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Development and validation of a lung graph–based machine 
learning model to predict acute pulmonary thromboembolism on 
chest noncontrast computed tomography
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Background: Computed tomography pulmonary angiography (CTPA) is a first-line noninvasive method 
to diagnose acute pulmonary thromboembolism (APE); however, whether chest noncontrast CT (NC-
CT) could aid in the diagnosis of APE remains unknown. The aim of this study was to build and evaluate 
a holistic lung graph-based machine learning (HLG-ML) using NC-CT for the diagnosis of APE and to 
compare its performance with that of radiologists and the YEARS algorithm. 
Methods: This study enrolled 178 cases (77 males; age 63.9±16.7 years) who underwent NC-CT and 
CTPA in the same day from January 2019 to December 2020. Of these patients, 133 (75% of cases; 58 males; 
age 65.4±15.6 years) were placed into a training group and 45 (25% of cases; 19 males; age 59.6±19.2 years) 
into a testing group. The other 43 cases (18 males; age 62.8±20.0 years) were used to externally validate 
the model between January 2021 and March 2022. A HLG was developed with a pulmonary radiomics 
descriptor derived from NC-CT images. The approach extracted local radiomics features and encoded 
these local features into a radiomics descriptor as a characterization of global radiomics feature distribution. 
Subsequently, 8 ML models were trained and compared based on the radiomics descriptor. In the validation 
group, area under the curves (AUCs) of the HLG-ML model in the diagnosis of APE were compared with 
those of the 3 radiologists and the YEARS algorithm.
Results: Among the 8 ML models, gradient boosting decision tree demonstrated the best classification 
performance (AUC =0.772) on the training set. In the testing set, the AUC of gradient boosting decision 
trees was 0.857 [95% confidence intervals (CIs): 0.699–0.951]. In the validation set, the performance of 
gradient boosting decision tree (AUC =0.810; 95% CI: 0.669–0.952; Youden index =0.621) outperformed 3 
radiologists (AUC =0.508, 95% CI: 0.335–0.681, Youden index =0.016; AUC =0.504, 95% CI: 0.354–0.654, 
Youden index =0.008; AUC =0.527, 95% CI: 0.363–0.691, Youden index =0.050) and the YEARS algorithm 
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Introduction

Venous thromboembolism, which manifests as deep venous 
thrombosis (DVT) or pulmonary thromboembolism (PE), 
is globally the third most frequent acute cardiovascular 
syndrome behind myocardial infarction and stroke (1,2). 
Clinical probability assessments such as Wells score (3), 
revised Geneva score (4), and the YEARs algorithm (5) have 
been developed to predict acute PE (APE); however, the 
Wells score and the revised Geneva score cannot always 
be applied to critical patients, as their symptoms and signs 
are often nonspecific, making it difficult to distinguish 
APE from other emergencies (6); meanwhile, the YEARs 
algorithm contains a subjective item, which is highly 
influenced by the experience of the physician (5).

Computed tomography pulmonary angiography 
(CTPA) is  the f irst-l ine noninvasive protocol for 
detecting and evaluating APE. However, since patients 
with APE have different clinical manifestations from 
mild unspecific symptoms and signs to sudden death, 
CTPA may not be completed upon admission even in the 
emergency department. Moreover, not every patient is 
suitable for a CTPA scan, especially those who may have 
contraindications to contrast agent, renal dysfunction, or 
high-risk unstable hemodynamic conditions. In addition, 
increasing use of CTPA has led to the unnecessary risk 
of increased radiation exposure and contrast medium-
induced nephropathy (7). In contrast, chest noncontrast CT 
(NC-CT) is a convenient and cost-effective examination 
method which is more often performed for the evaluation 
of nonspecific chest symptoms. However, the methodology 
and value of NC-CT in the diagnosis of APE have not been 
extensively reported.

Radiomics and deep learning (DL) or machine learning 
(ML) have been used to improve the diagnosis, therapy 
planning, and prognosis evaluation of tumors (8-13). 

Radiomic features derived from conventional medical 
images can provide additional information beyond the 
scope of visual perception. Recently, Dicente Cid et al. (14) 

proposed a holistic lung graph (HLG) model that could 
quantify the tissue texture in the lung parenchyma, merging 
local and global radiomics of the lungs to classify patients 
with vascular pathologies. Based on texture analysis on 
CTPA images, Jimenez-Del-Toro et al. (15) developed a 
lung graph model to differentiate patients with chronic 
thromboembolic pulmonary hypertension (CTEPH) 
from those with PE who did not develop pulmonary 
hypertension. ML is a field that focuses on the learning 
aspect of artificial intelligence (AI) by developing algorithms 
that best represent a set of data and has been widely used in 
disease diagnosis and evaluation.

To the best of our knowledge, no study has examined the 
application of HLG-based ML (HLG-ML) model for NC-
CT images to diagnose APE. In this study, our objective 
was thus to develop a HLG model for the extraction, 
integration, and selection of the holistic pulmonary 
radiomics descriptors on NC-CT images and then to build 
an HLG-ML model based on the distribution of radiomics 
feature rather than pure radiomics feature. Specifically, in 
this model, diverse local radiomics features are extracted 
from the lung atlas, forming multiple lung graphs, and 
each lung graph is encoded into a radiomics descriptor 
as a marker of global radiomics feature distribution for 
model building. To illustrate the effectiveness of the HLG-
ML model, its performance was compared with that of 
radiologists and the YEARS algorithm (5).

Methods

Study cohort and design

This single-center, retrospective cohort study was conducted 

(AUC =0.618; 95% CI: 0.469–0.767; Youden index =0.237).
Conclusions: Compared to all 3 radiologists and the YEARS algorithm, the proposed HLG-based 
gradient boosting decision tree model achieved a superior performance in the diagnosis of APE on the NC-
CT and may thus serve as a valuable tool for physicians in the diagnosis of APE. 
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837 cases with CTPA

Excluded 636 cases without the chest 
non-contrast CT in the same day 

Excluded:
• 6 cases with CTPA in poor imaging quality
• 5 cases with chronic thromboembolic 

pulmonary hypertension
• 3 cases with chronic pulmonary embolism
• 1 case with Behcet’s disease
• 4 cases with Takayasu arteritis
• 3 cases with pulmonary cement embolism
• 1 case with choriocarcinoma pulmonary 

embolism

201 cases with CTPA and the chest 
non-contrast CT in the same day 

178 included  cases with CTPA and 
non-contrast CT 

133 cases in training group 45 cases in testing group

Figure 1 Flowchart of participant selection. CTPA, computed tomography pulmonary angiography; CT, computed tomography.

in accordance with the Declaration of Helsinki (as revised 
in 2013) and was approved by the Institutional Ethics Board 
of China-Japan Friendship Hospital (No. 2023-KY-070). 
Individual consent for this retrospective analysis was waived. 
First, we retrospectively screened patients who underwent 
CTPA from January 2019 to December 2020 on the Picture 
Archiving and Communication System (PACS; Carestream 
Health, Rochester, NY, USA) in our hospital. Second, we 
included patients who underwent chest NC-CT and CTPA on 
the same day. Third, among the included cases, 75% and 25% 
of cases were randomly assigned to a training group and testing 
group, respectively. Then, patients who underwent chest NC-
CT on the same day of CTPA on PACS between January 
2021 and March 2022 were placed into a validation group. 
Subsequently, patients with poor image quality on CTPA (e.g., 
motion artifacts due to without breath-holding or suboptimal 
enhancement leading to low contrast enhancement of the 
pulmonary artery) were excluded. Patients who, according to 
their electronic medical records, were diagnosed with chronic 
PE (CPE), CTEPH, nonthrombotic pulmonary embolism, 
pulmonary arterial sarcoma, or Takayasu arteritis were 
excluded. In the validation group, the YEARS algorithm (5) 

was applied to predict the possibility of APE. Figure 1 provides 
a flowchart detailing how cases in training and testing groups 
were selected.

Chest CT scan

All patients underwent chest NC-CT and CTPA on 
the same day. Chest NC-CT was obtained in the helical 
model in the craniocaudal direction with multidetector 
CT scanners (Aquilion ONE TSX-301C/320, Toshiba, 
Tokyo, Japan; Brilliance iCT/256, Philips, Amsterdam, The 
Netherlands). The whole chest was craniocaudally scanned 
from the lung apex to the lowest hemidiaphragm during a 
single breath-hold. The scan parameters were as follows: 
tube voltage 100–120 kVp, tube current 100–300 mAs, 
section thickness 1.25–2.50 mm, table speed 39.37 mm/s, 
and gantry rotation time 0.8 s. The mean value of volume 
CT dose index (CTDIvol) was 4.51±2.63 mGy, and the dose 
length product (DLP) was 113.55±61.42 mGy·cm.

CTPA was performed in in the helical model in the 
craniocaudal direction under the following parameters: 
tube voltage 100–120 kVp, tube current of 100–300 mAs, 
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section thickness 0.625–1 mm, table speed 39.37 mm/s, 
gantry rotation time 0.8 s, and reconstruction increment 
1–1.25 mm. A soft-tissue reconstruction kernel was used. 
A mechanical injector was used for intravenous bolus 
injection of iopromide (370 mg/mL; Ultravist, Bayer, 
Leverkusen, Germany) at a flow rate of 5.0 mL/s. For 
optimal intraluminal contrast enhancement, the automatic 
bolus-tracking technique ensured that the region of interest 
(ROI) was positioned at the level of the main pulmonary 
artery with a predefined threshold of 100 Housefield unit 
(HU), and a fixed delay of 5 seconds was employed for data 
acquisition. The mean value of CTDIvol was 9.13±2.01 
mGy, and the DLP was 318.07±37.61 mGy·cm.

HLG model based on NC-CT

Region-of-interest segmentation
NC-CT images were first preprocessed using isometric 
sampling with a 1×1×1 mm3 windowing operation, a window 
level of −600 HU, and a window width of 1,500 HU.  
Subsequently, a pipeline composed of 2 steps was performed 
for obtaining a specific artificial lung per patient, which was 
considered to be the ROI. Initially, lung segmentation was 
automatically performed with a DL-based segmentation 
method on InferRead CT Lung (version R3.12.3; 
Infervision Medical Technology Co., Ltd., Beijing, China) 
to obtain a lung mask for each piece of NC-CT data. Then, 
each lung mask was geometrically converted into an atlas 
containing 36 subregions (14), which was first introduced 
by Zrimec et al. (16,17). The creation of the lung atlas is 
shown in Figure 2. In this study, ROI segmentation was 
implemented using a subregion mask from the atlas to select 
the voxels within the lung field.

Radiomics-based lung graph construction
For each segmented subregion ri from the lung field, 
radiomics features were extracted by using PyRadiomics 
(version 3.0.1; https://pyradiomics.readthedocs.io) in the 
Python environment (version 3.7.3, Python Software 
Foundation; https://www.python.org/). During feature 
extraction, 2 groups of filter operations, Laplacian of 
Gaussian (LoG) and wavelet decomposition, were applied 
on each segmented subregion and 7 different classes of 
radiomics features, including first-order statistics, 3D shape-
based features, gray-level cooccurrence matrix (GLCM), 
gray-level run-length matrix (GLRLM), gray-level size zone 
matrix (GLSZM), neighboring gray-tone difference matrix 
(NGTDM), and gray-level dependence matrix (GLDM), 
were extracted from each copy of the processed and original 
ROI segmentations. The details of feature extraction 
using PyRadiomics are available in the literature (18), and 
a detailed description of each radiomics feature can be 
found online (https://pyradiomics.readthedocs.io). Overall, 
1,004 radiomics features were extracted from each ROI 
segmentation, which contained 187 first-order statistical 
features, 14 3D shape features, 253 GLCM features, 176 
GLRLM features, 165 GLSZM features, 55 NGTDM 
features, and 154 GLDM features. For the lung field as a 
whole, a lung graph for a radiomics feature fj was defined 
as the set with N (N≤36) regional feature nodes fj = {fj(r1), 
fj(r2), ..., fj(rN)} in this study, and thus 1,004 lung graphs were 
built.

Pulmonary radiomics descriptor integration
With consideration to the data derived from patients 
who had undergone lung resection, the dimension of 
such a feature vector was considered to be 36 at most. 

CT scan Lung mask Lung atlas

Figure 2 Creation of the lung atlas. With a sequence of CT slices from a patient, the lung mask was first automatically obtained using the 
lung segmentation method. The lung atlas was then created by geometrically dividing the lung mask. CT, computed tomography.

https://pyradiomics.readthedocs.io
https://www.python.org/
https://pyradiomics.readthedocs.io
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Lung atlas

Radiomics features

Radiomics features

Radiomics descriptor

ri

rj

Figure 3 Construction of the pulmonary radiomics descriptor. Radiomics features were first extracted from each subregion in the lung 
field. Taking a single radiomics feature as an example, its radiomics feature vector in the lung field was obtained. A cluster of statistics were 
subsequently calculated for this feature vector. The pulmonary radiomics descriptor was formed from a concatenation of statistics of all 
feature vectors.

To directly reflect the distribution of these radiomics 
features throughout the lung field, 10 common statistics 
of each feature vector were calculated: maximum value  
(s1 = max(fj)), minimum value (s2 = min(fj)), median value 
(s3 = median(fj)), 10th percentile value (s4 = percentile(fj,10)), 
90th percentile value (s5 = percentile(fj,90)), mean value  
(s6 = mean(fj)), standard deviation (s7 = std(fj)), interquartile 
range (s8 = percentile(fj,75)-percentile(fj,15)), skewness 
(s9 = skew(fj)), and kurtosis (s10 = kurt(fj)). The final 
pulmonary radiomics descriptor vector v was defined as 
the concatenation of the 10 statistics for each radiomics 
feature, as follows: v = [s(f1) || s(f2) || ... || s(f1004); s = (s1, 
s2, ..., s10)]. This concatenation resulted in the following: 

10040v∈ . The construction of the pulmonary radiomics 
descriptor is shown in Figure 3.

Dimensionality reduction of the pulmonary radiomics 
descriptor
A large number of features in the pulmonary radiomics 
descriptor vector might result in an overfitting problem, 
reducing model robustness. Hence, it was necessary to 
apply dimensionality reduction to the proposed radiomics 
descriptor in the training stage. A 3-step workflow for 
feature dimensionality reduction was adopted in this 
study. Initially, the Mann-Whitney test was used to 
conduct a significance analysis for each of the features in 
the pulmonary radiomics descriptor. These features were 
ranked according to the P values in ascending order, and the 
top 1% of the sorting features were retained for subsequent 
analysis. Subsequently, the Pearson correlation coefficient (r) 

was calculated between each pair of the remaining features. 
All pairs of features with |r|>0.85 were filtered, and the 
feature in each of these pairs with the larger P value from 
the Mann-Whitney test was removed from the feature set. 
Finally, least absolute shrinkage and selection operator 
(LASSO) regression with 5-fold cross-validation was 
applied to select features with nonzero coefficients from the 
preserved features for the diagnosis of APE.

ML model development and validation

Using the processed pulmonary radiomics descriptor 
as input, 8 ML models including Naïve Bayes, logistic 
regression, k-nearest neighbors, random forest, decision 
tree, gradient boosting decision tree, support vector 
machine, and multilayer perceptron were selected and 
fitted on the training set. Three-fold cross validation 
was performed on the training set to determine the best 
hyperparameters for each model and to select the best 
model. During training, the hyperparameters of each ML 
model were randomly assigned via grid search (Table S1).  
The area under the curve (AUC) was selected as the 
criterion for model performance evaluation. The mean of 
the AUC values during cross-validation was regarded as the 
discriminating power of the specific model using the given 
hyperparameters.

The ML model which demonstrated the best results in 
the training group (75% of cases) was then applied to the 
testing group (25% of cases). Thereafter, NC-CT scans 
of patients between January 2021 and March 2022 were 

https://cdn.amegroups.cn/static/public/QIMS-22-1059-Supplementary.pdf
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used for model validation. All modeling implementations 
were conducted in the Python environment (version 3.7.3, 
Python Software Foundation) based on the scikit-learn 
package (version 0.21.2; https://scikit-learn.org/).

Diagnostic performance of radiologists

The NC-CT images of each patient in the external group 
were independently evaluated by 3 chest radiologists with  
3 years (reader 1), 5 years (reader 2), and 15 years (reader 3) 
of experience, respectively, who were blinded to all clinical 
information and the clinical diagnosis. The diagnosis of the 
3 radiologists using NC-CT scans included definite APE 
and unsure APE.

Statistical analysis

Statistical analyses were performed using SPSS 22.0 (IBM 
Corp., Armonk, NY, USA) and MedCalc version 20.211 
(MedCalc Software Ltd., Ostend, Belgium). The clinical 
data of the included patients are expressed as the mean 
± standard deviation (SD) or median with interquartile 
range (IQR). Independent samples t test, nonparametric 
2-independent samples U test, χ2, or Fisher exact test was 
used to compare the 2 groups. The diagnostic performances 
of the 3 radiologists and the proposed HLG-ML model 
were evaluated on the validation set by using AUCs. AUCs 
were compared using the DeLong Test, and the 95% 
confidence intervals (CIs) of the AUCs were calculated. 
Sensitivity and specificity were also calculated. Interobserver 
consistency among 3 radiologists was evaluated using 
intraclass correlation coefficient (ICC). All statistical tests 
were 2-sided, and P values <0.05 were considered significant.

Results

Patient characteristics

The clinical characteristics of all patients are summarized in 
Table 1. A total of 178 cases (77 males; age 63.9±16.7 years)  
from January 2019 to December 2020 were randomly 
grouped into a training set (n=133; 58 males; age  
65.4±15.6 years) and a testing set (n=45; 19 males; age 
59.6±19.2 years). Table 2 lists the clinical characteristics of 
patients with APE and those without APE in the training 
and testing group. The D-dimer level in the APE group 

was significantly higher than that in the non-APE group 
(U=1,605.5; P<0.001), while the other clinical metrics 
were comparable (P>0.05). The other 43 cases (18 males; 
age 62.8±20.0 years) including 31 patients with APE and  
12 patients without APE between January 2021 and March 
2022 were used for external validation of the HLG-ML 
model. In the validation group, gender (χ2=1.944; P=0.163), 
age (t=–0.030; P=0.967), and body mass index (BMI; 
t=0.777; P=0.442) between the groups pf patients with APE 
and without APE were comparable; however, the D-dimer 
level in patients with APE was higher than that in patients 
without APE (U=68.5; P=0.001).

Pulmonary radiomics descriptor generation and 
dimensionality reduction

A total of 1,004 radiomics features were successfully extracted 
from each subregion split from each patient’s NC-CT images, 
yielding 1,004 multidimensional radiomics-based lung 
graphs. Following this, the higher-dimensional pulmonary 
radiomics descriptor vector for each patient was effectively 
formed. To avoid overfitting, feature dimensionality reduction 
was conducted on the pulmonary radiomics descriptors. After 
significance analysis and correlation analysis, 49 features were 
left in each radiomics descriptor. The P value of each of these 
features was less than 0.033 in the training set, and |r|<0.85. 
Subsequently, the remaining candidates in each radiomics 
descriptor vector were reduced to 19 potential features using 
LASSO regression (Figure 4). The detailed description of 
each of the selected features used in the radiomics descriptor 
vector can be found in Table 3.

Diagnostic performance of the ML model in the training 
and testing sets

The diagnostic performances of the 8 ML models are 
summarized in Table 4. Among these models, gradient 
boosting decision tree yielded the best classification 
performance in the training set. Thus, the trained gradient 
boosting decision tree was applied in the testing set. The 
hyperparameters of the selected gradient boosting decision 
tree are shown in Table S2. The relative importance of  
19 features in this model are shown in Figure 5. The AUC 
for performance of the HLG-ML model in the testing set 
was 0.857 (95% CI: 0.699–0.951).

https://scikit-learn.org/
https://cdn.amegroups.cn/static/public/QIMS-22-1059-Supplementary.pdf
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Table 1 Clinical characteristics of included patients 

Characteristics Training group (n=133) Testing group (n=45) Validation group (n=43) P† P‡ P§

Male/female 58/75 19/26 18/25 0.871 0.774 0.973

Age (years) 65.4±15.6 59.6±19.2 62.8±20.0 0.043* 0.332 0.388

APE (n) 63 (47.3) 23 (51.1) 31 (72.1) 0.609 0.006* 0.009*

BMI (kg/m2) 25.5±4.5 25.5±4.6 24.6±3.9 0.996 0.262 0.418

Temperature (℃) 36.6±0.8 36.7±0.5 36.6±0.3 0.731 0.383 0.278

HR (bpm) 85.0±17.0 91.7±18.1 89.6±14.6 0.059 0.144 0.626

RR (times/min) 20.9±3.8 20.9±3.3 21.3±3.3 0.957 0.757 0.814

SP (mmHg) 126.1±24.7 129.0±19.9 128.0±15.7 0.531 0.677 0.849

DP (mmHg) 76.2±13.7 74.8±13.9 77.6±12.2 0.610 0.504 0.401

Chest pain 31 (23.3) 12 (26.7) 18 (41.9) 0.689 0.018* 0.133

Dyspnea 83 (62.4) 27 (60.0) 31 (72.0) 0.774 0.284 0.232

Hemoptysis 9 (6.8) 2 (4.4) 4 (9.3) 0.576 0.598 0.673

Fever 15 (11.3) 10 (22.2) 6 (14.0) 0.068 0.538 0.315

Syncope 11 (8.3) 2 (4.4) 4 (9.3) 0.394 0.523 0.366

WBC (×109/L) 8.8±4.1 8.3±4.7 9.5±4.1 0.261 0.245 0.467

Percentage of 
neutrophils (%)

72.2±11.3 73.8±10.7 73.3±12.4 0.193 0.521 0.552

Percentage of 
lymphocytes (%)

19.3±9.9 17.4±9.1 19.5±10.8 0.277 0.988 0.343

Hemoglobin (g/L) 127.1±22.1 123.6±26.5 125.9±16.7 0.400 0.709 0.630

CRP (mg/L) 17.9 (4.2–52.1) 27.2 (3.7–48.5) 19.5 (4.1–49.3) 0.659 0.787 0.126

D-Dimer (mg/L) 2.2 (1.0–6.7) 2.5 (0.9–7.4) 3.1 (1.2–6.4) 0.961 0.511 0.440

NT-proBNP (pg/mL) 391.0 (88.5–1,600.0) 213.0 (48.3–1,068.5) 324.0 (38.8–1,816.5) 0.185 0.636 0.657

Data are presented as the mean ± standard deviation, median (interquartile range), or number (%). *, P<0.05; †, training group and testing 
group; ‡, training group and validation group; §, testing group and validation group. APE, acute pulmonary thromboembolism; BMI, body 
mass index; HR, heart rate; RR, respiratory rate; SP, systolic pressure; DP, diastolic pressure; WBC, white blood cell; CRP, C-reactive 
protein; NT-proBNP, N-terminal prohormone of brain natriuretic peptide. 

External validation of the HLG-ML model, radiologists, 
and the YEARs algorithm

In the validation group, the ICC of readers 1 and 2, readers 
1 and 3, reader 2 and were 0.197 (95% CI: −0.149 to 0.501), 
−0.031 (95% CI: −0.361 to 0.310), and 0.251 (95% CI: 
−0.130 to 0.515), respectively. Under the gradient boosting 
decision trees, the HLG-ML model (AUC =0.810; 95% CI: 
0.669–0.952) outperformed the 3 radiologists (Radiologist 
1: AUC =0.508, 95% CI: 0.335–0.681; Radiologist 2: AUC 
=0.504, 95% CI: 0.354–0.654; Radiologist 3: AUC =0.527, 
95% CI: 0.363–0.691) and the YEARS algorithm (AUC 

=0.618; 95% CI: 0.469–0.767) (Figure 6). The HLG-ML 
model with gradient boosting decision tree (sensitivity 
=87.1%, 95% CI: 70.2–96.4%; specificity =75.0%, 95% 
CI: 42.8–94.5%) had better performance compared with 
the 3 radiologists in terms of sensitivity (51.6%, 95% 
CI: 33.1–69.8%; 25.8%, 95% CI: 11.9–44.6%; 38.7%, 
95% CI: 21.8–57.8%) and specificity (50.0%, 95% CI: 
21.1–78.9%; 75.0%, 95% CI: 42.8–94.5%; 66.7%, 95% 
CI: 34.9–90.1%) (Table 5). Moreover, in a review of the 
diagnosis provided by the HLG-ML model, 4 cases with 
segmental or subsegmental APE were missed while 3 cases 
with multiconsolidation on NC-CT were misdiagnosed.
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Table 2 Clinical characteristics of patients with APE and without APE in the training and testing groups

Clinical data APE (n=86) Non-APE (n=92) χ2/t/U test P

Male/female 37/49 40/52 χ2=0.004 0.536

Age (years) 63.4±16.8 46.5±16.7 t=0.426 0.67

BMI (kg/m2) 25.2±4.0 25.8±5.1 t=0.639 0.524

Temperature (℃) 36.8±0.6 36.7±0.6 t=0.049 0.961

HR (bpm) 88.6±18.4 84.1±17.3 t=1.446 0.15

RR (times/min) 21.3±4.2 20.3±2.8 t=1.518 0.131

SP (mmHg) 126.0±19.4 127.8±28.2 t=0.435 0.664

DP (mmHg) 75.3±13.2 76.6±14.3 t=0.561 0.575

Chest pain 59 (68.6) 51 (55.4) χ2=3.266 0.071

Dyspnea 11 (12.8) 14 (15.2) χ2=0.271 0.641

Hemoptysis 24 (27.9) 19 (20.7) χ2=1.277 0.258

Fever 8 (9.3) 3 (3.3) χ2=2.798 0.094

Syncope 7 (8.1) 6 (6.5) χ2=0.172 0.678

WBC (×109/L) 9.6±4.3 8.5±4.2 t=1.773 0.078

Percentage of neutrophils (%) 73.6±10.2 72.1±11.9 t=0.874 0.383

Percentage of lymphocytes (%) 18.1±9.1 19.5±10.3 t=0.945 0.346

Hemoglobin (g/L) 126.7±24.3 125.8±22.4 t=0.260 0.795

CRP (mg/L) 27.0 (5.7–52.9) 14.2 (3.1–41.7) U=2,422.5 0.086

D-Dimer (mg/L) 4.8 (2.0–10.7) 1.2 (0.7–2.7) U=1,605.5 <0.001

NT-proBNP (pg/mL) 390.5 (72.5–1,523.0) 322.0 (92.0–1,568.0) U=3,213.2 0.931

Data are presented as the mean ± standard deviation, median (interquartile range), or number (%). APE, acute pulmonary 
thromboembolism; BMI, body mass index; HR, heart rate; RR, respiratory rate; SP, systolic pressure; DP, diastolic pressure; WBC, white 
blood cell; CRP, C-reactive protein; NT-proBNP, N-terminal prohormone of brain natriuretic peptide. 
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Table 3 The selected 19 features in the radiomics descriptor

Filter operation Radiomics category Radiomics feature Statistics

Wavelet-LLL GLRLM Short run low gray level emphasis 10th percentile

Log-sigma-2-0-mm-3D GLRLM Run variance Kurtosis

Wavelet-HHL GLCM IMC1 90th percentile

Wavelet-LLL GLCM Maximum probability Skewness

Wavelet-HHH GLDM Dependence entropy Interquartile range

Wavelet-LHH GLCM Correlation Skewness

Wavelet-LLL GLSZM Small area low gray level emphasis 10th percentile

Wavelet-LHH First order Median Interquartile range

Log-sigma-2-0-mm-3D GLSZM Small area emphasis Maximum

Wavelet-HHL GLSZM Zone entropy Standard deviation

Wavelet-LHH GLSZM Zone entropy Interquartile range

Wavelet-LHL GLRLM Run length non uniformity Kurtosis

Log-sigma-2-0-mm-3D GLDM Large dependence low gray level emphasis Standard deviation

Wavelet-HHH GLSZM High gray level zone emphasis Interquartile range

Log-sigma-1-0-mm-3D GLCM Inverse variance Interquartile range

Wavelet-LHH GLCM Inverse variance Skewness

Wavelet-HLL GLRLM Gray level variance Kurtosis

Wavelet-LLH First order Uniformity Interquartile range

Log-sigma-2-0-mm-3D First order Energy Skewness

Wavelet-LLL, wavelet-low low low frequency; Wavelet-HHL, wavelet-high high low frequency; Wavelet-HHH, wavelet-high high high 
frequency; Wavelet-LHH, wavelet-low high high frequency; Wavelet-LHL, wavelet-low high low frequency; Wavelet-HLL, wavelet-high 
low low frequency; Wavelet-LLH, wavelet-low low high frequency; GLRLM, gray-level run-length matrix; GLCM, gray-level cooccurrence 
matrix; GLDM,  gray-level dependence matrix; GLSZM, gray-level size zone matrix. 

Table 4 AUCs of the 8 ML models in the diagnosis of APE in the 
training, testing, and validation groups

ML models AUCtraining AUCtesting AUCvalidation

Gradient boosting 
decision trees

0.772 0.857 0.810

Naïve Bayes 0.715 0.703 0.727

Decision tree 0.607 0.668 0.642

k-nearest neighbors 0.660 0.641 0.701

Logistic regression 0.746 0.732 0.748

Multilayer perceptron 0.686 0.701 0.677

Random forest 0.763 0.715 0.731

Support vector machine 0.738 0.744 0.735

AUC, area under curve; ML, machine learning; APE, acute 
pulmonary thromboembolism. 

Discussion

In this study, we developed and validated an HLG-ML 
model for chest NC-CT to aid in the diagnosis of APE. 
This HLG-ML model was built with the combination 
of 3D holistic lung radiomics descriptors and gradient 
boosting decision tree, and outperformed both the 
radiologists and YEARS algorithm.

CTPA is the first-line method for detecting APE. In our 
previous study (19-21), DL based on CTPA was proven to 
be effective in clot detection and quantitative calculation 
of clot burden; however, compared with that of NC-
CT, the radiation dose of CTPA is higher, and an iodine 
contrast agent is required. Despite this being the case, no 
study has yet confirmed whether NC-CT can be used in 
the diagnosis of APE, although some indirect signs such 
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as subpleural wedge consolidation on NC-CT have been 
found to indicate APE (22,23). Ehsanbakhsh et al. (24) 
reported intraluminal signs on NC-CT had a specificity of 
98.6% and a sensitivity of 42.5%. These studies were based 
mainly on the experience of radiologists. Thus, we studied 

the possibility of detecting APE on NC-CT images using 
radiomics and an AI algorithm. In this study, all clinical 
characteristics between the training group and the testing 
group, except age, were similar. This could ensure the 
robustness of the model between the training group and the 
test group. D-dimer was significantly elevated in those with 
APE patients; however, other clinical characteristics, such 
as chest pain and hemoptysis, were comparable between the 
training group and testing group. This confirmed that the 
symptoms and signs of APE were nonspecific.

Radiomics analysis can be regarded as an objective 
quantitative biomarker that encodes variations in spatial 
relationships without relying on subjective interpretations 
of the images. Cho et al.  (25) applied a radiomics 
approach for glioma grading from pre- and postcontrast  
T1-weighted, T2-weighted, and fluid-attenuated inversion 
recovery (FLAIR) magnetic resonance imaging (MRI). After 
the calculation of 468 radiomics features, 5 were selected 
for use in a random forest classifier that showed the highest 
AUC of 0.92 after 5-fold cross-validation. Hawkins et al. (26)  
developed an ML model of 23 features that yielded a 
radiomics signature with an AUC of 0.81 for predicting 
the development of lung cancer in 1 year, which was far 
superior to volume alone. Coroller et al. (27) used CT 
radiomic features extracted from primary lung cancer and 

0.000 0.025 0.050 0.075 0.100 0.125 0.150 
Feature importance

Fe
at

ur
e 

na
m

e
wavelet-HLL_glrlm_GrayLevelVariance_kurt

log-sigma-2-0-mm-3D_firstorder_Energy_skew 

wavelet-HHH_glszm_HighGrayLevelZoneEmphasis_interquartile_range 

wavelet-HHL_glcm_Imc1_percentile90 

wavelet-LHH_glszm_zoneEntropy_interquartile_range 

wavelet-LHL_glrlm_RunLengthNonUniformity_kurt 

log-sigma-2-0-mm-3D_glrlm_RunVariance_kurt 

wavelet-HHH_gldm_DependenceEntropy_interquartile range 

wavelet-LLL_glcm_MaximumProbability_skew 

wavelet-LHH_glcm_InverseVariance_skew 

log-sigma-2-0-mm-3D_gldm_LargeDependenceLowGrayLevelEmphasis_std 

wavelet-LHH_glcm_Correlation_skew 

log-sigma-1-0-mm-3D_glcm_InverseVariance_interquartile range 

wavelet-LLL_glrlm_ShortRunLowGrayLevelEmphasis_percentile10 

wavelet-LHH_firstorder_Median_interquartile_range 

wavelet-LLL_glszm_SmallAreaLowGrayLevelEmphasis_percentile10 

log-sigma-2-0-mm-3D_glszm_SmallAreaEmphasis_max 

wavelet-HHL_glszm_ZoneEntropy_std 

wavelet-LLH_firstorder_Uniformity_interquartile_range

Figure 5 The importance of each feature in the selected gradient boosting decision trees. Feature importance values are sorted from highest 
to lowest. The format for each feature name is "Filter Operation_Radiomics Category_Radiomics Feature_Statistics". 

100

80

60

40

20

0

S
en

si
tiv

ity
, %

20 40 60 800 100
100−Specificity, %

Dr S 
Dr M
Dr L 
Gradient boosting decision trees 
YEARs algorithm

Figure 6 Receiver operating characteristic curves of the proposed 
holistic lung graph-based machine learning model with gradient 
boosting decision tree, the 3 radiologists (3-, 5-, and 15-year 
experience), and the YEARS algorithm.



Deng et al. A lung model to predict APE6720

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2023;13(10):6710-6723 | https://dx.doi.org/10.21037/qims-22-1059

Table 5 Performances of the HLG-ML model, radiologists, and YEARS algorithm in diagnosing APE in the validation group

Methods AUC (95% CI) Sensitivity (95% CI), % Specificity (95% CI), % Youden index 

HLG-ML 0.810 (0.669, 0.952) 87.1 (70.2, 96.4) 75.0 (42.8, 94.5) 0.621

Reader 1 0.508 (0.335, 0.681) 51.6 (33.1, 69.8) 50.0 (21.1, 78.9) 0.016

Reader 2 0.504 (0.354, 0.654) 25.8 (11.9, 44.6) 75.0 (42.8, 94.5) 0.008

Reader 3 0.527 (0.363, 0.691) 38.7 (21.8, 57.8) 66.7 (34.9, 90.1) 0.050

YEARS algorithm  0.618 (0.469, 0.767) 90.3 (74.2, 98.0) 33.3 (9.9, 65.1) 0.237

HLG-ML, holistic lung graph-based machine learning; APE, acute pulmonary thromboembolism; AUC, area under the curve; CI, 
confidence interval.

lymph nodes to predict pathological complete response and 
gross residual disease after neoadjuvant chemoradiation 
before surgery. Yang et al. (28) reported the use of radiomics 
features to predict epidermal growth factor receptor 
mutation status in patients with non–small cell lung cancer 
using contrast‑enhanced CT and noncontrast-enhanced CT.

Unlike the above studies (25-28), in which radiomics 
features were extracted from focal ROIs such as a tumor 
or lymph nodes or the infarcted area, our research 
designed whole-lung radiomics descriptors because the 
distribution of fresh thrombus in the pulmonary artery 
is heterogeneous and random and because the contrast 
between fresh thrombus and the pulmonary artery on NC-
CT is too poor to discern the thrombus on NC-CT. The 
HLG-ML model built from 3D local texture descriptors 
extracted on an atlas-based parcellation enables the merger 
of local and global radiomics features of the lungs to classify 
patients with vascular pathologies. Thus, the whole lung 
on NC-CT was automatically extracted using an automatic 
lung segmentation algorithm to obtain a lung mask, 
and then, each lung mask was geometrically converted 
into an atlas containing the 36 subregions delineated 
by Dicente Cid et al. (14). From these 36 subregions,  
7 different classes of radiomics features were extracted. 
This step could characterize the entire lung parenchyma 
using information from local texture regions in the lung 
and their global correlations; however, a large number 
of radiomics descriptors may reduce model robustness. 
Thus, we applied dimensionality reduction to the proposed 
radiomics descriptor in the training stage, and the remaining 
candidates in each radiomics descriptor vector were reduced 
to 19 potential features. To optimize the diagnostic model, 
we built and compared 8 ML models based on the radiomics 
descriptor vector. The HLG-ML model with gradient 
boosting decision tree achieved the best classification 
performance on the training and testing set. In the validation 

set, even without any clinical information, the HLG-
ML model with gradient boosting decision trees greatly 
outperformed radiologists, especially in sensitivity and AUC. 
Meanwhile, although the sensitivity of the YEARS algorithm 
was higher than that of the HLG-ML model, the AUC, 
Youden index, and specificity of the HLG-ML model were 
better than those of the YEARS algorithm.

Technically, compared to the model described by 
Jimenez-Del-Toro et al. (15), our proposed HLG-ML 
model has some advantages. First, the conventional 
operation process of the radiomics method involves target 
region segmentation, radiomics feature extraction on the 
target region, feature selection or dimensionality reduction, 
and ML model construction. Taking our research goal as an 
example, the process should include lung field segmentation, 
radiomics feature extraction of the lung, feature selection or 
dimensionality reduction, and ML model construction. The 
input of the ML model is the processed radiomics features.

For the graph-based model in our work, radiomic 
features were extracted in parallel from each of the 36 
subregions as opposed to from the whole lung field. 
Subsequently, the radiomics descriptor was used to explain 
the distribution of each radiomic feature in the lung field. 
We referred to this workflow as splitting-integration. Splitting 
can reduce time consumption on feature extraction as 
well as the demand for hardware; integration can weaken 
the impact of this absolute regional division. Even in 
the absence of certain subregions, the representation of 
radiomics features in the lung field could also be obtained. 
Moreover, we divided the lung region into subregions, and 
a radiomics feature distribution was formed based on the 
radiomics features extracted from subregions. The ML 
model is fed statistical descriptive information of the feature 
distribution, not a single radiomics feature. The amount of 
information from feature distribution is greater than that 
from a single feature.
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Limitations

To our knowledge, this is the first study to investigate the 
potential use of the HLG-ML model on NC-CT images for 
the diagnosis of APE; however, there are several limitations 
to this research. First, we employed a retrospective, single-
center design with a relatively small number of cases, so the 
robustness of the HLG-ML model is limited by the NC-CT  
data obtained on 2 CT scanners. More NT-CT data 
derived from different scanning parameters and multiple 
centers will optimize and verify the HLG-ML model. 
Second, although the HLG-ML model showed better 
performance than did the radiologists and the YEARS 
algorithm, radiomics features from lung graphs are not 
explainable, and the current HLG-ML model cannot 
provide the clot location or burden based on NC-CT, 
thus limiting its clinical application. DL is a data-driven 
technique, meaning that its performance improves with 
larger and more diverse training samples. However, due to 
the relatively small training sample size employed in our 
study, the application of DL techniques did not necessarily 
result in optimal performance. As data on NC-CT continue 
to accumulate, we aim to assess the potential value of DL 
in evaluating APE on NC-CT. Third, we excluded cases 
with CPE, CTEPH and the diseases mimicking APE such 
as pulmonary tumor embolism, and pulmonary arterial 
sarcoma; therefore, the differential diagnosis of APE and 
other diseases mimicking APE with the HLG-ML model 
need to be examined further. Moreover, we found that the 
levels of D-dimer in patients with APE were significantly 
higher than in those without APE. We thus speculate that 
the combination of the HLG-ML model with clinical and 
semantic feature analysis might be helpful in accurately 
diagnosing and evaluating APE. In our future studies, we 
will build a composite model by combining clinical data, 
NC-CT, and ML or DL techniques.

Conclusions

An HLG-ML model was developed and validated to predict 
APE based on NC-CT. This proposed model has the 
potential to diagnose and assess APE using NC-CT when 
CTPA is not available.
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