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As B cells differentiate into antibody-secreting cells (ASCs), short-lived plasmablasts
(SLPBs) are produced by a primary extrafollicular response, followed by the generation of
memory B cells and long-lived plasma cells (LLPCs) in germinal centers (GCs). Generation
of IgG4 antibodies is T helper type 2 (Th2) and IL-4, -13, and -10-driven and can occur
parallel to IgE, in response to chronic stimulation by allergens and helminths. Although
IgG4 antibodies are non-crosslinking and have limited ability to mobilize complement and
cellular cytotoxicity, when self-tolerance is lost, they can disrupt ligand-receptor binding
and cause a wide range of autoimmune disorders including neurological autoimmunity. In
myasthenia gravis with predominantly IgG4 autoantibodies against muscle-specific kinase
(MuSK), it has been observed that one-time CD20+ B cell depletion with rituximab
commonly leads to long-term remission and a marked reduction in autoantibody titer,
pointing to a short-lived nature of autoantibody-secreting cells. This is also observed in
other predominantly IgG4 autoantibody-mediated neurological disorders, such as chronic
inflammatory demyelinating polyneuropathy and autoimmune encephalitis with
autoantibodies against the Ranvier paranode and juxtaparanode, respectively, and
extends beyond neurological autoimmunity as well. Although IgG1 autoantibody-
mediated neurological disorders can also respond well to rituximab induction therapy in
combination with an autoantibody titer drop, remission tends to be less long-lasting and
cases where titers are refractory tend to occur more often than in IgG4 autoimmunity.
Moreover, presence of GC-like structures in the thymus of myasthenic patients with
predominantly IgG1 autoantibodies against the acetylcholine receptor and in ovarian
teratomas of autoimmune encephalitis patients with predominantly IgG1 autoantibodies
against the N‐methyl‐d‐aspartate receptor (NMDAR) confers increased the ability to
generate LLPCs. Here, we review available information on the short-and long-lived
nature of ASCs in IgG1 and IgG4 autoantibody-mediated neurological disorders and
highlight common mechanisms as well as differences, all of which can inform therapeutic
strategies and personalized medical approaches.
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INTRODUCTION

B cells are the major components of the humoral adaptive
immune system. Prior to antigenic stimulation, B cells develop
in the bone marrow, where V (variable), D (diversity), and J
(joining) gene recombination occurs, leading to the formation of
the immunoglobulin antigen binding domains and the naïve B
cell receptor repertoire. During this process of development and
diversity generation, autoreactive clones are physiologically
cleared by mechanisms imposed by two tolerance checkpoints:
one central and one peripheral (1). Upon antigenic challenge, B
cells of secondary lymphoid tissue are exposed to the antigen and
form antibody-secreting B cells (ASC) by two complementary
pathways: the first extrafollicular, and the second involving a
germinal center (GC) reaction (follicular pathway) (2–4). A
canonical response to a foreign antigen involves a switch from
the first pathway to the second within approximately a week. The
products of B cell development and differentiation—ASCs—can
be divided into short-lived plasmablasts (SLPBs) and long-lived
plasma cells (LLPCs). SLPBs express unswitched or isotype-
switched immunoglobulin (Ig), and their formation can
indicate a rapid antigen clearance response (5). In contrast,
precursors of LLPCs are typically, but not always, isotype
switched and upon exit from GCs either become peripheral
memory B cells or enter a survival niche—such as the bone
marrow—and become LLPCs.

Both SLPBs and LLPCs may contribute to the pathogenesis of
neurological autoimmune diseases. Moreover, pathogenic
autoantibodies produced by autoreactive ASCs and directed
against neurologic antigens can either be predominantly of the
IgG1 or the IgG4 subclass, or in rarer cases can be of both
subclasses. Interestingly, the predominant subclass seems to be
connected to whether autoantibody-secreting cells are short- or
long-lived. A specific example relates to myasthenia gravis (MG)
associated with predominantly IgG4 autoantibodies against
muscle-specific kinase (MuSK), where autoreactive ASCs
appear to be short-lived (6). This short-lived nature is
supported by the observation that MuSK autoantibody titers
decrease rapidly after CD20+ B cell depletion with rituximab (7–
9). As most of the ASCs are CD20- and are not directly targeted
by rituximab, titer reduction can be explained by depletion of the
CD20+ ASC-progenitor cells in combination with the short-lived
nature of MuSK ASCs. In MG, however, with predominantly
IgG1 autoantibodies against the nicotinic acetylcholine receptor
(AChR), titer decline post rituximab shows that B cell depletion
varies from minimal (9, 10) to less pronounced in comparison to
MuSK MG (11–13). Hence the AChR ASCs are presumed to be
more long-lived (14). Of note, clinical responses to rituximab
resemble —to some extent—autoantibody titers and comprise
dramatic improvement in most cases of MuSK MG (8, 9, 15, 16)
but are less pronounced (yet favorable in many cases) in AChR
MG (NCT02110706) (17–24).

In this review, we aim to examine whether the MG paradigm
extends to other autoimmune neurologic disorders with
pathogenic autoantibodies of the IgG1 and IgG4 subclass.
Further, we discuss how antigen-experienced B cells
differentiate into predominantly IgG1- or IgG4- secreting ASCs
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and how IgG1 and IgG4 B cell responses generate short- and
long-lived autoantibody-producing cells differently. While
focusing on human data, we give an overview of how the
different subclasses and ASCs contribute to different
autoimmune neurological diseases, and in parallel, highlight
advances in B cell biology that relate to the development of
pathogenic autoantibodies.
SHORT- AND LONG-TERM HUMORAL
IMMUNITY IN INFECTION, ALLERGY,
AND AUTOIMMUNITY

With the exception of IgM autoantibodies against myelin-associated
glycoprotein (MAG) (25), all pathogenic autoantibodies against
neurologic cell surface protein antigens are class-switched
immunoglobulins (IgG). In turn, presence of IgG is typically, but
not always, associated with GC responses and the formation of
long-lasting immunological memory. With the current wealth of
information about the development of humoral responses, we can
better appreciate the cellular andmolecular mechanisms that lead to
the generation of such responses to pathogens, as well as to allergens
and autoantigens. In the following sections, we will briefly
summarize current concepts of B cell responses, general rules and
their exceptions, and further explain how these might be relevant to
the formation of neurologic autoantibodies of the IgG1 and
IgG4 subclass.

Extrafollicular B Cell Responses
Observations of follicular and extrafollicular responses rely
mainly on rodent models. Shortly after exposure to a T-cell-
dependent antigen, responding B cells and T cells appear at the B
cell follicle/T cell zone border of the lymph node (26). The initial
humoral response involves B cells differentiating into SLPBs with
the help of T follicular helper cells (Tfh) at extrafollicular sites (2,
27) (Figure 1). These extrafollicular B-cell responses generate
many of the early-induced antibodies approximately four days to
one week after exposure to the antigen (2, 28). In canonical
responses, the extrafollicular response reverts after the first week
and gives its place to the GC responses. However, extrafollicular
responses persist in non-canonical responses [e.g. in the setting
of Salmonella (29) and Borrelia infection (30) or certain types of
autoimmunity such as rheumatoid arthritis patients’ synovia (31)
and lupus-prone mice (32)]. Although characteristics of the GC
response (somatic hypermutation, class-switch recombination
and generation of B cell memory) can also be found in canonical
and non-canonical extrafollicular responses (29, 31–37), they are
present to a lesser extent. One exception is the ability to establish
LLPCs, which is absent in the extrafollicular response (38–41).
Classical views regard the extrafollicular response as a response
that is promiscuous and of low, yet detectable specificity (29,
36, 42).

Germinal Center Responses
Development of B cell immunologic memory and differentiation
of B cells into high-affinity LLPCs primarily occurs within
June 2021 | Volume 12 | Article 686466
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secondary lymphoid tissue—specifically the lymphoid follicles
(B cell follicles) of the lymph nodes or the spleen, which harbor
structures known as GCs. After the initial B cell response, the
initiation of GCs is orchestrated by various immune cells,
including B cells, helper T cells (such as Tfh cells driven by
bcl-6), follicular dendritic cells (FDCs), and macrophages, as well
as cytokines such as IL-6 (43–46). Since the discovery of GCs as
affinity-maturation entities (47), microscopy-visualized GC
reactions (48, 49) have shed light onto GC structure and
dynamics. Two zones comprise the GC: the light zone and the
dark zone; the light zone facilitates interaction with the antigen
via Tfh and FDCs in order to select higher-affinity B cell clones
while the dark zone facilitates B cell proliferation and somatic
hypermutation in order to generate candidates for clonal
selection in the light zone (50) (Figure 1). Accordingly, dark-
zone B cells (centroblasts) engage mitosis-related genes and
activation-induced cytidine deaminase (AID), thus enabling
somatic hypermutation and class-switch recombination (51).
Mature GCs allow entry to naïve B cells in addition to re-entry of
higher-affinity clones, as repeated involvement of memory B cells
in GC reactions has been observed in human lymph nodes (52).
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As a consequence, exported LLPCs display higher affinity and
more somatic mutations compared to memory B cells (53).
Overall, higher-affinity clones that mature within the dark zone
differentiate into either LLPCs that migrate to the bone marrow
or memory B cells, while lower-affinity clones undergo apoptosis.

A Continuum of Antibody-Secreting Cells
ASCs exiting extrafollicular or follicular maturation processes are
grossly divided into SLPBs and LLPCs and are connected to
specific immunophenotypes measured with flow cytometry.
More specifically, SLPBs are often described as CD20-

CD19med/+ IgD- CD27hi CD38hi (of those, some but not all are
also CD138+), while LLPCs are described as CD20- CD19-

CD38hi CD138+ (54). It should be taken into account that as B
cells differentiate toward high-affinity LLPCs, a phenotypic
continuum is formed that does not entirely fit into the two
immunophenotypes. Accordingly, a minority of presumably
immature circulating SLPBs retain CD20 expression (55), and
a minority of bone marrow LLPCs retain CD19 expression (56,
57). Both markers (CD20 and CD19) are ultimately lost as CD38
and CD138 expressions peak in Blimp-1-driven LLPCs.
FIGURE 1 | Differentiation of B cells into short- and long-lived antibody-secreting cells. In the initial phase of the immune response to a T cell-dependent antigen,
responding naïve B cells appear in the T cell zone of the lymph node (upper left), where their development and differentiation is facilitated by T cell-secreted
cytokines. T helper type 2 (Th2) type cytokine secretion, such as IL-4, -10, and -13 favors the induction of an IgG4 response. B cells enter the extrafollicular pathway
and undergo B cell receptor (BCR) activation by encountering antigens on follicular dendritic cells (FDCs), which they then present to T follicular helper (Tfh) cells
through MHC-II. The extrafollicular pathway gives rise to (i) short-lived plasmablasts (SLPBs) that enter the periphery, and (ii) germinal center (GC)-independent
memory B cells. In a second phase, activated B cells enter the GC dark zone, where they mutate (a process called somatic hypermutation) and clonally expand
(therefore termed centroblasts). B cells cycle between the dark and the light zone (where they are termed centrocytes). The dynamic cycle of the GC allows
centrocytes that entered the light zone to be chosen based on the affinity of their BCRs to the antigen. Low-affinity B cells that are not presenting antigen on their
BCRs will eventually become apoptotic and die. B cells that do present the antigen receive help from Tfh through CD40L and IL21 survival signals. The end-products
of the GC reaction are (i) memory B cells, and (ii) long-lived plasma cells (LLPCs). GC memory B cells will enter the periphery and re-enter the GC upon BCR
stimulation. LLPCs exit the GC and find a survival niche, typically the bone marrow.
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Mechanistic Differences Between IgG1
and IgG4 Responses
While IgG1 is the most predominant IgG subclass in healthy adults
(more than 60% of total IgG) and IgG4 by far the rarest
(approximately 5% of total IgG) (58–61), IgG4 is of special interest
not only because it is related to autoimmunity but also because of its
anti-inflammatory properties and its coexistence with Th2-driven IgE
(allergic) responses (62). In beekeepers, chronic exposure to allergen
leads to upregulation of both IgE and IgG4 (63); IgG4 competes with
IgE for the same antigen but has weak effector functions [mobilization
of complement-dependent cytotoxicity (CDC) and antibody-
dependent cellular cytotoxicity (ADCC)]. Moreover, IgG4 cannot
crosslink the antigen as it exchanges its Fab arms to become
functionally monovalent (64). Consequently, production of antigen-
specific IgG4 protects beekeepers from IgE-mediated allergy. Allergen
tolerization therapy (e.g., grass pollen) is clinically effective and
induces an IgG4 antigen-specific response. Of note, repetitive or
prolonged antigenic stimulation seems to elicit an IgG4 response in
other settings as well, such as in chronic biologic therapeutics
administration (e.g. clotting factor VIII, natalizumab, adalimumab)
(65–67), repeated immunization (68), and helminth infection
(69–73).

Both IgG4 and IgE class-switch and production are induced
by IL-4 and IL-13 (74–76), however additional IL-10 signals
divert Ig production in favor of IgG4 (77–79). Allergic
sensitization and immediate hypersensitivity points to the
presence of IgE memory and total IgE titers persist in actively
atopic patients (10, 62, 80). Data from murine models point to
IgE B cells showing difficulty remaining in the GC and
generating memory B cells and LLPCs (81, 82). This is
corroborated by a post-seasonal total IgG4/IgE titer drop (62)
and transient-only IgE increases seen in non-atopic children
(83). IgG4 B cells seem to be equally ineffective in producing
LLPCs. Compared to IgG1 B cells, human IgG4 B cells express
less CXCR4, a chemokine important for bone marrow
chemotaxis, and low numbers of IgG4 cells are observed in
human secondary lymphoid organs (84). Data from IgG4 related
disease (IgG4-RD) also support the notion that the generation of
LLPCs is diminished in IgG4 responses as levels of circulating
IgG4 SLPBs correlate with total IgG4 levels. In addition,
rituximab treatment affects a significant drop in IgG4 (and
IgE) levels (85), but the drop in IgG1 titers is not as
pronounced (86). It should be noted though that as the
response to rituximab treatment can be partial, some LLPCs
most likely do exist.

Regulatory T cell (Treg) involvement may be different in IgG4
and IgG1 responses. Apart from extrafollicular Tregs that could
control GC initiation, follicular regulatory T cells (Tfr) may
balance Tfh cells and participate in determining the fate of B
cells. Tfr cells may either directly suppress GC B cells through
CTLA-4-mediated inhibition of CD80/CD86 co-stimulatory
signaling or indirectly do so through IL-10 secretion acting on
Tfh cells (87). Importantly, allergen-specific Tregs from healthy
individuals can suppress IgE and induce IgG4 production ex vivo
via IL-10 and TGF-b (88, 89). During human helminth infection
(which causes IgE and IgG4 elevation), Tregs that produce IL-10
Frontiers in Immunology | www.frontiersin.org 4
and inhibit effector T cells can be found in the peripheral blood
and may play a role in limiting inflammation (90), while in
murine models of helminth infection, Tregs expand, produce
IL-10, and can limit the Th1 more than the Th2 response (91).
Similarly, Tregs are expanded in the peripheral blood of
IgG4-RD patients (along with IgG4 and Th2 cells) (92, 93) and
infiltrate target organs (along with IgG4 cells) (94). Conversely,
in MG mediated by predominantly IgG1 autoantibodies against
AChR, patients have been shown to harbor dysfunctional Tregs
(95), and further, induction of Tregs via GM-CSF effectively
suppressed experimental autoimmune MG (96). In pemphigus
vulgaris (PV) mediated by predominantly IgG4 autoantibodies
against desmoglein, contradicting data that Tregs have both not
been able to suppress (97) and have suppressed autoimmune
responses (98) are reported. These results underline the need for
further investigations into the role of Tregs in autoantibody-
mediated autoimmunity.

Class-Switch Recombination in the Setting
of Allergy and Autoimmunity
Class-switching recombination (CSR) is a fundamental change
connected to the maturation of B cells as they evolve towards
antibody secretion in response to antigens. CSR is facilitated by
AID and materialized by the excision of DNA fragments and the
subsequent joining of previously distant regions. As a
consequence, CSR can only happen in the 5’-3’ direction of
chromosomal topology of the different (corresponding to
different classes and subclasses) constant region fragments
(Figure 2). The use of high-throughput, next-generation
sequencing (NGS) of the B cell receptor variable region and
the beginning of the constant region (which can determine class
and subclass) offers direct insight into human CSR mechanisms.
Mutational analysis allows for the construction of B cell lineage
trees, and at the same time, subclass is assigned to clonal family
members. That way, one can pinpoint CSR with the use of
somatic mutations as a ‘molecular clock’ (99). NGS analysis
shows that the majority of naïve IgD/M switch to proximal
classes (IgG3, IgG1, IgA1), and that the proximal classes then
(secondarily, or indirectly) switch to more distal classes (IgG2,
IgG4, IgA2). Indeed, more distal subclasses display greater
mutational load, on average (61, 100–105).

CSR and origins of IgE and IgG4 have been extensively
exanimated in allergy and autoimmunity. In allergy, whole-
repertoire NGS data from healthy and allergic individuals
indicate that indirect switching from IgG1 is the primary
source of IgE, while indirect switching from IgG4 is also
significant (given overall rarity of IgG4) (103, 106). In
accordance, examination of antigen-specific clonal families in
allergic individuals showed common presence of IgE with
predominantly IgG1, and to a lesser degree, IgG4 B cells
within the same clonal family (107, 108). Most importantly, in
pemphigus vulgaris (PV), a bullous skin disease mediated by
pathogenic autoantibodies (mostly IgG4) against desmoglein, the
NGS approach showed that IgG4 antigen-specific cells are not
predominantly formed from IgG1 (or IgA) precursors. In fact,
IgG1 and IgG4 desmoglein responses evolve in parallel along the
June 2021 | Volume 12 | Article 686466
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same lineage tree, and it is plausible that the IgM-to-IgG4 direct
switch is predominant for antigen-specific cells (109).

Mechanistic Differences Between IgG1
and IgG4 Antibodies
IgG1 and IgG4 autoantibodies bear different mechanisms of
pathogenicity because of their molecular characteristics (e.g.
P331S, L234F, P228S, A327G, and R409K amino acid
substitutions in the IgG4 Fc region) (59, 79). Pro-inflammatory
IgG1 autoantibodies activate CDC and ADCC through their
constant fragment (Fc) and moreover can crosslink the antigen
and affect its internalization. In contrast, IgG4 antibodies
constitute a principally anti-inflammatory IgG subclass and
have limited ability to mobilize CDC and ADCC due to a low
affinity for C1q complement components and Fcg receptors
(110), however lgG4 antibodies can block the ligand-receptor
interaction of the target antigen. One cardinal feature of IgG4
antibodies is that they undergo Fab-arm exchange, which results
in bivalent binding properties of different specificities for each
arm and thereby lose their ability to crosslink (64). This Fab-arm
exchange effectively leads to functional monovalency of IgG4
antibodies. In addition to Fab-arm exchange, the lower mobility
of IgG4s due to their shorter—compared to IgG1—hinge region
complicates their structure, making IgG4 even less likely to be
crosslinking antigens (111). Overall, the IgG4 subclass remains
relatively poorly studied yet plays a fundamental role in
neurological and non-neurological autoimmunity (58–61).
AUTOIMMUNE NEUROLOGICAL
DISEASES MEDIATED BY IGG1 AND
IGG4 AUTOANTIBODIES

In many neurologic diseases, some of them newly defined,
pathology is mediated by autoantibodies against surface/
extracellular protein antigens. Among those are MG, chronic
Frontiers in Immunology | www.frontiersin.org 5
inflammatory demyelinating polyradiculoneuropathy (CIDP),
neuromyelitis optica and neuromyelitis optica spectrum
disorders (NMOSD), acute disseminated encephalomyelitis
(ADEM), relapsing optic neuritis (ON), pediatric acquired
demyelinating syndromes, and autoimmune encephalitis (AE)
(112–116). Such neuronal autoantibodies can affect multiple
facets of the CNS and PNS as they target a wide spectrum of
antigens, neurotransmitter receptors, ion channels and
glycoproteins (Table 1). Clinical manifestations of neurological
diseases mediated by autoantibodies are diverse and include
fatigability, weakness, sensory and visual disturbances,
movement and sleep disorders, epileptic seizures, decreased
consciousness, and various cognitive symptoms. Serum and
CSF autoantibodies have transitioned from being mere
diagnostic tools to being defining factors of the clinical
spectrum; and moreover, autoantibody titers can sometimes
serve as markers of disease activity and more often of response
to treatment. Of note, neuronal autoantigens can be classified
into two categories depending on their localization: surface or
intracellular. Pathogenicity of the latter is questionable, and as
accessibility of intracellular targets to autoantibodies is limited in
intact cells, the humoral response could be secondary to a
primary cellular-damage event. In these cases, the primary
response could involve a T cell (162, 212) or other cytotoxic
immune cell-mediated mechanism. Here, we focus on cell
surface protein antigens, where humoral responses are directly
implicated in disease pathology.

In addition to IgG1 autoantibodies, several different CNS or
PNS antigens have been identified as targets of IgG4
autoantibodies, and this discovery has enabled us to categorize
autoimmune diseases by pathophysiological mechanism. IgG4
autoantibody-mediated diseases are not driven by antibody
effector functions but by direct and mechanical disruption of
ligand-receptor interactions (175). Examples include antibodies
specific to MuSK, a protein that is instrumental in the agrin-
LRP4 pathway leading to AChR clustering (213); LGI1, a
secreted protein that stabilizes the transsynaptic complex
FIGURE 2 | Human antibody isotype and class-switch recombination; diagram of the organization of the heavy chain gene locus. The constant genes are shown as
squares and their width represents the relative gene size. Constant m and d (Cm &Cd) genes, preceded by the leader (L) and variable (V), diversity (D), or joining (J)
gene regions, are expressed early in the B cell development. Recombination events (indicated as cutting sites) replace the Cm and Cd genes with other isotypes and
subclasses (Cg1-4, Ca1-2, and Cϵ) according to the depicted downstream order. IgG4 subclass antibodies can either be generated directly (left panel)—by IgM or
IgD recombination and loss of the respective IGHC genes—or indirectly in two steps (right panel).
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between the pre and postsynaptic receptors, ADAM23 and
ADAM22 (169, 214, 215); and the protein complex of
contactin-1, neurofascin-155 and caspr-1, which anchors
myelin loops to the axon at the Ranvier paranode (216). A
further interesting aspect of autoantibody-mediated neurological
diseases is HLA restriction seen in patients as compared to
healthy controls, likely meaning that specific antigenic peptides
are better presented to T cells by specific HLA alleles (217, 218).
This is relevant to B cell function, as B cells can pick up antigens
with the B cell receptor (BCR) and process them and effectively
present them via MHC II to T cells (219). Such a restriction has
been shown both in diseases mediated by IgG1 and by IgG4
autoantibodies, and strong associations to specific—mainly
class II—HLA haplotypes have been detected, with odds ratios
exceeding 8 in disorders such as encephalitis with autoantibodies
against leucine-rich glioma-inactivated protein 1 (LGI1) and
contactin-associated protein 2 (caspr2) (171), chronic
inflammatory demyelinating polyradiculoneuropathy (CIDP)
Frontiers in Immunology | www.frontiersin.org 6
with autoantibodies against neurofascin 155 (NF155) (185) and
IgLON5 disease (220).
EVIDENCE ON THE EXISTENCE OF LONG-
AND SHORT-LIVED ASCS IN
NEUROLOGICAL AUTOIMMUNITY

The short- and long-lived nature of pathogenic autoantibodies is
directly relevant to immunotherapeutic strategies. There are
indications from the study of MG—the prototype of
autoantibody-mediated diseases—that there is a systemic
difference between predominantly IgG1 and predominantly IgG4
autoantibody responses regarding the longevity of ASCs. We have
therefore examined the relevant evidence in the more common
neurologic autoantibody-mediated disease entities. Data can be
divided into two categories. First, we examined autoantibody titer
TABLE 1 | Autoimmune neurological diseases mediated by IgG1 and IgG4 autoantibodies.

Disorder Subclass Prevalence Antibody
localization

HLA restriction Complement
involvement

MuSK MG IgG4 (117–119) 1.9-2.9/1.000.000 (120) Serum (118, 119,
121)

HLA-DR14-DQ5 haplotype (122, 123) N/A

AChR MG IgG1 & IgG3 (124–126) 4.3-18/1.000.000 (120) Serum (124, 125,
127, 128)

No association (but DQB1*05:02 and
DRB1*16 (129)

Yes (126,
130–132)

AQP4 NMO(SD) IgG1 (133) 27-100% of 0.7-1.09/
100,000 (134, 135)

Serum, CSF (136–
138)

HLA-DRB1*03:01 (139, 140) Yes (141–143)

MOG MOGAD mostly IgG1, also IgG2, IgG3
(144, 145)

1.9/100,000 (146) Serum, CSF (145,
147, 148)

No association (149) Yes (150, 151)

NMDAR
Encephalitis

IgG1 and IgG3 (152–157) 0.6/100.000 (146) Serum (158) Weak association with the HLA-B*07:02
allele (159)

No (153, 160–
162)

IgLON5 disease mostly IgG4, also IgG1 (163). All 4
IgG subclasses detected (164)

1/150.000 (164, 165) Serum and very
frequently in the CSF
(164)

HLA-DRB1 & HLA-DQB1 (163) No (166)

LGI1 Encephalitis IgG4 (167, 168) 0.7/100.000 (146) Serum, in 80–90% in
CSF (169, 170)

HLA-DRB1*07:01–DQB1*02:02 (171–
173) & HLA-DR7 and HLA-DRB4 (174)

Limited
evidence (162)

CASPR1 CIDP IgG4, IgG1, IgG3 (175), IgG2/3
(176)

1.9-4.3% of CIDP: 0.7-
10.3/100.000 (177, 178)

Serum (175) N/A Limited
evidence (179)

Contactin1 CIDP IgG4 (175, 180) 0.8% of CIDP: 0.7-10.3/
100,000 (175, 177)

Serum (175) All CIDP HLA-DR3 & DR3/DQ2 (181) Limited
evidence (182)

Neurofascin CIDP
(NF155 & NF186)

IgG4 (175, 180, 183), IgG1, IgG3
(175)

2.9-7% of CIDP: 0.7-10.3/
100.000 (175, 177, 184)

Serum (184) HLA-DRB15 (185) HLA-DRB1-15 &
DQB1 (186)

No (184)

GABA-A
Encephalitis

IgG1 (94%) or IgG3 (6%) (187) ~50 cases (187, 188) Serum, CSF (189,
190)

N/A N/A

GABA-B
Encephalitis

IgG1 (191) ~63 cases (191–193) Serum, CSF; in 25%
high titer in CSF (192)

No association (173) Yes (194)

DPPX Encephalitis IgG1 and IgG4 (195) <40 cases (195–198);
<1/1.000.000
(ORPHA:329341)

Serum, CSF N/A N/A

mGluR5
Encephalitis

IgG1, IgG1/IgG2, IgG1/IgG3 (199) ~20 cases (199, 200) Serum, CSF (199) N/A Not likely (199)

CASPR2
Encephalitis

IgG4 (167, 170) ~100 cases (170, 201,
202)

Serum, CSF (203) HLA-DRB1*11:01-DQA1*05:01-
DQB1*03:01 (171)

Limited
evidence (204,
205)

GlyR Encephalitis IgG1 and IgG3 (152–157) ~100 cases (155, 206) Serum, CSF (155,
158, 207, 208)

N/A Yes (155)

AMPAR
Encephalitis, (GluA1
& GluA2)

IgG1 (209) <100 patients (210, 211) Serum, CSF (193) N/A Limited
evidence (209)
June 2021 | Volume 12 |
MG, myasthenia gravis; CIDP, chronic inflammatory demyelinating polyradiculoneuropathy; NMOSD, neuromyelitis optica spectrum disorder; MOGAD, myelin-oligodendrocyte
glycoprotein antibody disorder; AE, autoimmune encephalitis; N/A, not available.
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response to rituximab, the CD20+ B cell depleting monoclonal
antibody that has revolutionized neurologic therapeutics, and a
rapid decline in autoantibody titer post-rituximab supports the
short-lived nature of ASCs. Second, we reviewed studies that have
directly examined ASCs by employing an array of techniques, from
immunohistochemistry and bulk B cell culture to single B cell
cloning and production of monoclonal antibodies. In particular,
immune phenotypes of B cells from which antigen-specific
monoclonal antibodies are derived provide information about the
short- or long-lived nature of ASCs. These two groups of data are
summarized in Table 2.

It should be noted that rituximab-induced B cell depletion is
materialized by ADCC, CDC, and antibody-dependent cellular
phagocytosis (ADCP) (255). Circulating CD20+ B cells become
undetectable almost immediately after rituximab treatment, and
levels remain low for at least 6 months. Repeated dosing every 6
months can affect longer (than 6 months) B cell depletion after
treatment ends (256–259). Moreover, rituximab affects a
Frontiers in Immunology | www.frontiersin.org 7
reduction but not a compete depletion in B cells of lymph
nodes (260). Finally, repeated rituximab dosing results in
gradual total serum IgM and IgG reduction (261).
MYASTHENIA GRAVIS: THE PROTOTYPE

Evidence from several case series suggests that rituximab is
clinically effective in the majority of MG patients; especially in
patients with MuSK MG the improvement is more pronounced
compared to AChR MG (8, 9, 13, 16–24). Despite the many
reports of good efficacy of rituximab in AChR MG, a one-year
phase 2 trial of rituximab (NCT02110706) did not meet the
primary endpoint, which was achievement of a 75% reduction in
mean daily prednisone. This was possibly due to the study
duration and a high percentage of patients meeting the
endpoint in the placebo arm. The secondary endpoints,
improvement in quantitative MG scales, was greater in the
TABLE 2 | Summary of data supporting presence of short and long-lived ASCs in neurological disorders.

Antigen Subclass Post rituximab
antibody titers

Findings regarding short- and long-lived antigen-specific ASCs SLPB
presence

GC/
LLPC

presence

AChR IgG1 No change or mild
decrease (9, 11,
13, 14)

Cultured BM, thymus, and lymph node cells produce AChR Ab (221); GCs present in thymus
(222); AChR-specific B cells present in thymus (223, 224) are HLA-DRlow plasma cells (225)

no yes

MuSK IgG4 Marked decrease
(6, 7, 9, 20, 213)

SLPBs produce MuSK Ab (213, 226) yes no

AQP4 IgG1 Significant
decrease and no
change both
reported (227–
230)

CD20+ B cells and CD138+ (SLPBs or LLPCs) cells found in CNS (231, 232); Peripheral blood
SLPBs increased in relapses; SLPBs produce AQP4 Ab in culture (233) [could not be reproduced
from frozen cells (234)]; presence of AQP4-specific CD138+ cells (SLPBs or LLPCs) in CSF (235)

yes possible

MOG IgG1 Decrease in MFI,
yet MOG-Ab
remained
detectable (236)

CD20+ B cells found in CNS (237); Peripheral blood PBs not increased in relapses (238) no no

NMDAR IgG1 Marked decrease
in one patient
(239)

B cells and CD138+ cells found in CNS (160, 162, 240, 241); Peripheral blood SLPBs increased
in one patient (239); GC-like structures, SLPBs and CD20- CD138+ LLPCs found in teratomas,
and teratoma lymphocytes produce NMDAR Ab (153, 242); NMDAR-specific SLPBs or LLPCs
found in CSF (241, 243)

yes yes

IgLON5 IgG4,
IgG1

N/A Few CD20+ B cell in brain (166, 244, 245) no no

LGI1 IgG4 Marked decrease
in 5/6 patients
(246, 247)

LGI1-specific CD138+ cells (SLPBs or LLPCs) found in CSF (248) possible possible

Contactin1 IgG4 Marked decrease
(249)

N/A no no

NF155 IgG4 Marked decrease
(249, 250)

N/A no no

DPPX IgG4,
IgG1

Decrease (251) N/A no no

Caspr2 IgG4 Marked decrease
(252)

N/A no no

mGluR5 IgG1,
IgG4

Decrease (253) N/A no no

GABA-B IgG1 N/A CD19+ CD138+ SLPBs found in CSF; CD138+ cells found in brain parenchyma (254) yes possible
June 2021 | Volum
e 12 | Arti
ASCs, antibody-secreting cells; AChR, acetylcholine receptor; BM, bone marrow; GC, germinal center; MuSK, muscle-specific kinase; NF155, neurofascin155; AQP4, aquaporin 4;
SLPBs, short-lived plasmablasts; LLPCs, long-lived plasma cells; MFI, mean fluorescence intensity on flow cytometry cell-based assay; MOG, myelin oligodendrocyte glycoprotein;
NMDAR, N‐methyl‐d‐asparate receptor; LGI1, Leucine-rich glioma-inactivated protein 1; DPPX, dipeptidyl-peptidase-like protein-6; Caspr2, contactin-associated glycoprotein2; mGluR5,
metabotropic glutamate receptor 5; GABA-B, gamma aminobutyric acid receptor B; N/A, not available.
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rituximab arm but the difference was not significant. This clinical
difference between MuSK and AChR MG is reflected in
autoantibody titers post-rituximab. Most patients with MuSK
MG receiving rituximab show marked decline in MuSK
autoantibody titer (7–9, 20). In contrast, titer decline in AChR
MG is variable and in many patients is less pronounced (9, 11–
14). Interestingly, the intensity of rituximab induction seems to
be proportionate to the durability of the response of MuSK MG
patients (262).

In parallel, cellular approaches have also contributed to
deciphering of the short- or long-lived nature of ASCs in MG.
In AChR MG, cultured bone marrow cells produced higher
concentrations of AChR autoantibodies compared to
peripheral blood, thymus, and lymph node lymphocytes, thus
providing direct evidence for LLPC involvement in autoantibody
production (221). Moreover, the presence of GCs in the thymus
of early onset AChR MG patients underscores the ability to
produce LLPCs (222). Of note, such thymic hyperplasia is not
present in MuSK MG (263). The ability of thymic cells to
produce AChR autoantibodies is well documented with
different approaches (221, 223–225) and the contribution of
LLPCs to this production is based on indirect observations,
such as the absence of HLA-DR expression of some ASCs
(225). Thymic ASCs can potentially survive in the thymus
through constitutive stimulation by autoreactive T cells, and
AChR-specific T cells have been found in the periphery of MG
patients (264). In MuSK MG, evidence points to the presence of
antigen-specific ASCs within the peripheral SLPB compartment.
First, cultures of CD3- CD14- CD19med/+ IgD- CD27hi CD38hi

SLPBs from the peripheral blood of MuSK MG patients
produced MuSK autoantibodies (226). Second, IgG4 and IgG3
MuSK-specific monoclonal autoantibodies were able to be
produced from the CD3- CD14- CD19med/+ IgD- CD27hi

CD38hi SLPB fraction with the use of complementary single-
cell sorting strategies (213, 226, 265). While this evidence for the
presence of MuSK-specific SLPBs in MuSK MG is strong, the
presence of MuSK-specific LLPCs cannot be excluded. Taken
together, data point to autoantibody production that relies more
on SLPBs in the predominantly IgG4 MuSK MG than in the
predominantly IgG1 AChR MG, where the presence of antigen-
specific LLPCs is well documented.
AQUAPORIN-4 NEUROMYELITIS OPTICA
SPECTRUM DISORDER

In NMO and NMOSD with IgG1 autoantibodies against
aquaporin-4, rituximab has demonstrated remarkable clinical
efficacy (229, 230). Titer response to B cell depletion with
rituximab, however, has been variable. In a report about three
patients, rituximab infusions led to parallel decreases in CD19+

count and AQP4 autoantibody titer. The response did not lead to
total eradication of autoantibodies and was not particularly
prolonged, since titers increased again along with CD19+ B
cells after approximately one to one-and-a-half years later
(227). This pattern was corroborated in a single patient where
Frontiers in Immunology | www.frontiersin.org 8
AQP4 antibodies were tested in nine different centers for
validation purposes (266). In subsequent reports, titers for
seven to thirteen patients were reported as a function of time,
and responses to rituximab were mixed: autoantibody titers were
refractory to rituximab in some patients, dropping in response to
rituximab in others, and autoantibodies were beneath the level of
detection in a third group (229, 230). A further study of the titers
of five AQP4+ patients demonstrated a transient and incomplete
response of titers to rituximab in three patients and a complete
lack of response in the remaining two (228). Collectively these
data point to variable titer responses and therefore to the
presence of both AQP4-specific SLPBs and LLPCs.

Cellular approaches, both histopathological and ex vivo bulk
and single-cell, have added important pieces of information on
the nature of ASCs. First, biopsy and autopsy CNS studies have
shown (i) perivascular B cells to a varying degree in addition to T
cells (231, 267, 268); (ii) perivascular CD138+ cell infiltrates in one
patient (232); and (iii) IL-6 transcripts in another patient (269).
Second, peripheral blood CD19+ CD27hi CD38hi SLPBs were
shown to increase in AQP4 autoantibody-positive NMO patients,
more so during relapses. Importantly, these cells were able to
produce AQP4 autoantibodies when cultured in the presence of
IL-6, a cytokine also known to be increased in NMO relapses
(270). These results were not reproducible in a follow up study,
but it employed frozen cells, which could have impacted the
viability of ASCs (234). Third, in a study of single CSF B cells from
an early NMO patient, 3.7% of the CSF lymphocyte population
was CD19+ CD138– B cells, and 0.9% were CD138+ ASCs; most of
the CD138+ CSF ASCs (70.5%) were CD19+ CD138+ SLPBs, the
rest were CD138+.CD19- LLPCs. Production of monoclonal
antibodies from these mostly IgG1 (and rarely IgG2) CD138+

SLPBs or LLPCs demonstrated AQP4 specificity and somatic
mutations (235). Moreover, AQP4 CSF SLPBs were found to be
clonally related to peripheral plasmablasts as well as peripheral
memory cells (271, 272). Of note, the involvement of IL-6, a
cytokine that promotes GC formation as well as ASC survival, is
further supported by the use of the anti-IL-6 receptor antibody
tocilizumab in rituximab-resistant, aggressive cases of NMO
(273). Interestingly, treatment of an AQP4 NMO patient with
tocilizumab led to reduction in the frequency of CD19int CD27hi

CD38hi SLPBs and anti-AQP4 antibody titer within one month of
treatment (274). Taken together, data from serological and
cellular approaches support a role for both short- and long-
lived ASCs in AQP4 NMOSD pathology.
MYELIN-OLIGODENDROCYTE
GLYCOPROTEIN ANTIBODY DISEASE

The pathological roles of anti-MOG IgG1 antibodies are not fully
understood, and some MOG antibody disease (MOGAD)
patients exhibit high titers of autoantibodies with pathogenic
properties, while other patients—along with healthy and disease
controls—exhibit lower titers (275, 276). Of note and in contrast
to AQP4 NMOSD, clinical response of MOGAD patients to
rituximab is modest, with up to a third of patients relapsing
June 2021 | Volume 12 | Article 686466
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despite full depletion of peripheral B cells (236, 277–279).
Currently there are no reliable predictors of inadequate
response to rituximab in MOGAD patients, and the post-
rituximab pattern of memory B-cell compartment population
did not differ between responders and non-responders (236). In a
case series of 16 MOGAD patients who received rituximab, mean
fluorescence intensity (MFI) in the flow cytometric autoantibody
detection cell-based assay decreased in most patients, while
MOG antibodies remained detectable, which suggests a role for
both SLPBs and LLPCs in MOG-IgG production (236). Of note,
MFI could be viewed as a correlate of autoantibody titer. In
pathological investigations, CD20+ B cells have been identified in
the brain of MOGAD patients (237). Moreover, unlike patients
with AQP4-NMOSD, where SLPBs were elevated, peripheral
blood SLPBs were not elevated in the active phase of MOGAD
patients (238). Taken together, serological and cellular data point
to the presence of a mixed (both short- and long-lived)
population of MOG autoantibody-secreting cells.
NMDAR ENCEPHALITIS

Antibodies against the N‐methyl‐d‐aspartate receptor (NMDAR)
are predominately of the IgG1 subclass (280). Patients with
NMDAR encephalitis generally respond to rituximab, and in one
case titers were undetectable post-treatment (152, 239, 280–282). In
an effort to enhance the effect of rituximab induction treatment, two
non-randomized trials observed clinical benefit from repeated
monthly dosing of rituximab in addition to induction dosing
(283); and the addition of tocilizumab to rituximab (240). Several
investigations of cellular immunopathology have been applied in
NMDAR encephalitis. First, a histopathological study of autopsy
and biopsy material revealed the presence of B cells and CD138+

cells in perivascular regions and interstitial spaces that could provide
a local source of antibody production, as well as the presence of T
cells and the absence of complement deposits and neuronal loss
(153, 160, 162, 241). Moreover, a histopathological study of
teratomas (seen in 20% of patients with NMDAR encephalitis)
has shown GC-like structures harboring CD3+ T cells, CD20+ B
cells, CD19+ CD27hi CD38hi SLPBs, and CD20- CD138+ plasma
cells (284, 285). Importantly, NR1 NMDAR subunit expression was
high in teratoma B cells, and teratoma-derived lymphocytes were
able to produce NMDAR autoantibodies when stimulated
in culture.

Two studies analyzed the intrathecal cellular response in
NMDAR encephalitis with the use of flow cytometric cell sorting
and construction of monoclonal antibodies from single cells (241,
243). Cells that were NMDAR-specific were identified as IgG3 CD3-

CD14- CD16- CD20+ IgD- CD27+ memory B cells, IgG1 and IgG2
CD3- CD14- CD16- CD27+ CD38+ ASCs (could be both SLPBs or
LLPCs) (243) and CD19+ CD138+ SLPBs (241). NMDA specificity
was associated in most, but not all, cases with somatic mutations,
which indicates some degree of affinity maturation. Interestingly,
CD19+ CD138+ SLPBs disappeared from the CSF after
immunotherapy with methylprednisolone, mycophenolate and
azathioprine (241). These collective data suggest involvement of
Frontiers in Immunology | www.frontiersin.org 9
IgG1, IgG2, and IgG3, both SLPBs and LLPCs, in the production of
the pathogenic NMDAR autoantibodies.
IgLON5 DISEASE

In IgLON5 disease, patients harbor autoantibodies of all four IgG
subclasses, with some studies reporting a predominance of IgG4
and others of both IgG1 and IgG4 (163, 164, 286–288). In vitro
experiments have shown that IgG1 (not IgG4) antibody binding
to IgLON5 results in protein internalization and an overall
decrease of neuron surface IgLON5 levels. This was not
reversed when IgLON5 antibodies were removed, thereby
suggesting permanent destruction of the protein’s biological
function (286). In accordance, clinical data demonstrate better
effectiveness of early compared to late immunotherapy (164,
288–290). Different series report rituximab use in 5–80% of
IgLON5 patients (163–165, 288, 289, 291), and the response rate
was calculated by a recent meta-analysis at 37.5% (292). More
insight is needed about whether this variable response to
rituximab is associated to the depletion of certain subclasses
and whether prompt administration positively impacts patient
outcome. In isolated cases where brain pathology was performed,
few brain-infiltrating B cells were detected and no CD138
staining was reported (166, 244, 245).
AUTOIMMUNE ENCEPHALITIS WITH
LGI1 AUTOANTIBODIES

Leucine-rich glioma-inactivated protein 1 (LGI1) antibodies are
mainly of IgG4 subclass (168). A study of rituximab treatment in
six patients with LGI1 encephalitis resulted in clear improvement
in only two patients. However, the treatment might have been
applied too late in the course of the disease in refractory cases
(247, 293). The response of autoantibody titers though was a
marked reduction in all cases but one, where the decline was
mild. These data are in agreement with titer responses in other
IgG4 autoantibody-mediated disorders. Immunopathology
studies in brain samples from human patients and cats with
LGI1 encephalitis indicate participation of CD20+ B cells in CNS
inflammatory infiltrates, as well as marked IgG and complement
deposition (162, 294). The presence of complement deposition
points to the putative role of other, coexisting, non-IgG4
antibodies as complement activating factors, or alternatively,
points to the ability of IgG4 antibodies to mobilize
complement despite classical views, possibly via altered IgG4
glycosylation and the lectin pathway (295–299), or IgG4
aggregation (79).

Single-cell approaches from the CSF of patients with long-
lasting progressive LGI1 encephalitis identified IgG1, IgG2, and
IgG4, LGI1-specific CD3- CD14- CD16- CD20+ CD27+ memory
B cells and CD3- CD14- CD16- CD138+ ASCs (could be both
SLPBs or LLPCs); V gene sequences of the LGI1-specific B cells
were mutated (248). In a separate study, application of BCR NGS
on both sides of the blood-brain barrier provided strong evidence
June 2021 | Volume 12 | Article 686466
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in favor of GC reactions within the CNS. However, this was not
shown for LGI1-specific B cells (300). Taken together, the
serological evidence points to a predominance of short-lived
LGI1 autoantibody-producing cells over LLPCs, while cellular
data are not conclusive for the presence of a particular cell type.

Chronic inflammatory demyelinating
polyradiculoneuropathy
In CIDP with predominantly IgG4 autoantibodies against the
paranodal components neurofascin-155 (NF155), contactin-1, or
contactin-associated protein 1 (Caspr1), rituximab has been
applied to corticosteroid and IVIg-refractory cases (249).
Albeit limited by the low N given the rarity of the disease,
antibody titers dropped significantly and rapidly in two patients
(one with NF155 and one with contactin1 autoantibodies) after
rituximab treatment, which correlated with marked clinical
improvement. In a third patient (with NF155 autoantibodies),
titers dropped but remained high, and a second rituximab
infusion was required, after which autoantibodies were
undetectable. In a larger cohort of 13 patients (8 with NF155
and 5 with contactin1 antibodies), rituximab administration
resulted in a dramatic reduction of autoantibody titer that
correlated with clinical improvement (250). One further study
reported on titer drop (from 1:32,000 to 1:4,000) and clinical
improvement after rituximab administration in a NF155 patient,
even though the titers remained high (301). These studies
provide evidence for a similar pattern of response in
autoantibody-mediated CIDP that resembles MuSK MG.
OTHER AUTOANTIBODY-MEDIATED
ENCEPHALITIS SYNDROMES

In progressive encephalopathy with rigidity and myoclonus
(PERM), where IgG1 autoantibodies against the glycine
receptor have been found, rituximab has been associated with
some improvement and lack of relapse (155, 302). In encephalitis
with predominantly IgG1 autoantibodies against the GABA-B
receptor (191), both partial and full response to rituximab have
been noted in two patients (303). In encephalitis with
predominantly IgG1 autoantibodies against the GABA-A
receptor (187), rituximab has been administered (189), and a
range of responses from full recovery to death has been
documented (188, 304). Of interest, in a study of three patients
with GABA-B encephalitis, CD19+ CD138+ SLPBs were seen in
the CSF, along with CD138+ cells (that could be SLPBs or LLPCs)
perivascularly in the brain parenchyma (254).

In dipeptidyl-peptidase-like protein-6 (DPPX) encephalitis,
autoantibodies are of both the IgG1 and IgG4 subclass, but
pathogenicity might be linked to IgG1 and its cross-linking
functions (195, 196). In contactin-associated protein-2 (caspr2)
encephalitis, autoantibodies are predominantly of the IgG4
subclass (170). In a metabotropic glutamate receptor type 5
(mGluR) encephalitis case series of 11 patients (199),
autoantibodies were predominantly IgG1, but the co-existence of
IgG1 with IgG4 autoantibodies has been noted in one case (253).
Frontiers in Immunology | www.frontiersin.org 10
Autoantibody titer data in response to rituximab treatment are
available in all three disorders. In DPPX encephalitis, a significant
clinical response to rituximab (195, 305) along with titer reduction
(251) has been observed. In caspr2 encephalitis, a dramatic
improvement along with autoantibody elimination has been
observed (252), however post rituximab relapse has also been
noted (306). Favorable clinical response to rituximab in Caspr2
encephalitis has furtherbeenobserved in larger case series (170, 307).
In mGluR encephalitis, rituximab has been associated with an
improved course in two patients with IgG1 and IgG3
autoantibodies (199), with relapse upon rituximab discontinuation
in a patient where the subclass was not specified (308), and with
significant improvement along with titer reduction in a patient who
originally harbored IgG1 and IgG4 autoantibodies (253). Overall,
both clinical and titer responses seemtobemore favorable in the case
of IgG4 autoantibodies as in the case of Caspr2, and good responses
in caseswith IgG1 andmixed subclass autoantibodies have also been
frequently noted; however, the limited number of patients given the
rarity of the syndromesmakes general conclusions difficult to draw.
NON-NEUROLOGICAL AUTOIMMUNE
DISORDERS ASSOCIATED WITH
IGG4 AUTOANTIBODIES

The paradigm we discuss for neurological diseases associated with
or mediated by predominantly IgG4 autoantibodies is not
confined to the nervous system. CD20+ B cell depletion therapy
has been applied in a plethora of non-neurological diseases
associated with IgG4 autoantibodies such as pemphigus vulgaris
(PV), membranous nephropathy (MN), and thrombotic
thrombocytopenic purpura (TTP). In all these diseases, B cell
depletion has resulted in marked clinical improvement and rapid
decrease in autoantibody titers, similar to IgG4 autoantibody-
mediated neurological disorders (309–313). A specific mention
should be given to PV, which was the first autoimmune disease
described as predominantly IgG4 autoantibody-mediated and has
been extensively studied. High quality data from a prospective,
multicenter, open-label, randomized trial of continued rituximab
administration in PV demonstrated complete and sustained
remission at the end of the second year of follow-up in 89% of
46 patients who received rituximab; rapid normalization of anti-
desmoglein-3 (DSG-3) antibody titers post B cell depletion was
also shown, thereby underscoring the short-lived nature of ASCs
producing anti-DSG-3 autoantibodies (314, 315). In TTP,
rituximab induction therapy of 40 patients resulted in a rapid
and sustained recovery of platelet counts and, in parallel, a rapid
and sustained decrease of pathogenic, predominantly IgG4 anti-
A disintegrin and metalloproteinase with thromboSpondin‐1
motifs; 13th member of the family (ADAMTS13) autoantibody
titers (310). In membranous nephropathy, rituximab
administration resulted in significant decline or disappearance
of the predominantly IgG4 (likely pathogenic) autoantibodies
against phospholipase A2 receptor in 68% of 35 patients within 12
months, correlating with partial or complete clinical remission
(311). Taken together, these studies show that the short-lived
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nature of autoantibody-secreting cells (as evidenced by post-
rituximab autoantibody titer data) in diseases associated with
IgG4 autoantibodies is not a phenomenon restricted to the
nervous system.
DISCUSSION

When collectively examining the titer of pathogenic autoantibodies
against extracellular antigens (or correlates of an antibody titer on a
flow cytometric cell-based assay like MFI), one can conclude that in
disorders where IgG4 autoantibodies are prevalent, there is a
marked decrease post-rituximab administration. This is the case
in MuSK MG, in CIDP with antibodies against NF155 or
contactin1, and in autoimmune encephalitis with LGI1 or Caspr2
antibodies, and also extends beyond the nervous system to disorders
such as PV, TTP and MN. This is a clear indication that in these
diseases, autoantigen-specific ASCs are short-lived. Further,
decreases in post-rituximab titers are seen in disorders where
IgG1 and IgG4 autoantibodies coexist, such as DPPX and
mGluR5 encephalitis. In disorders where IgG1 autoantibodies are
prevalent, rituximab treatment affects a variable titer response,
meaning that in some patients, titers are refractory, in some
patients, titers mildly decline, and in other patients the reduction
of titer or MFI is more pronounced. This variable response is noted
in both AChRMG and AQP4NMO andNMOSD, but inMOGAD
MFI decrease seems to be consistent. These results point to the
presence of antigen-specific LLPCs in a significant number of
patients harboring IgG1 autoantibodies, but also the presence of
SLPBs. It should be noted that these studies are complicated by the
fact that the disorders in question are rare and therefore the N is
low. Moreover, titers are not systematically recorded pre- and post-
rituximab. As titers offer valuable information about treatment
responses, every effort should be made to record titers
more frequently.

When collectively interpreting data from experiments that more
directly examine autoantigen-specific ASCs, one can conclude that
in disorders with IgG4 autoantibodies, the presence of LLPCs is not
definitively shown. In MuSK MG, peripheral blood antigen-specific
ASCs have been shown to have a SLPB phenotype, whereas in LGI1
encephalitis, CSF antigen-specific ASCs can express CD138.
However, it was not specified whether these cells retain CD19
expression. Therefore, these cells could be either SLPBs or LLPCs,
which means that the presence of some LLPCs in IgG4-mediated
disorders cannot be excluded. In contrast, in diseases with IgG1
autoantibodies there is more definitive evidence for the presence of
LLPCs. In AChR MG, production of autoantibodies from bone
marrow cells and the presence of thymic GCs and HLA-DRlow

antigen-specific cells all point to the existence and ability to generate
autoantigen-specific LLPCs. In NMDAR encephalitis, the presence
of GC-like structures and CD20- CD138+ ASCs in ovarian
teratomas also point to the existence of and ability to produce
LLPCs. Moreover, CD138+ ASCs have been observed in the CNS
and the CSF of AQP4 NMOSD, NMDAR and GABA-B
encephalitis patients, and in the case of AQP4 and NMDAR, the
antigen specificity of the CSF ASCs was demonstrated.
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Unfortunately, and similarly to the case of the IgG4 LGI1
encephalitis, a clear absence of CD19/CD20 staining and
negativity prevents the definitive characterization of these cells as
LLPCs. In such instances, use of an additional flow cytometric
marker in combination with index sorting and the use of an
additional immunohistochemical stain would permit capture of
this mechanistically valuable piece of information.

In conclusion, it seems that the paradigm of the predominantly
IgG4 MuSK and predominantly IgG1 AChR MG can be
extrapolated to other autoimmune neurological (and non-
neurological) disorders. Moreover, in disorders with IgG1
autoantibodies, the generation of antigen-specific LLPCs seems to
occur to a greater extent as compared to IgG4 disorders. It should be
noted, however, that a significant degree of variability exists and that
both antigen-specific LLPCs can be generated in some patients with
IgG4 autoantibody-mediated disorders, and SLPBs—perhaps more
frequently—can be significant producers of autoantibodies in some
patients with IgG1 disorders. Variability in relation to the nature of
autoantibody-producing cells could also occur at different times in
the same patient. This variability underscores the need for
personalized medical approaches. Exceptions aside, a generally
reduced ability to establish LLPCs in IgG4 responses is strongly
supported by immunological observations on the longevity of ACSs
from the field of allergy (both in humans and animal models) and
IgG4-related disease. It could be the case that IgG4 autoantibody-
mediated autoimmunity constitutes a mainly extrafollicular
response, but follicular hyperplasia (in the absence of pathogenic
antigen-specificity) has been observed in IgG4-RD (316). The
tendency to generate predominantly IgG1 or IgG4 autoimmune
responses may stem fromHLA and/or non-HLA genetic differences
(317, 318), but incomplete GWAS data (due to disease rarity) would
have to be complemented by functional studies to better support
such an argument. On the other hand, many aspects of IgG1 and
IgG4 autoimmunity are similar, such as B cell tolerance defects
resulting in autoreactive naïve B cells (234, 319–321) and T cell-
assisted autoantigen affinity maturation, as evidenced by the
presence of somatic mutations in most ASCs. In further support
of the role of T cell help, autoreactive T cells have been observed in
both IgG1 and IgG4 autoantibody-mediated disorders (264,
322, 323).

Differences between IgG4 and IgG1 autoimmune responses
are not clinically trivial and can inform therapeutic decisions,
especially since IgG4 autoantibody pathology responds
impressively well to rituximab induction. More specifically, in
IgG4 autoantibody-mediated disorders, prompt induction with
rituximab 375 mg/m2 once a week for 4 to 6 weeks can result in a
long-lasting favorable response and is highly recommended. The
same induction can be applied in IgG1 disorders. It is important
to obtain a pre-rituximab baseline and a post-B cell depletion
autoantibody titer in all patients at regular intervals. In the case
of a persistence of high titers of either IgG1 or, less frequently,
IgG4 autoantibodies, which indicates the presence of LLPCs,
repeated rituximab (or other CD20-depleting drug) dosing can
be applied to enforce a deeper depletion of lymph node B cells
and prevent the formation of new LLPCs, while existing ones
slowly wane. An alternative strategy in such refractory cases is
June 2021 | Volume 12 | Article 686466
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the administration of inebilizumab (or other CD19 depleting
drug), which would neutralize CD19+ CD20- ASCs that lie more
towards the LLPC end of the ASC spectrum, or the application of
daratumumab, an anti-CD38 agent more broadly targeting
LLPCs. In the case that follicular or extrafollicular reactions
within the CNS are suspected (e.g., based on advanced 7T MRI),
it would be reasonable to apply an agent that, in contrast to
monoclonal antibodies, can penetrate the blood-brain barrier
and target B cells, such as a Bruton tyrosine kinase inhibitor.
Finally, the application of new therapeutic avenues such as
blockade of B-T cell interaction (CD40L) or IL-4 in
polyrefractory cases warrants investigation. Ultimately and
ideally, all these novel approaches should be tested in clinical
trials prior to routine application.

Our review is not without limitations. First, many of the studies
we reference were biased by the use of other immunosuppressants
in addition to rituximab and did not have appropriate controls
groups, since it is extremely hard to perform randomized
controlled trials for rare disorders. Moreover, many of the
diseases are aggressive and life-threatening and justify use of
more than one immunosuppressant. Second, many of the studies
presented and discussed relied on peripheral blood samples,
which are easily accessible but not always representative of
immunopathological procedures within secondary lymphoid
organs or potential tertiary lymphoid structures within the CNS
and PNS.

Overall, the differences between IgG1 and IgG4 autoimmune
responses lead to many interesting new questions that could be
explored in future investigations. Is the IgG4 autoimmune
response a purely extrafollicular one? Can secondary or tertiary
lymphoid structures be located in IgG4 autoantibody-mediated
disorders? What are the different features of IgG1 and IgG4
Frontiers in Immunology | www.frontiersin.org 12
response in the human lymph node? Does the memory cell
compartment differ in IgG1 and IgG4 disorders? Is chronic
antigenic stimulation necessary for emergence of autoimmunity
of the IgG4 type and if yes, is it amenable to tolerization
strategies? In IgG1 autoimmune responses, can LLPCs survive
in the brain as they do in the bone marrow, and if yes, how can
one target all LLPC niches therapeutically? Answering these
questions would involve a detailed investigation of IgG1 and
IgG4 differential maturation pathways in either extrafollicular
spaces or in GC and would improve our understanding of disease
mechanisms as well as facilitate development of new therapeutic
avenues. New concepts could involve drugs that target crucial
cellular interactions that are perceived to be responsible for B cell
differentiation and maturation—in particular the T cell and B cell
interaction, always keeping in mind that it is the aberrant and not
the physiological response that needs to be stopped.
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