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Machine Learning-based Texture Analysis of Contrast-enhanced  
MR Imaging to Differentiate between Glioblastoma and  

Primary Central Nervous System Lymphoma

Akira Kunimatsu1,2*, Natsuko Kunimatsu3, Koichiro Yasaka1,2, Hiroyuki Akai1,2,  
Kouhei Kamiya2, Takeyuki Watadani4, Harushi Mori5, and Osamu Abe5

Purpose: Although advanced MRI techniques are increasingly available, imaging differentiation 
between glioblastoma and primary central nervous system lymphoma (PCNSL) is sometimes confusing. 
We aimed to evaluate the performance of image classification by support vector machine, a method of 
traditional machine learning, using texture features computed from contrast-enhanced T1-weighted 
images.
Methods: This retrospective study on preoperative brain tumor MRI included 76 consecutives, initially 
treated patients with glioblastoma (n = 55) or PCNSL (n = 21) from one institution, consisting of independent 
training group (n = 60: 44 glioblastomas and 16 PCNSLs) and test group (n = 16: 11 glioblastomas and  
5 PCNSLs) sequentially separated by time periods. A total set of 67 texture features was computed on routine 
contrast-enhanced T1-weighted images of the training group, and the top four most discriminating features 
were selected as input variables to train support vector machine classifiers. These features were then evaluated 
on the test group with subsequent image classification.
Results: The area under the receiver operating characteristic curves on the training data was calculated  
at 0.99 (95% confidence interval [CI]: 0.96–1.00) for the classifier with a Gaussian kernel and 0.87 (95%  
CI: 0.77–0.95) for the classifier with a linear kernel. On the test data, both of the classifiers showed prediction 
accuracy of 75% (12/16) of the test images.
Conclusions: Although further improvement is needed, our preliminary results suggest that machine learning-
based image classification may provide complementary diagnostic information on routine brain MRI.
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Introduction
Glioblastoma is the most common malignant brain tumor in 
adults, and accounts for approximately 15% of all primary 
brain tumors.1,2 Primary central nervous system lymphoma 

(PCNSL) is an uncommon form of extra-nodal non-Hodgkin’s 
lymphoma that is confined to the central nervous system, and 
it constitutes 2–3.1% of all primary brain neoplasms.2–4 Glio-
blastoma and PCNSL share some common clinical features: 
they preferentially affect middle-aged or older patients with a 
slight male predominance, and the progression of symptoms 
can be very rapid. However, treatment strategies are substan-
tially different between glioblastoma and PCNSL. For glio-
blastoma patients, maximal tumor resection followed by 
chemo-radiotherapy with temozolomide is the current standard 
for treatment,5 whereas for all patients with findings sugges-
tive of PCNSL, a stereotactic biopsy followed by metho-
trexate-based chemotherapy is indicated.4 Therefore, 
preoperative differentiation of glioblastoma and PCNSL is of 
high clinical relevance.6

Preoperative MRI for a brain tumor usually includes 
contrast-enhanced T1-weighted images. Glioblastoma typ-
ically exhibits heterogeneous enhancement with central 
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necrosis, which results in irregular ring-like enhancement 
patterns on contrast-enhanced T1-weighted images. In con-
trast, PCNSL arising in immunocompetent patients typi-
cally appears as a homogeneously enhancing tumor on 
contrast-enhanced T1-weighted images.7,8 However, these 
well-known imaging patterns are not reliable in some rare 
occasions where homogeneously enhancing glioblastoma 
without visible necrosis or PCNSL with visible necrosis  
is present.

Machine learning comprises a broad class of statistical 
analysis algorithms that iteratively improve in response to 
training data to build models for autonomous predictions.9 
Rapidly developing computer vision technology uses 
machine learning in object detection, localization, and clas-
sification on a large amount of digital images.10 Machine 
learning can be applied to medical images as well, attracting 
increasing interest in the field of radiology. Since such 
machines have very recently demonstrated the capability to 
learn and even master tasks that were thought to be too com-
plex for machines, machine learning is now considered to be 
a potentially useful component of computer-aided diagnosis 
and decision support systems.10,11

A few previous studies reported accuracy of support 
vector machine (SVM) classification between glioblastoma 
and PCNSL, based on textural features of MR images.12–14 
However, these studies performed cross-validation of a clas-
sifier model within a single training dataset but lacked 
external validation or testing with an independent dataset. 
Beyond the standard practice of internal validation, one 
method of which is cross-validation, testing a model with a 
dataset independent from a training dataset would be benefi-
cial to assess generalizability of the model.15 The purpose of 

the present study was to evaluate the feasibility of machine 
learning-based differentiation between glioblastoma and 
PCNSL, using contrast-enhanced T1-weighted image data, 
with independent training and test datasets on a potential 
clinical scenario.

Materials and Methods
Ethics statement
This retrospective study was approved by the local ethics 
committee and informed consent was waived.

Study population
The study population consisted of two independent patient 
groups: the training group and the test group. As described 
below, the training image data were obtained from the 
training group and the test image data were obtained from the 
test group respectively. All patients were enrolled at one 
single institution.

The training group in the present study was comprised of 
the patients studied in our previous study,16 and here we 
briefly describe how to enroll patients in the training group. 
We first performed a text search on our radiology report  
database up to August 2015. The search criteria were:  
1) Untreated (i.e., not recurrent) case of pathologically 
proven glioblastoma or PCNSL, and 2) contrast-enhanced 
brain MR imaging performed on a 3T unit with the brain 
tumor imaging protocol at our institution before surgical 
resection or biopsy (Fig. 1). Fifty-one consecutive patients 
with glioblastoma and 16 consecutive patients with PCNSL,  
from December 2006 through August 2015, fulfilled these 
inclusion criteria. All of the PCNSL were diffuse large  

Training group  

 (Search on database from Dec. 

2006 to Aug. 2015) 

51 glioblastomas 

16 PCNSLs 

44 glioblastomas 

16 PCNSLs 

Search keywords: 

“Glioblastoma OR PCNSL” 

AND “pathologically proven” 

AND “preoperative MRI with 

our 3T brain tumor protocol” 

NOT “recurrence” 

7 glioblastomas excluded: 

� Motion artifacts (n=5) 

� Non-enhancing tumor 

(n=1) 

� Protocol violation (n=1) 

Test group 

 (Search on database from 

Sept. 2015 to May 2017) 

13 glioblastomas 

5 PCNSLs 

11 glioblastomas 

5 PCNSLs 

Search keywords: 

“Glioblastoma OR PCNSL” 

AND “pathologically proven” 

AND “preoperative MRI with 

our 3T brain tumor protocol” 

NOT “recurrence” 

2 glioblastomas excluded: 

� Non-enhancing tumor 

(n=1) 

� History of biopsy (n=1) 

Fig. 1 Flow chart of subject enrollment for the training and the test groups. PCNSL, primary central nervous system lymphoma.
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B-cell subtype that developed in immunocompetent patients. 
Neither adult immunodeficiency syndrome-related nor 
Epstein–Barr virus-related lymphoma was included in our 
cases.17 Histological diagnosis was made by experienced 
pathologists at our institution and was obtained from the 
medical records. Seven of the 51 patients with glioblastoma 
were excluded due to presence of motion artifacts (n = 5), 
non-enhancing tumor (n = 1), and protocol violation (n = 1) 
on MR imaging. Finally, 44 glioblastoma patients (30 men 
and 14 women; mean age: 61.5 years, range 26–81) and 16 
PCNSL patients (13 men and 3 women, mean age: 60.6 
years, range 42–75) were designated as the training group 
(Table 1).

In the present study, we additionally enrolled patients 
who presented to our hospital more recently than the patients 
in the training group. The second text search on our radi-
ology report database was performed with the same search 
criteria but on a more recent search period (from September 
2015 through May 2017) such that the test image data 
obtained from the test group could be “unseen” data to an 
established image classifier (Fig. 1). This scenario can realis-
tically happen in clinical practice where newly incoming 
data are evaluated with already existing decision criteria. 
Thirteen consecutive patients with glioblastoma and 5 con-
secutive patients with PCNSL newly diagnosed in that period 
fulfilled the criteria, but two glioblastoma patients were 
excluded because of the presence of a non-enhancing tumor 
(n = 1) and a history of a previous biopsy at the referring 
hospital (n = 1). Finally, 11 glioblastoma patients (6 men and 
5 women; mean age: 58.7 years, range 38–75) and 5 PCNSL 
patients (2 men and 3 women: mean age: 74.8 years, range 
61–81) were designated as the test group (Table 1). The ratio 
of the number of patients in the training group over the test 
group resulted in approximately four to one.

MR imaging
Using the picture archiving and communication system of our 
institution, post-contrast trans-axial spin-echo T1-weighted 
images were retrieved from MR images obtained with the 

brain tumor protocol for 3T. All MR images were obtained 
on 3T scanners (Singa HDx and HDxt after system upgrade, 
GE Healthcare, WI, USA, and Magnetom Skyra, Siemens, 
Erlangen, Germany) with the following imaging parameters: 
TR/TE (ms) = 400/9-12 (Signa HDx and HDxt) or 406-466/9 
(Skyra), FOV = 21.0 cm, matrix = 256 × 256, slice thickness 
= 5 mm, interslice gap = 1 mm, number of excitations = 1. 
All patients received intravenous injection of a gadolinium-
based contrast agent at the rate of 0.1 mmol/kg of body 
weight.

Feature extraction and development of a classifier 
with the training data
For image post-processing and statistical analyses, we used 
image processing software (ImageJ 1.48, National Institute 
of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij), 
numerical analysis software (Matlab 2017a, The MathWorks, 
Natick, MA, USA), and statistical computing and graphics 
software (R 3.1.2, The R Foundation for Statistical Com-
puting, Vienna, Austria, https://cran.r-project.org/). We used 
a computer containing two Intel Xeon E5-2609 2.4-GHz  
processors (Intel, Santa Clara, CA, USA) as the central  
processing unit (CPU), 2 TB of hard disk space and 32 GB  
of random access memory. Most of calculations in the fol-
lowing analyses took less than several minutes with the CPU.

A series of post-processing procedures to build a classi-
fier on the training image data included: 1) Image feature 
extraction, 2) image feature selection, and 3) training and 
cross-validation (Fig. 2). We had already performed the first 
(image feature extraction) and the second (feature selection) 
processes in our previous study,16 and therefore, we delivered 
the results of our previous study to the third process (training 
and cross-validation) in the present study. Here we provide a 
brief description on the entire process.

First, a post-contrast T1-weighted image that harbored 
the largest contrast-enhancing lesion was selected for each 
case and the digital imaging and communication in medicine 
images were converted to 8-bit tagged image file format 
images with ImageJ, along with linearly scaling from min-
imum to maximum intensity between 0 and 255. Subse-
quently, a rectangular ROI was carefully placed within the 
enhancing lesion as large as possible but not to include sur-
rounding brain tissue outside the enhancing lesion (Fig. 3), 
by two independent radiologists (both with more than 20 
years of experience in neuroradiology), and all voxel values 
within the ROI were recorded as a matrix-style variable 
using the Matlab platform.

A total of 67 radiomic texture features, provided with the 
“radiomics” package of the R software,18 were extracted 
from the matrices and Z-score transformation was performed 
per feature. These features included first-order texture fea-
tures and second- or higher order features calculated with 
gray-level co-occurrence matrix, gray-level run length matrix 
(GLRLM), gray-level size zone matrix, and multiple gray-
level size zone matrix.

Table 1 Summary of the study population

Characteristic

Total number of patients (n = 76)

Training group (n = 60) Test group (n = 16)

Glioblastoma PCNSL Glioblastoma PCNSL

No. of 
patients

44 16 11 5

Women 14 3 5 3

Men 30 13 6 2

Mean age 
(years)

61.5 60.6 58.7 74.8

Age range 
(years)

26–81 42–75 38–75 61–81

PCNSL, primary central nervous system lymphoma.
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or Gaussian (classifier-G) kernels, respectively.25 The 
training dataset fulfilled the minimal sample size reported in 
the literature.26 The sequential minimal optimization algo-
rithm, a standard reported method,25 was used in training. 
Leave-one-out cross-validation, which is widely used in 
machine learning studies and can provide a uniquely deter-
mined value for cross-validation, was performed to estimate 
the accuracy of each classifier model.27,28 It is well known 
that the leave-one-out cross-validation provides an almost 
unbiased estimate of the accuracy of a classifier model.29

Feature selection was the second step. Interobserver 
reproducibility on the extracted features was assessed using 
the intraclass correlation coefficient of the two-way random 
model with the “psych” package of the R software, after the 
Kolmogrov–Smirnov test for normality.19 An intraclass cor-
relation coefficient of greater than 0.70 was considered reli-
able according to the literature,20,21 and 28 features with 
coefficients above 0.70 were included after averaging. Prin-
cipal component analysis, a standard method for feature 
dimension reduction,22 was subsequently performed with the 
Matlab platform for feature selection and principal compo-
nents were selected such that cumulative percentage contri-
bution exceeded 80%. According to our previous study,16 
four features were selected: first-order entropy, first-order 
median, GLRLM run length non- uniformity, and GLRLM 
run percentage. The rationale for feature dimension reduc-
tion was to avoid overtraining. In the present study, the 
training data with 60 samples and four features satisfied the 
provoked sample-per-feature ratio of at least 5 to 10.23

The third step was training and cross-validation of a clas-
sifier, which was implemented in the Matlab platform. Prior to 
the present study, we preliminary tested classification perfor-
mance of four common classification algorithms (k-nearest 
neighbor, decision tree, discriminant analysis, and SVM)11 
on the training data with sixfold cross-validation, using the 
classification learner application implemented in the Matlab. 
The sixfold split was deduced from the Sturges’ formula.24 
We found that SVM showed the highest performance among 
the four algorithms and we developed two typical SVM clas-
sifier models, with the above-mentioned four selected texture 
features as the input variables, based on linear (classifier-L) 

Feature extraction

Feature selection: PCA

Training data
(Cases from Dec. 2006 to Aug. 2015)

44 glioblastomas

16 PCNSLs

1 2 3 4

Training SVM

Cross-validation

Extraction of known 

discriminating features

Test data
(Cases from Sept. 2015 to May 2017)

11 glioblastomas

5 PCNSLs

1 2 3 4

Image

classification

Successful

Failed

Probability > 0.5

Probability ≤ 0.5

Fig. 2 Flow chart of classifier development with the training data and subsequent classification on the test data. PCA, principal component 
analysis; PCNSL, primary central nervous system lymphoma; SVM, support vector machine.

Fig. 3 Example of region of interest placement on the contrast- 
enhanced T1-weighted image of a 43-year-old man subsequently 
diagnosed with glioblastoma. A rectangular region of interest is 
placed within the enhancing tumor region.
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Statistical analysis
Statistical analysis was performed on the diagnostic perfor-
mance of the classifiers across kernels. Four features (first-
order entropy, first-order median, GLRLM run length 
non-uniformity, and GLRLM run percentage) were used as 
the explanatory (or input) variables of the classifier models 
and the responses were recorded on the training data. The 
performance metric was an area under the curve (AUC) of 
the receiver operating characteristic (ROC) analysis. The 
value of AUC with 95% confidence interval (CI) was 
obtained on each classifier using the “pROC” package of 
the R software.30

Classification of the test data
Feature extraction was similarly performed on the test image 
data as was done in the training process. Z-scores were calcu-
lated using the mean and the standard deviation values 
obtained in the training process for each of the four features. 
As described above, this followed a realistic scenario in clin-
ical practice where an established classifier is applied to the 
next incoming data. The capability of binary classification of 
the test image data was estimated on each of the two classi-
fiers supposing the four texture features as input variables, 
and the results were expressed as the posterior probability  
of the predicted classification for glioblastoma or PCNSL 
(Fig. 2). The posterior probability means the probability with 
which an observation (i.e. a given image) represents a par-
ticular disease (glioblastoma or PCNSL) in the context of the 
present study.

Results
Cross-validation and ROC curve analysis of the 
classifiers
The results are summarized in Table 2. Leave-one-out cross-
validation demonstrated overall accuracies of 0.70 for the 
classifier-L and 0.80 for the classifier-G, respectively. When 
subdivided into glioblastoma and PCNSL, accuracies of 0.66 
and 0.82 were calculated for glioblastoma, and accuracies of 
0.81 and 0.75 for PCNSL, with the classifiers-L and -G, 
respectively. In Fig. 4, the classifiers-G and -L had the AUC 
values (95% CI) of 0.99 (0.96–1.00) and 0.87 (0.77–0.95), 
respectively.

Classification of the test data
Figure 5 demonstrates the posterior probability in assigning 
the feature vector data calculated from a given test image into 
the correct pathological diagnosis (i.e., putting a label of glio-
blastoma on an unseen glioblastoma image or a label of 
PCNSL on an unseen PCNSL image) by each of the classifier 
models. The median posterior probability (1st–3rd quartile) 
was 0.82 (0.59–0.96) for the classifier-L and 0.87 (0.50–0.96) 
for the classifier-G. When using a standard decision criterion 
in which the posterior probability above 0.50 indicated correct 
or successful classification in our binary classification scheme, 
both of the classifiers yielded prediction accuracy of 75% 
(12/16) of the test data. As for glioblastoma or PCNSL, glio-
blastoma was correctly assigned in 10 out of 11 cases by the 
classifier-G and 9 out of 11 cases by the classifier-L. PCNSL 
was correctly assigned in 3 out of 5 cases by the classifier-L 
and 2 out of 5 cases by the classifier-G (Figs. 5 and 6).

Discussion
Even today, in the midst of imaging technology advancement, 
differential diagnosis between glioblastoma and PCNSL by 
conventional MR findings remains challenging in some cases. 
In the present study, we evaluated the feasibility of SVM-
based classification approaches, commonly used in machine 
learning, for differentiation of glioblastoma from PCNSL. Our 
results demonstrated that standard SVM-based classifiers, 
trained with contrast-enhanced T1-weighted images, gave an 
accuracy of up to 0.80 in the cross-validation and an AUC 
value of up to 0.99 in the ROC curve analysis.

A strength of our study is that we used contrast-enhanced 
T1-weighted images alone, which is generally included in 
conventional MR examination protocols for brain tumor 
evaluation. Recent studies focused on the usefulness of 
advanced MR imaging for differentiation between glioblas-
toma and PCNSL, including quantitative diffusion-weighted, 
perfusion-weighted, and susceptibility-weighted imaging, or 
multiparametric combinations.6,31–33 However, advanced MR 
imaging techniques may not be necessarily available in every 
institution depending on the capability of MR scanners or to 
avoid a long or prolonged total scanning time. In contrast, 
contrast-enhanced T1-weighted imaging is often performed 
for imaging diagnosis of cerebral mass lesions.

Table 2 Results of cross-validation and ROC curve analysis of SVM-based classifiers

Cross-validation ROC curve analysis

Accuracy
AUC (95% CI)

Glioblastoma PCNSL Overall

Classifier-L 0.66 0.81 0.70 0.87 (0.77–0.95)

Classifier-G 0.82 0.75 0.80 0.99 (0.96–1.00)

AUC, area under the curve; CI, confidence interval; Classifier-L, the classifier with linear kernel; 
Classifier-G, the classifier with Gaussian kernel; PCNSL, primary central nervous system lymphoma; 
ROC, receiver operating characteristic; SVM, support vector machine.
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and our results appear to be similar with their findings of 
classifier performance. In addition, our ROC curve analysis 
revealed AUC values of 0.99 in classifier-G and of 0.87 in 
classifier-L. AUC values around 0.80 were reported in a 
recent publication by Tiwari et al.36 for differentiation 
between radionecrosis and recurrent brain tumor using  
MR image-derived texture features and SVMs. Another 
SVM-based MR image classification study conducted by 
Alcaide-Leon et al.12 reported the AUC value of 0.88 for dif-
ferentiation between enhancing glioma and PCNSL. These 
previous studies reinforce our results suggesting that a  
SVM-based classification scheme may be feasible for differ-
entiating glioblastoma from PCNSL.

Machine learning studies in the field of medicine often 
report prediction accuracy estimated from cross-validation but 
less often report prediction results with “real-world” testing.11 
Cross-validation likely yields optimistic results,37 and it is 
encouraged to perform a validation test, after cross-validation, 
using an independent dataset. The testing process is conducted 
to check a bias, and high performance on the test process sug-
gests that a developed model can be generalizable. However, 
no testing process was conducted in the previous studies.12–14 
In addition, we separated subjects into the training data and the 
test data in a time-course to allow a realistic clinical scenario 
where newly incoming data should be evaluated with a classi-
fier obtained beforehand. Although, there may be concern 
about a historical control bias when patient groups are sepa-
rated by the examination time, our study enrolled consecutive 
patients who had been studied with the uniformed MR imaging 
protocols on 3T scanners at the particular institution; there-
fore, we consider that data instability or bias was minimized.

We presented the results of the prediction on the test data 
using the posterior probability (Fig. 5). When we conven-
tionally assumed that the class of input data should be 
assigned to the class with the largest posterior probability 
(i.e. the posterior probability above 0.50 in the binary clas-
sification), the classifier models in the present study excel-
lently identified unseen images in glioblastoma cases, but 
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Fig. 4 The receiver operating characteristic (ROC) curves for the 
diagnostic performance of support vector machine (SVM) classifiers 
on the training data. The area under the curve (AUC) values (95% 
confidence interval [CI]) were 0.87 (0.77–0.95) and 0.99 (0.96–
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tively. Classifier-L, the classifier with linear kernel; Classifier-G, the 
classifier with Gaussian kernel.
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Fig. 5 Bar graphs representing the 
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(prediction) on the test data. Results 
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fier. Classifier-L, the classifier with lin-
ear kernel; Classifier-G, the classifier 
with Gaussian kernel; PCNSL, primary  
central nervous system lymphoma.

In this study, the classifiers obtained with a typical SVM 
algorithm demonstrated an overall accuracy of 0.80 in leave-
one-out cross-validation. A classifier model with high accu-
racy is expected to be applicable to predicting data in the 
future. In contrast, the AUC is commonly used as a summary 
measure of the diagnostic performance of a classifier.34  
A recent study by Rodriguez Gutierrez et al.35 on SVM-based 
classification of three posterior fossa tumors reported aver-
aged classification accuracy of 0.76–0.79, using contrast-
enhanced T1-weighted image histogram features. Overall 
accuracies of the classifier-G in our study reached 0.80,  
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moderately in PCNSL cases. This may be attributable to the 
low and unbalanced number of PCNSL cases compared with 
glioblastoma cases in the training data. To cope with a class 
imbalance that can adversely impact the performance of a 
classifier, oversampling, including resampling, is advocated 
as a potential solution,38 but some controversies exist on the 
effects of oversampling.34 Moreover, the SVM-based classi-
fiers in our study demonstrated accuracies of 0.66–0.82 for 
glioblastoma and 0.75–0.81 for PCNSL in cross-validation 
of the training data; the performance of the classifiers seemed 
to be similar regardless of the tumor type (Table 2). It is 
unclear whether the addition of oversampling in our SVM-
classification scheme can improve the prediction perfor-
mance with newly incoming or independent data, as it is 
beyond the scope of the present study.

Image classification tasks with supervised machine 
learning typically include feature extraction and classifica-
tion (or output). In the present study, texture analysis was 
used to extract image features and SVM was used to classify 
given image features. Image features with known image 
classes (i.e. the training data) were fed to classifiers, and the 
classifiers were trained with SVM so as to be applicable to 
the test data. We used four texture features in the present 
study (first-order entropy, first-order median, GLRLM run 
length non-uniformity, and GLRLM run percentage). The 
former two are histogram features and the latter two are 
GLRLM features. GLRLM features can evaluate the coarse-
ness of a texture in a predetermined direction within an 
image or within a ROI.22 On the other hand, SVM is a 
learning system that uses a hypothesis space of linear func-
tions in a high dimensional feature space. In SVM, classi-
fiers are trained with a learning algorithm from optimization 
theory that implements minimization of a learning bias.25 
Support vector machine is a traditional but sophisticated 
technique that is still in use in machine learning studies.28

However, very recently, deep learning has started to be 
used in image recognition.10 Deep learning, also known as 

deep neural network learning, has the benefit of not requiring 
image feature extraction as a first step, rather, features are 
autonomously identified by computer during the learning 
process.11 Application of deep learning to the field of  
medical imaging will be rapidly encouraged. Recently, 
Yasaka et al.39 reported that the median accuracy of classifi-
cation of liver masses were 0.84 and the median AUC value 
for differentiating malignant from non-malignant categories 
was 0.92 using a deep convolutional neural network on liver 
CT images.39 However, deep learning typically requires tens 
of thousands of images and this can be one of the biggest 
issues to utilize it in clinical practice where the number of 
patients with a rare disease is rather small. In contrast, SVM 
can be applied to a dataset even with a relatively small 
sample size.26,35,36

Our study has several limitations. First, this was a retro-
spective feasibility study with a small number of patients at 
a single institution, which may have led to bias in patient 
selection. We enrolled 55 glioblastoma patients and 21 
PCNSL patients in the present study, and the numbers of 
each tumor seemed to follow the naturally-observed, higher 
incidence of glioblastoma over PCNSL.2 In addition, we 
enrolled consecutive patients studied with the uniformed 
MR imaging protocols on 3T scanners; therefore, data insta-
bility or bias derived from MR scanners and protocols could 
be minimized. Second, we did not make a head-to-head 
comparison between results with SVM classifiers and diag-
nosis with radiologists. However, one previous study sug-
gests that non-inferiority of our SVM-based classification 
accuracy to that of radiologists, as comparable AUC values 
were observed in the present study.12 It remains undeter-
mined whether machine learning, especially deep learning, 
can build a classifier with better diagnostic performance 
than that of experienced radiologists. Future work is needed 
to explore the added value of machine learning-based  
classification in clinical practice. Third, a considerable 
amount of our pathological diagnoses was made based on 

Fig. 6 Representative cases of image 
classification. (a) Contrast-enhanced 
T1-weighted image of a 65-year-old 
man with glioblastoma in the left 
temporal lobe (glioblastoma3 in Fig. 
5). Classifiers-G and -L assigned this 
image into glioblastoma. (b) Contrast-
enhanced T1-weighted image of a  
81-year-old man with primary central  
nervous system lymphoma (PCNSL) 
affecting the right basal ganglia 
and deep white matter (PCNSL4 
in Fig. 5). This image was classi-
fied as PCNSL by both classifiers. 
Classifier-L, the classifier with linear 
kernel; Classifier-G, the classifier 
with Gaussian kernel.

a b
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conventional histology before the World Health Organiza-
tion classification was revised, adopting the integrated 
molecular- histological diagnosis in 2016.1 Forth, we focused 
on the classification between glioblastoma and PCNSL,  
and therefore, the classifiers developed in the present study 
should not be used in the classification between other 
tumors. In addition, we used accuracy to estimate prediction 
performance of the test data, but it is known that accuracy 
depends on the incidence of a disease (i.e. pretest  
probability).11 Moreover, because of the small sample size 
of test patients, the prediction accuracy in the present study 
is vulnerable to a selection bias. A further study with a larger 
sample size is needed to conclude the generalizable  
accuracy. Finally, we did not use other MR images than 
contrast-enhanced T1-weighted images in the present study. 
It remains unclear whether machine learning works best 
with contrast-enhanced T1-weighted images. The rationale 
for the use of contrast-enhanced T1-weighted images was 
clear delineation of tumor boundaries and high visibility  
of necrosis. Necrosis is a pathological hallmark of glio-
blastoma,40 compared with PCNSL. Combined use of T2- 
weighted or other MR sequences may enable better classifi-
cation performance; however, this was beyond the scope of 
the present study.

Conclusion
In this feasibility study, we evaluated the performance of 
SVM-based classification, by using radiomic texture features 
computed from routine contrast-enhanced T1-weighted 
images, on a training group and an independent test group 
from a single institution. Now that more powerful deep 
learning has started to be used in medical image recognition, 
machine learning is expected to facilitate laborious radiology 
practice. Although further improvement is needed, our results 
suggest that machine learning may provide complementary 
diagnostic information on routine MRI.

Disclosure Statement
A. Kunimatsu has received scholarship/donation from 
Daiichi- Sankyo Co. Ltd.; all of the other authors have no 
conflicts of interest.

References
 1. International Agency for Research on Cancer. WHO 

classification of tumours of the central nervous system 
(World health organization classification of tumours)  
Revised 4th ed. Louis DN, Ohgaki H, Wiestler OD, 
Cavenee WK eds. Lyon, France: IARC Publications; 2016.

 2. Ostrom QT, Gittleman H, Fulop J, et al. CBTRUS statistical 
report: primary brain and central nervous system tumors 
diagnosed in the United States in 2008-2012. Neuro 
Oncol 2015; 17 Suppl 4: iv1–iv62.

 3. Batchelor T, Loeffler JS. Primary CNS lymphoma. J Clin 
Oncol 2006; 24:1281–1288.

 4. Hochberg FH, Baehring JM, Hochberg EP. Primary CNS 
lymphoma. Nat Clin Pract Neurol 2007; 3:24–35.

 5. Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy 
plus concomitant and adjuvant temozolomide for 
glioblastoma. N Engl J Med 2005; 352:987–996.

 6. Kickingereder P, Wiestler B, Sahm F, et al. Primary central 
nervous system lymphoma and atypical glioblastoma: 
multiparametric differentiation by using diffusion-, 
perfusion-, and susceptibility-weighted MR imaging. 
Radiology 2014; 272:843–850.

 7. Koeller KK, Smirniotopoulos JG, Jones RV. Primary 
central nervous system lymphoma: radiologic-pathologic 
correlation. Radiographics 1997; 17:1497–1526.

 8. Rees JH, Smirniotopoulos JG, Jones RV, Wong K. Glioblastoma 
multiforme: radiologic–pathologic correlation. Radiographics 
1996; 16:1413–1438; quiz 1462–1463.

 9. Kohli M, Prevedello LM, Filice RW, Geis JR. Implementing 
machine learning in radiology practice and research. AJR 
Am J Roentgenol 2017; 208:754–760.

10. Russakovsky O, Deng J, Su H, et al. ImageNet large scale 
visual recognition challenge. Int J Comput Vis 2015; 
115:211–252.

11. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine 
learning for medical imaging. Radiographics 2017; 37: 
505–515.

12. Alcaide-Leon P, Dufort P, Geraldo AF, et al. Differentiation 
of enhancing glioma and primary central nervous system 
lymphoma by texture-based machine learning. AJNR Am J 
Neuroradiol 2017; 38:1145–1150.

13. Yamasaki T, Chen T, Hirai T, Murakami R. Classification 
of cerebral lymphomas and glioblastomas featuring 
luminance distribution analysis. Comput Math Methods 
Med 2013; 2013:619658.

14. Liu YH, Muftah M, Das T, Bai L, Robson K, Auer D. 
Classification of MR tumor images based on gabor wavelet 
analysis. Journal of Medical and Biological Engineering 
2012; 32:22–28.

15. Cruz JA, Wishart DS. Applications of machine learning 
in cancer prediction and prognosis. Cancer Informatics 
2006; 2:59–77.

16. Kunimatsu A, Kunimatsu N, Kamiya K, Watadani T, 
Mori H, Abe O. Comparison between glioblastoma 
and primary central nervous system lymphoma using 
MR image-based texture analysis. Magn Reson Med Sci 
2018; 17:50–57.

17. Lee HY, Kim HS, Park JW, Baek HJ, Kim SJ, Choi CG. 
Atypical imaging features of Epstein-Barr virus-positive 
primary central nervous system lymphomas in patients 
without AIDS. AJNR Am J Neuroradiol 2013; 34: 
1562–1567.

18. Parmar C, Rios Velazquez E, Leijenaar R, et al. Robust 
Radiomics feature quantification using semiautomatic 
volumetric segmentation. PLoS One 2014; 9:e102107.

19. Bartko JJ. On various intraclass correlation reliability 
coefficients. Psychol Bull 1976; 83:762–765.

20. Anvari A, Halpern EF, Samir AE. Statistics 101 for 
radiologists. Radiographics 2015; 35:1789–1801.



52 Magnetic Resonance in Medical Sciences 

A. Kunimatsu et al.

21. Bartlett JW, Frost C. Reliability, repeatability and repro-
ducibility: analysis of measurement errors in conti nuous  
variables. Ultrasound Obstet Gynecol 2008; 31:466–475.

22. Kassner A, Thornhill RE. Texture analysis: a review 
of neurologic MR imaging applications. AJNR Am J 
Neuroradiol 2010; 31:809–816.

23. Somorjai RL, Dolenko B, Baumgartner R. Class prediction 
and discovery using gene microarray and proteomics 
mass spectroscopy data: curses, caveats, cautions. 
Bioinformatics 2003; 19:1484–1491.

24. Sturges HA. The choice of a class interval. J Am Stat Assoc 
1926; 21:65–66.

25. Cristianini N, Shawe-Taylor J. An introduction to support 
vector machines: and other kernel-based learning 
methods; Cambridge University Press: Cambridge,  
New York, 2000; 189.

26. Mukherjee S, Tamayo P, Rogers S, et al. Estimating dataset 
size requirements for classifying DNA microarray data.  
J Comput Biol 2003; 10:119–142.

27. Arlot S, Celisse A. A survey of cross-validation procedures 
for model selection. Stat Surv 2010; 4:40–79.

28. Zhang X, Yan LF, Hu YC, et al. Optimizing a machine 
learning based glioma grading system using multi-
parametric MRI histogram and texture features. Oncotarget 
2017; 8:47816–47830.

29. Ancona N, Maglietta R, Piepoli A, et al. On the statistical 
assessment of classifiers using DNA microarray data. BMC 
Bioinform 2006; 7:387.

30. Robin X, Turck N, Hainard A, et al. pROC: an open-source 
package for R and S+ to analyze and compare ROC curves. 
BMC Bioinform 2011; 12:77.

31. Doskaliyev A, Yamasaki F, Ohtaki M, et al. Lymphomas 
and glioblastomas: differences in the apparent diffusion 
coefficient evaluated with high b-value diffusion-weighted 
magnetic resonance imaging at 3T. Eur J Radiol 2012; 
81:339–344.

32. Toh CH, Wei KC, Chang CN, Ng SH, Wong HF. 
Differentiation of primary central nervous system 
lymphomas and glioblastomas: comparisons of diagnostic 
performance of dynamic susceptibility contrast-enhanced 
perfusion MR imaging without and with contrast-leakage 
correction. AJNR Am J Neuroradiol 2013; 34:1145–1149.

33. Wang S, Kim S, Chawla S, et al. Differentiation between 
glioblastomas, solitary brain metastases, and primary 
cerebral lymphomas using diffusion tensor and dynamic 
susceptibility contrast-enhanced MR imaging. AJNR Am J 
Neuroradiol 2011; 32:507–514.

34. Wei L, Yang Y, Nishikawa RM, Jiang Y. A study on several 
machine-learning methods for classification of malignant 
and benign clustered microcalcifications. IEEE Trans Med 
Imaging 2005; 24:371–380.

35. Rodriguez Gutierrez D, Awwad A, Meijer L, et al. 
Metrics and textural features of MRI diffusion to improve 
classification of pediatric posterior fossa tumors. AJNR Am 
J Neuroradiol 2014; 35:1009–1015.

36. Tiwari P, Prasanna P, Wolansky L, et al. Computer-extracted 
texture features to distinguish cerebral radionecrosis from 
recurrent brain tumors on multiparametric MRI: a feasibility 
study. AJNR Am J Neuroradiol 2016; 37:2231–2236.

37. Waljee AK, Higgins PDR, Singal AG. A primer on predictive 
models. Clin Transl Gastroenterol 2014; 5:e44.

38. Chawla NV, Japkowicz N, Kotcz A. Editorial: special issue 
on learning from imbalanced data sets. SIGKDD Explor 
2004; 6:1–6.

39. Yasaka K, Akai H, Abe O, Kiryu S. Deep learning with 
convolutional neural network for differentiation of liver 
masses at dynamic contrast-enhanced CT: a preliminary 
study. Radiology 2018; 286:887–896.

40. Raza SM, Lang FF, Aggarwal BB, Fuller GN, Wildrick DM, 
Sawaya R. Necrosis and glioblastoma: a friend or a foe? 
A review and a hypothesis. Neurosurgery 2002; 51:2–12; 
discussion 12–13.




