MAE 0.79‑0.98), after externally validating 
their results against four datasets.[37]

These results have shown promise for early DLA 
detection and treatment of diseases that can slow or 
prevent progression to irreversible end‑organ damage 
and/or mortality.

Advantages of deep learning algorithms in health 
care
In clinical practice and implementation, the attractiveness 
of targeting ocular images with DLA in recent years is 
due to noninvasiveness, time savings, cost efficiency, 
and information density.[75] Arguments for safety are 
further compounded by decreased exposure to radiation 
from scans; patient compliance and acceptance may 
also increase for those afraid of undergoing more 
invasive diagnostic modalities. Moreover, inter‑ and 
intraindividual variability in grading is difficult to 
eradicate even when under standardized protocols and 
training, whereas DLA is constant in performance over 
similar datasets.[76] Training and retaining professional 
graders come at a high investment cost, and there are too 
few trained graders in multiple regions worldwide.[77] 
DLA is also faster and always online, which surpasses 
human performance at availability and repetitive tasks.

In research and development, DLAs enable the pickup 
of salient minutiae that may escape the attention of the 
naked eye by operating on a pixel level. Some examples 
are increases in retinal microvasculature stiffness 
and venule alternations associated with high CAC 
accumulation.[42] These new biomarkers and correlations 
may support the generation of novel hypotheses.[49]

Clinical and technical challenges
Several challenges stand in the way of transforming 
cardio‑oculomic DLA from a research‑intensive and 
limited‑access technology to an economic, ubiquitous 
application. Indubitably, no “perfect” software exists, 
and DLAs do not have to overcome all these problems 
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exhaustively. Rather, we propose these as guidelines to 
lead efforts toward the ideal DLA.

Ethics
The real‑world deployment of AI needs to consider ethical 
considerations[78] and be subjected to multidisciplinary 
evaluation.[79] Ting et al. identified three key issues 
surrounding the ethical deployment of AI: model 
transparency, liability arising from DLA use/misuse, 
and scalability.[80] In addition to the points Ting et al. 
discussed, we argue for the need for ethical equity in the 
form of ethnic inclusivity: racial minorities, not presently 
included in training datasets, may result in harm if a 
DLA trained on such datasets is clinically deployed for 
the care of such minorities. We strongly recommend the 
equitable inclusion of all ethnicities in various training 
sets where possible, although we understand that this is 
limited by financial and logistic considerations. Swarm 
learning[81] and federated learning[82,83] may be then used 
to overcome privacy regulations that prevent the sharing 
of certain datasets; these training techniques permit DLA 
training without the sharing of raw data.

Confounders
The presence of other ocular diseases, like AMD, has 
been shown to decrease the predictive capacity of DLA, 
presumably by obliterating the microvasculature signals 
DLAs depend on.[51]

Full‑stack software
There is no full‑stack, end‑to‑end DL model that 
accepts oculomic inputs and generates CVS outputs 
with minimal human interaction. However, the 
development of independent, open‑source, and validated 
segmentation tools for CVS[84] and oculomics[85,86] 
is encouraging [Table 1]. For example, although 
inception‑v3 was not developed for medical image 
recognition initially, it has been successfully used for 
classifying medical images based on transfer learning 
methods,[25,26] which include the classification of RFP.[4,24,27]

Training datasets
Few sufficiently large datasets include both eye and heart 
data for the same individual with both physiological and 
pathological individuals. In the available sufficiently 
large datasets, patient demographics are restricted to a 
specific geography, with authors echoing the need for 
more heterogenous datasets.[24,28]

Other issues include: the datasets for rarer diseases are 
naturally smaller; some CVDs may simply not have any 
biomarker that shows up on common ophthalmological 
imaging modalities; some datasets are limited in 
their imaging field of view, which may restrict the 
generalizability of the results obtained with other fields 
of view.[24]

While problems associated with small datasets might 
be partially mitigated through transfer learning, we 
recommend larger, more heterogenous datasets as the 
optimal solution. However, in generating new datasets, 
researchers may face patient consent and confidentiality 
issues. Data cybersecurity is also a concern: DLA training 
datasets are usually a magnitude of order larger than 
large clinical trials. The datasets must, therefore, be 
aggregated from multiple sources; hence, data security 
risks increase. Swarm and federated learning may also 
alleviate these problems.

External validation
Real‑world performance on heterogenous populations 
has yet to be demonstrated for most models. The 
performance of predictions of different biomarkers such 
as sex, height, body weight, and SBP has been shown to 
differ when applied to samples from different races.[37] 
Due to the overall lack of data sharing in oculomics, most 
existing studies lack robust external validation [10 of 17 
studies in Table 1]. Open access to validation datasets 
persists as a major unaddressed need in cardio‑oculomics. 
Perhaps, the 94 open‑source datasets reviewed by Khan 
et al. could be leveraged for additional validation and 
generalization.[62] Indeed, some studies showed it was 
possible to perform extensive external validation.[46,47]

Result interpretability
Researchers working with DL models sometimes 
struggle to acquire clinically intelligible features.[45] Better 
visualization tools are required to support real‑time 
clinicians’ understanding of variables. This may come 
as more descriptive saliency maps,[28] which would 
also better explain regions deemed to be abnormal or 
substantiate differential diagnoses. However, reliably 
proving causation between the features identified 
by saliency and corresponding CVD predictions is 
complicated, despite the strong anatomical correlations 
between biomarker feature predictions.[28] Ghorbani 
et al. demonstrated that adversarial perturbations 
to input images led to identical outcomes but with 
significantly altered saliency maps,[87] which may 
easily happen in ocular screening due to inter‑ and 
intra‑operator variability. Kindermans et al. showed 
unreliability in certain saliency maps;[88] Adebayo 
et al. showed further inconsistency in the evaluation 
metrics used in generating saliency maps themselves.[89] 
Saliency maps certainly still play important roles, but 
are an intermediate state of affairs until a more reliable 
explanatory tool is engineered.

Benchmarking and real‑world performance
DLAs that have been trained on datasets that had 
poor‑quality images excluded in data processing may 
vary in performance with real‑world data, which is likely 
to have images of variable quality.[37] Similarly, DLAs 
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trained on insufficiently heterogeneous datasets are likely 
to face performance degradation in real‑world settings. 
In a very rare study, Lee et al. performed a head‑to‑head 
comparison of seven DLAs for DR screening and 
concluded that performance varied significantly, calling 
for rigorous testing before clinical deployment.[90]

The difficulty in comparing different DLAs lies in the 
variation in designs, accepted input formats, model 
architectures, and internal performance assessments used 
in different studies, which make universal benchmarks 
and meta‑analyses challenging to perform. The current 
data sharing and medicolegal environment could be 
more conducive for DL research. Under the current 
climate, DLAs are often kept private, which limits the 
irreproducibility of results by independent groups.[47] 
Currently, the gold standard for comparison comes as 
professional graders; however, predicting some targets 
(like age or sex) from retinal photographs is not done in 
clinical practice [Table 1]. Neither has it been shown that 
human prediction of these targets is possible after training.

Clinical deployment
Clinical deployment remains a large hurdle of four 
major parts: medicolegal requirements from authorities, 
sensitivity and specificity in real‑world performance, 
cost‑effectiveness, and practical usage. DLA first needs 
to prove consistently high sensitivity and specificity 
vis‑à‑vis physicians and professional graders. Then, 
cost‑effectiveness would have to be proven to justify 
using DLAs in clinical practice. None of the reviewed 
literature discussed cost or funding models; a further 
head‑to‑head comparison is necessary to derive the 
value per encounter of deploying a DLA to aid a clinical 
practice in the real world.[90] The practical usage of DLA 
should also be as seamless as possible for practitioners.

Patient and physician acceptance
Patients may be unfamiliar with and fear that DLA could 
make mistakes or perform inconsistently. Other social 
factors include technophobia, misinformation, lack of 
digital readiness and acceptance, and digital illiteracy, 
which may be addressed through better dissemination 
of health‑care information.

Cardio‑oculomics DLA bridges specialties; hence, 
DLA results must be sufficiently convincing to enable 
paradigm shifts: will cardiologists or renal physicians 
trust an eye screen enough?

Medical education will need to embrace DLA, just as CT 
scans and magnetic resonance imaging became taught 
in medical curricula, to buttress digital literacy among 
future medical professionals. DLA may also require a 
network of trained engineers to support and optimize 
systems.

Strengths, limitations, and delimitations
This targeted review has presented the latest 
cardio‑oculomics DLAs that discover CVD biomarkers, 
predict CVD risk factors, and/or predict adverse CVD 
outcomes.

We also acknowledge the limitations faced and explain 
the delimitations chosen. For brevity, we opted “no” to 
fulfill the full PRISMA requirements; hence, our review is 
limited relative to a systematic review. It is also delimited 
by English, peer‑reviewed full texts from January 2018 
to January 2023. Given the rapidly growing nature of the 
field, this review may have missed out on research that 
was bleeding edge, did not undergo peer review, or was 
not published in full article form. We further restricted 
the definition of DL to exclude algorithms that required 
manual quantifications and a possible selection bias. 
Because meta‑analyses were impossible (see Methods), 
the findings were discussed and evaluated narratively 
based on key findings, biomarkers and CVD outcomes, 
external validation, and key metrics.

Research gaps and recommendations
We recommend researchers to use large, heterogenous 
datasets where possible to address the issue of 
generalizability, to perform genotypic and phenotypic 
investigations where applicable to better understand the 
pathophysiology of the disease,[49] and to perform more 
real‑world validation, like those performed for subfields 
such as glaucoma and DR screening. Lastly, regulatory 
bodies could focus on developing a medicolegal 
framework and universal benchmarks.

Deep integration
We envision an ideal DLA‑augmented pipeline 
resembling [Figure 5]. A comprehensive DL model 
should extract germane considerations from electronic 
medical records (EMR) such as patient history,[44] 
physical examination, laboratory investigations,[91] and 
socioeconomic status.[92] The commonly performed 
ocular screenings would first be piped into a DLA for 
automated segmentation and identification of features 
with the production of saliency maps to guide physician 
advice. A second DLA integrates the multifactorial input 
to stratify risk and outputs intervention advice. This 
pipeline may increase the granularity of individualized 
precision medicine by accounting for minute details in 
the entire patient encounter and improve health‑care 
outcomes by optimizing intervention.

Unrealized advantages of deep learning algorithms in 
health care
We envision that once optimized, high‑throughput cost 
savings can be obtained with economies of scale since 
imaging hardware is already in place, and screening 
data are routinely captured at the community level. 
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Figure 5: Proposed deep learning algorithm‑powered clinical pathway. The automated DL segmentation pipeline accepts inputs from ocular screening centers and generates 
statistics based solely on ocular data. The added value comes from integrating the multifactorial input with patient history and physical examination from physicians, weighed 
by the deep learning algorithm, to yield multifactorial risk stratification and early intervention in cardiovascular disease. DL: Deep learning

Eventually, CVD risk, risk factors, subclinical markers, 
and associated diseases could be detected early from 
ocular imaging available in every optician and eye 
clinic. Further, EMR‑integrated DLAs may augment 
high‑throughput analysis pipelines in areas with high 
population densities. Conversely, a streamlined DLA 
loaded onto a mobile workstation may extend specialty 
care into areas with low health‑care access.[93]

Conclusions

The eye is a well‑defined, information‑rich, noninvasively 
accessible portal into CVD insights – well‑exploitable with 
the current advances in ocular imaging, computational 
processing, and digital network traffic. Aptly, clinical 
medicine and patient needs are headed, where DLAs 
are likely to come in exceptionally effective owing 
to the increasing number of factors accounted for in 
clinical practice. This is especially so when combining 
information‑rich imaging modalities with the analytical 
power of DLAs to redefine what the eye can reveal about 
CVD.

This review of selected DLAs showed the development 
of very different DLA strategies and primary datasets to 
arrive at four major types of predictions: first, predicting 
CVD risks of MI and stroke, second, predicting CVD risk 
factors of HTN, third, predicting subclinical markers of 
atherosclerosis, age, sex, smoking status, alcohol status, 
and BMI, and fourth, detecting renal and hematological 
diseases.

The studies strongly support the notion that 
cardio‑oculomics is relatively unexplored but holds 
great potential in early disease detection, prediction, and 
screening.[35,44,45,48,51] Further common strengths include that 
external validation reliably: is crucial to generalizability, 

can aid the discovery of performance‑changing parameters, 
and decreases performance due to ethnic[48] or age[53] 
differences in underlying datasets. Different DLAs appear 
to detect common features even in different datasets, 
suggesting the possibility of universal markers.[39,42,46] In 
some instances, combining binocular images with patient 
metadata (for example, age, sex, and HTN) increased 
AUROC.[42] The studies also showed a clear preference 
in RFPs as a modality [Table 1]. Common limitations 
include the lack of relevant datasets,[49] lack of external 
validation,[24,30,39] difficulty in dataset sharing,[47] and 
limiting input data to only high‑quality images or certain 
fields of view.[24]

On a broader note, while the breadth of strategies 
observed is extremely encouraging in spirit, it exacerbates 
the problem of benchmarking and objective evaluation 
with physicians and professional graders being the 
closest to universal standards, necessitating better‑shared 
datasets and the development of universal criteria. 
Lastly, relatively less‑explored CVDs (i.e., left ventricular 
hypertrophy) merit more investigation.

We believe the further development and optimization 
of interdisciplinary DLAs will improve individualized 
patient outcomes and medical resource allocations. While 
the unaddressed challenges cloud its real‑world utility, 
DL as applied to cardio‑oculomics risk profiling remains 
exciting, disruptive, and likely impactful.
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