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Amyotrophic lateral sclerosis is a progressive neurodegenerative disease that affects upper and lowermotor neu-
rons. Observational and intervention studies can be tracked using clinicalmeasures such as the revised Amyotro-
phic Lateral Sclerosis Functional Rating Scale (ALSFRS-R) but for a complete understanding of disease
progression, objective in vivo biomarkers of both central and peripheral motor pathway pathology are highly de-
sirable. The aim of this study was to determine the utility of structural and diffusion imaging as central nervous
system biomarkers compared to the standard clinical measure, ALSFRS-R, to track longitudinal evolution using
three time-point measurements. N = 34 patients with ALS were scanned and clinically assessed three times at
a mean of three month time intervals. The MRI biomarkers were structural T1-weighted volumes for cortical
thickness measurement as well as deep grey matter volumetry, voxel-based morphometry and diffusion tensor
imaging (DTI). Cortical thickness focused specifically on the precentral gyrus while quantitative DTI biomarkers
focused on the corticospinal tracts. The evolution of imaging biomarkers and ALSFRS-R scores over time were
analysed using a mixed effects model that accounted for the scanning interval as a fixed effect variable, and,
the initial measurements and time fromonset as randomvariables. Themixed effectsmodel showed a significant
decrease in the ALSFRS-R score, (p b 0.0001, and an annual rate of change (AROC) of−7.3 points). Similarly, frac-
tional anisotropy of the corticospinal tract showed a significant decrease (p= 0.009, AROC=−0.0066) that, in
turn, was driven by a significant increase in radial diffusivity combined with a trend to decrease in axial diffusiv-
ity. No significant change in cortical thickness of the precentral gyrus was found (p N 0.5). In addition, deep grey
matter volumetry and voxel-based morphometry also identified no significant changes. Furthermore, the avail-
ability of three time points was able to indicate that there was a linear progression in both clinical and fractional
anisotropy measures adding to the validity of these results. The results indicate that DTI is clearly a superior im-
aging marker compared to atrophy for tracking the evolution of the disease and can act as a central nervous bio-
marker in longitudinal studies. It remains, however, less sensitive than the ALSFRS-R score formonitoring decline
over time.

© 2016 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease
of unknown aetiology that causes degeneration of upper and lower
motor neurons. Establishing biomarkers to help in the development of
therapeutic agents, has become a key goal of clinical research. In recent
years, 14 longitudinal MRI studies focused on tracking disease progres-
sion in ALS. Eight studies used diffusion tensor imaging (DTI) (Agosta
et al., 2009a; Agosta et al., 2010; Blain et al., 2007; Keil et al., 2012;
Menke et al., 2012; Muller et al., 2012; van der Graaff et al., 2011;
Zhang et al., 2011). Four studies focused on structural measures using
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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various approaches: cortical thickness (Schuster et al., 2014; Verstraete
et al., 2012); tensor based morphometry (TBM) (Agosta et al., 2009b);
and volumetry of deep grey matter structures (Westeneng et al.,
2015). Only two studies compared structural and diffusion imaging in
the same cohort (Kwan et al., 2012; Menke et al., 2014). Results are
quite inconsistent across studies at present. A particular problem, po-
tentially, is that all published studies used only two time-pointsmaking
it difficult to judge if decline is linear or otherwise, and moreover, if
some conflicting results may have been spurious—with greater than
two time-points, in contrast, one can assess whether a coherent pattern
of change is emerging over time as opposed to apparently ‘significant’
changes that may represent random error. Furthermore, longitudinal
studies to date have typically contained small numbers—only five
(Menke et al., 2014; Schuster et al., 2014; Verstraete et al., 2012;
Verstraete et al., 2014; Westeneng et al., 2015) of the above studies
listed included 20 or more patients. Finally, with most studies investi-
gating only a single biomarker in isolation, the question arises of
whether an apparently significant change in such instances adds true
value—i.e. a change may be statistically significant, but, if the effect is
order(s) of magnitude below other outcome measures, of little value.
For further discussion of the challenges facing imaging studies in ALS,
see Verstraete et al. (2015).

With all of these considerations in mind, the present study investi-
gated n = 34 patients with ALS who were scanned on three occasions
at an average of approximately three month intervals. The performance
of DTI metrics and structural imaging—analysed using both the cortical
thickness approach, VBM and automated deep grey matter
volumetry—was assessed and also contrasted to the standard clinical
outcome measure, the revised ALS Functional Rating Scale (ALSFRS-R)
(Cedarbaum et al., 1999).
2. Materials and methods

2.1. Participants

Patients were recruited from specialist ALS clinics as part of a pro-
spective study that has recruitedN=125 cases to date. Clinical diagno-
sis of ALS was made according to the revised El Escorial criteria (Brooks
et al., 2000) with all patients fulfilling criteria for clinically definite or
probable ALS. Patients suffering from flail limb or upper motor neuron
only and/or showing symptoms of any of the frontotemporal lobar de-
generation syndromes were excluded; this was established on clinical
grounds, including caregiver interview. The Montreal cognitive assess-
ment (MoCA) (Nasreddine et al., 2005) score was used to assess cogni-
tive performance. Patients needed to have had three MRI examinations
using the research scan protocol. Of those meeting these criteria, N =
38, four were excluded because they lacked at least one imagemodality
at one time point, leaving N = 34 patients with complete data sets at
each time-point, ALS-TP1, ALS-TP2, ALS-TP3.N=31patients had a clas-
sic (Charcot's) phenotype and N= 3 had a pyramidal phenotype (Chiò
et al., 2011). ALSFRS-R (Cedarbaum et al., 1999) severity score was
assessed by the same experienced neurologist on all occasions (SV)
and to derive ALS Milano-Torino Staging (ALS-MITOS) scores (Chiò
et al., 2015). Demographics are summarised in Table 1.
Table 1
Study participant demographics.

Controls (N = 29) ALS-TP1

M/F 23/6 22/12
Age (years) 61.8 (10) 57.3 (9.9
Symptom duration (mo) – 23.6 (21
ALSFRS-R score (/48) – 40.2 (4.4
ALS-MITOS stage 1a – 2
MOCA (/30) 27.0 (0.8) 25.5 (2.1

a Number of patients with an ALS-MITOS score of 1, all other patients scored zero; no patien
For some imaging comparisons, 29 healthy control subjects were re-
cruited and screened to exclude neurological illness and cognitive impair-
ment (MoCA ≥ 26). All subjects gavewritten informed consent; the ethics
committee of Otto-von-Guericke University approved the study.

2.2. Image acquisition

All MRI scans were performed on the same Siemens Verio 3T system
(Siemens Medical Systems, Erlangen, Germany) equipped with a gradi-
ent coil capable of 45 mT/m and 200 T/m/s slew rate. A standard 32-
channel phased array imaging coil was used in receive mode. The field
of view was aligned in all cases to the anterior commissure–posterior
commissure line.

The DTI acquisition had a resolution of 2 × 2 × 2mm3 and consisted
of diffusion weighted data along 30 non-collinear diffusion directions
with b = 1000 s/mm2, and one scan without diffusion weighting
(b = 0 s/mm2). Full details of the acquisition scheme have been previ-
ously published (Cardenas-Blanco et al., 2014). T1-weighted, high-
resolution structural MRI images were obtained using a three dimen-
sional magnetization prepared rapid acquisition gradient-echo
(MPRAGE) sequence with the following parameters: echo time/repeti-
tion time = 4.82/2500 ms, inversion time = 1100 ms, flip angle = 7°,
receiver bandwidth = 140 Hz/pixel, distance factor 50% and a matrix
size of 256 × 256 × 192, yielding an isotropic resolution of 1 mm3. A
T2-weighted FLASH sequence acquired during the same session was
used to exclude vascular pathology (no vascular lesions were identified
in the dataset).

2.3. Image analysis

2.3.1. Diffusion tensor imaging
Diffusion tensor images were processed using The Oxford Centre for

Functional MRI of the Brain (FMRIB) software library (Smith et al.,
2004). Each diffusionweighted volumewas affined-aligned to its corre-
sponding b0 image using FMRIB's linear image co-registration tool
(FLIRT v5.4.2) (Jenkinson and Smith, 2001) to correct for motion arte-
facts and eddy-current distortions. A binary brain mask of each b0
image was created, using the brain-extraction tool (BET v2.1) (Smith,
2002) with fractional threshold f = 0.1 and vertical gradient g = 0.
FMRIB's diffusion toolbox (FDT v2.0)was used tofit the tensor and com-
pute the eigenvalues L1 (axial diffusivity), L2 and L3 at each brain voxel
and generate mean diffusivity (MD), fractional anisotropy (FA) and ra-
dial diffusivity (RD). Whole-brain analyses were performed using
tract-based spatial statistics (TBSS). Spatial normalisation was achieved
by warping all FA images to the 1 × 1 × 1 mm3 FMRIB58_FA standard
template (FMRIB, University of Oxford, UK) in MNI152 space (Montreal
Neurological Institute, McGill University, Canada) using FMRIB's non-
linear registration tool (FNIRT v1.0).

A cross-sectional analysis comparing ALS-TP3 and controls was com-
pleted to map the distribution of DTI changes. All warped ALS-TP3 and
control FA maps were averaged to create a mean FA template, from
which the mean FA skeleton was derived, using FA N 0.2. Finally, all spa-
tially normalised FA, axial diffusivity (L1), RD andMDdatawere projected
onto the skeleton and non-parametric statistics applied, where 10,000
permutations were run using randomize v2.1 with threshold free cluster
(N = 34) ALS-TP2 (N = 34) ALS-TP3 (N = 34)

22/12 22/12
) 57.6 (9.9) 58.0 (9.9)
.0) 27.0 (20.8) 31.3 (21.3)
) 37.9 (5.3) 35.1 (6.4)

3 7
) 25.9 (3.0) 26.9 (2.7)

ts progressed beyond a score of 1 over the course of the study.
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enhancement (TFCE) enabled. The TFCE output was corrected for multi-
ple comparisons by controlling the family wise error rate (FWE). The
threshold level used was pFWE b 0.05.

For the longitudinal analysis, a region of interest (ROI) comprising the
left and the right corticospinal tractswasmanually delineated in standard
space, using the FMRIB58_FA template following a previously published
method (Cardenas-Blanco et al., 2014). This mask was then intersected
with the TBSS mean skeleton generated from all subjects (FA N 0.2) and
mean values for FA, L1, RD and MDwere extracted for each time point.

2.3.2. Structural imaging

2.3.2.1. Cortical thickness measurement. Cortical thickness measurements
were obtained using FreeSurfer (http://surfer.nmr.mgh.harvard.edu/;
version 5.3.0) (Fischl and Dale, 2000). Awhole brain cross-sectional anal-
ysis was done to contrast ALS-TP3 and controls using a Gaussian smooth-
ing kernel of 20 mm, regressing out the effects of age and applying a
clusterwise correction for multiple comparisons (Hagler et al., 2006).
The longitudinal Freesurfer pipeline was used to analyse intra-subject
cortical thinning (Reuter et al., 2010) over the three time points in the
ALS cohort. To reduce bias from a specific time point, a template volume
using all time points from each subject was generated and run through
FreeSurfer andwas later used as an initial estimate for surface reconstruc-
tion and cortical segmentation for each time-point in each subject (Reuter
et al., 2012). The longitudinal analysis of cortical thicknesswas focused on
themean of the right and left precentral gyrus, whichwas extracted as an
ROI using the Desikan-Killiany parcellation atlas (Desikan et al., 2006).

2.3.2.2. Voxel based morphometry. Voxel based morphometry measure-
ments were carried out using two different software packages, FSL
and SPM—both methods were undertaken to address the reported
method dependent nature of VBM analyses (Diaz-de-Grenu et al.,
2014, Rajagopalan et al., 2014). In both cases, the analysis contrasted
ALS-TP3 and ALS-TP1.

2.3.2.2.1. FSL-VBM. This analysis precisely followed that of a previous
study that reported widespread VBM changes in a longitudinal ALS
analysis (Menke et al., 2014). Each subject's TP1 and TP3 MPRAGE im-
ages were bias corrected, brain extracted and linear transformationma-
trices to a halfway space were generated. TP1 and TP3 images in native
space were then linearly registered to their corresponding halfway
space and averaged. The bias-field corrected TP1 and TP3 images were
then non-linearly registered to their corresponding average image in
halfway space (Technical report TR07JA1, http://www.fmrib.ox.ac.uk/
analysis/techrep). In parallel, partial volume grey matter images were
obtained after applying FAST4 segmentation algorithm to the bias-
field corrected TP1 and TP3 images in native space (Zhang et al.,
2001). Greymatter partial volume images were then first linearly regis-
tered to MNI space and then non-linearly registered to MNI space and
averaged, to obtain a study specific longitudinal template in standard
space. Grey matter TP1 and TP3 images in native space were non-
linearly registered into halfway space and their average non-linearly
registered to the study specific template. A composition of the last two
non-linear warpswas used to register the native TP1 and TP3 greymat-
ter images into the longitudinal study specific greymatter template. The
Jacobian determinant of the composition of the two warp fields was
used to modulate the partial volume grey matter images. Finally, the
modulated segmented partial volume images were then smoothed
with an isotropic Gaussian kernel of 3 mm standard deviation.
Within-subject smoothed and modulated image differences were esti-
mated by subtracting the TP1 fromTP3. A one-sample T-test, across sub-
jects using GLM was applied with 5000 permutations using randomize
v2.1 with threshold free cluster enhancement (Smith and Nichols,
2009) (TFCE) enabled. The TFCE outputwas corrected formultiple com-
parisons by controlling the FWE, using a threshold p b 0.05.

2.3.2.2.2. SPM-VBM. Structural TP1 and TP3 images were segmented
with the new segment method and then imported into DARTEL
(SPM12) (http://www.fil.ion.ucl.ac.uk/spm/), where all grey and
white matter segments were simultaneously registered to a study spe-
cific template. A new template defined as the average of the inverse
transformation of all images into the template was repeated iteratively
18 times before modulation. Modulated grey matter segments were
smoothed using a 7 mm full width at half maximum Gaussian kernel.
Note the size of the smoothing kernel was adjusted to make it equal
to the one used in FSL-VBM, given that the full width at half maximum
of the kernel equals 2.35 × standard deviation. As for FSL-VBM, within
subject smoothed and modulated image differences were estimating
using the TP1 and TP3. A one-sample T-testwas completed using an un-
corrected threshold of p b 0.05.

2.3.2.3. Volumetric measurements of deep grey matter structures. Volu-
metric measurements of deep greymatter structures weremeasured
because a previous study (Menke et al., 2014) had reported exten-
sive longitudinal changes in the basal ganglia and diencephalon
with FSL-VBM. The volumetric measures, therefore, served as an in-
dependent (of VBM) method to verify such findings. Volumes were
extracted for caudate nucleus, thalamus, putamen, pallidum, amyg-
dala and hippocampus. Volumes were obtained using the segmenta-
tion and registration tool FIRST (Patenaude et al., 2011). Following
segmentation, measured volumes were corrected for total intracra-
nial volume (TIV) using the covariance method (Jack et al., 1989).
TIV was estimated as the sum of the first three tissue classes, grey
matter, white matter and CSF, thresholded at 0.5 (Pengas et al.,
2009).

2.4. Statistical analyses

Quantitative ROI data (DTI metrics (FA, MD, RD, L1), cortical thick-
ness and deep grey matter volumetry) was tested for normality using
the Lilliefors test. The results of the test for α = 0.05 indicated that RD
was not normally distributed in ALS, therefore, for consistency, the
Kruskal-Wallis H test was used thereafter. In those cases where a signif-
icant difference among groups was found, a nonparametric Mann-
Whitney U test was used to compare all derived metrics from indepen-
dent sample groups (Mann and Whitney, 1947). Bonferroni correction
for multiple comparisons was applied.

Assessment of longitudinal change in the quantitative ROI data and
disease severity score employed a mixed-effects model, designed to
take account of the scanning interval as a fixed effect variable and the ini-
tial measurements, as well as the time from onset as random variables;
the significance level for the longitudinal analyses was set to p b 0.05.

Where significant longitudinal changes in ALS were identified, a
power calculation was completed to estimate the minimum number
of subjects needed in a hypothetical study to measure a 25% effect size
following the procedure described by Diggle et al. (2002), using the
rate of change derived from the longitudinal analyses as input.

3. Results

3.1. Clinical score

A Kruskal-Wallis H test was statistically significant (p = 0.001) for
the three time-points of the ALSFRS-R score (Fig. 1). Post-hoc Mann-
Whitney tests found significant differences between ALS-TP1 and ALS-
TP3 (p = 0.0004). The mixed effect model showed a significant
(p b 0.0001) annual rate of change of −7.3 points (Table 2).

3.2. Diffusion tensor imaging

3.2.1. Cross-sectional analysis, controls vs ALS-TP3
Contrasting the quantitative DTI metrics from ALS-TP3 and controls

at p b 0.05 corrected for multiple comparisons as a whole brain analysis
found no significant differences. Relaxing the statistical threshold to

http://surfer.nmr.mgh.harvard.edu/;
http://www.fmrib.ox.ac.uk/analysis/techrep
http://www.fmrib.ox.ac.uk/analysis/techrep
http://www.fil.ion.ucl.ac.uk/spm/


Fig. 1. Evolution of DTI, cortical thickness and ALSFRS-R over time. A–D:DTImetrics from the corticospinal ROI; E: cortical thickness of the precentral gyrus; F: ALSFRS-R score. Bars denote
means, whiskers the 95% confidence interval and crosses are individual data points. *p b=0.002, **p b 0.001, ***p b 0.0001. The x-axis is drawn to scale such that the three ALS time-points
(TP1–3) represent themean (in time) of eachmeasurement spaced relative to each other and to themean estimated disease onset (EDO). Blue lines indicate slope of change from TP1–3.
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p b 0.02 (uncorrected) identified reduced FA values in ALS in the
corticospinal tracts (Fig. 2).

3.2.2. Longitudinal corticospinal tract ROI analysis
The Kruskal-Wallis H test showed statistically significant differ-

ences between controls, ALS-TP1, ALS-TP2 and ALS-TP3 in FA (p =
0.002) and RD (p b 0.0001). No significant differences were found
in MD (p = 0.4) while a trend to significance in L1 (p = 0.006) did
not survive Bonferroni correction. Post-hoc Mann-Whitney tests
found significant reductions in FA and increases in RD values be-
tween controls and all three ALS time points (all p b 0.0001). No sig-
nificant differences were detected in any DTI metric within ALS time
points (Fig. 1).
The mixed effects model (Table 2) showed a significant decrease
in FA in the corticospinal tract (p = 0.009) with a predicted annual
rate of change of −0.0066. Similarly, a significant increase in RD in
the corticospinal tract was detected (p=0.04). No significant effects
were detected for MD while there was non-significant trend for L1
(p = 0.07).

3.3. Structural imaging

3.3.1. Cortical thickness measurements
No significant differences in cortical thicknesswere found at awhole

brain level between ALS-TP3 and controls after correcting for multiple
comparisons. The Kruskal-Wallis H test of the longitudinal ALS data



Table 2
Summary of linear mixed effects models predicting the ratio of change. AROC: annual rate
of change; SE: standard errors (SE); DF: degrees of freedom.

Measure AROC SE t-stat DF P-value

ALSFRS-R score (/48) −7.3 0.73 −7.87 100 b0.000a

Diffusion:
cortico-spinal tract

FA (a. u.) −0.0066 0.002 −2.65 100 0.009a

MD (mm2/s) 1.7 ×
10−6

2.8 ×
10−6

0.59 100 0.55

L1 (mm2/s) −7.5 ×
10−6

4.1 ×
10−6

−1.82 100 0.07

RD (mm2/s) 6.1 ×
10−6

2.0 ×
10−6

2.09 100 0.038a

Precentral gyrus
thickness (mm)

−0.02 0.03 −0.62 100 0.54

Volumetry (mm3) Amygdala −25.6 69.4 −0.41 100 0.68
Caudate 182.5 109.5 1.69 100 0.09
Hippocampus 11.0 98.6 0.12 100 0.90
Pallidum 11.0 51.1 0.28 100 0.78
Putamen 120.5 102.2 1.15 100 0.25
Thalamus 142.7 84.0 −1.67 100 0.09

a Significant changes.
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showed no significant changes in cortical thickness measurements in
the precentral gyrus between controls and ALS subjects at different
time points at the Bonferroni-corrected threshold of p = 0.002
(Fig. 1). The mixed effects model showed no significant changes in cor-
tical thickness in the precentral gyrus over time (Table 2).
3.3.2. Voxel based morphometry
Neither the SPM nor the FSL analysis yielded any significant differ-

ences in grey matter density between ALS-TP1 and ALS-TP3.
3.3.3. Deep grey matter volumetry
No significant changes in volume between groups were detected at

p = 0.002 Bonferroni corrected (Supplementary Fig. 1). No significant
differences in volume of deep grey matter structures were detected
across the three ALS time points using the mixed effects model
(Table 2).
3.4. Power analysis

Using the significant annual rate of change for ALSFRS-R and FA ob-
tained by means of the mixed effects model, the sample size needed to
detect a hypothetical treatment effect of 25% change in slope in ALSFRS-
R considering 80% power and an alpha level of 0.05 in a two arm clinical
trial would be 94 subjects per arm; for FA, the number of subjects
needed per arm would be 567.
Fig. 2.Differences in FA between controls andALS-TP3 at p b 0.02 (yellow/orange) uncorrected f
the reader is referred to the web version of this article.)
4. Discussion

Using three time-point measurements over a mean total interval of
six months to track progression in ALS, DTI metrics of the corticospinal
tract emerged as sensitive biomarkers to detect change. In contrast,
structural imaging, be that cortical thickness of the entire isocortex or
motor cortex in particular, deep grey matter volumetry or whole brain
VBM,was unable to detect change. Although DTI, especially FA, revealed
a significant, linear decline over the three measurements, the ratio be-
tween the annual rate of change and the standard errors, estimated
using the mixed effects model, as well as the results from the power
analysis indicated that it was considerably less sensitive than the stan-
dard clinical outcome measure, the ALSFRS-R.

Longitudinal DTI results have been inconsistent in past studies
though this almost certainly can be explained by technical develop-
ment. The earliest studies, were insensitive to disease progression
(Blain et al., 2007; Agosta et al., 2009a; Agosta et al., 2010) while later
studies have generally reported DTI to be sensitive to change (van der
Graaff et al., 2011; Zhang et al., 2011; Keil et al., 2012; Menke et al.,
2012; Muller et al., 2012). The negative results from earlier studies
came from datasets using lower field strength (1.5 T) with poorer reso-
lution and signal to noise ratio; arguably, analysis methods for DTI have
also become more reliable in recent years. The present finding that FA
was the most sensitive DTI metric in tracking change is consistent
with previous cross-sectional ALS data (Cardenas-Blanco et al., 2014):
FA reduction was predominantly driven by increased RD but there
was also a slight decrease in L1 overtime, their opposite behaviours
are additive in accentuating reductions in FA.

Turning to cortical thickness of themotor cortex, the present results
agree with two previous studies of N = 51 (Schuster et al., 2014) and
N = 20 (Verstraete et al., 2012) classic ALS subjects in showing no sig-
nificant progression of cortical thinning over time. One of these reports
speculated that the absence of significant progressive thinning in the
precentral gyrus could be indicative of a floor effect at the first time-
point resulting in a lack of sensitivity to further atrophy detection
over time (Schuster et al., 2014). The absence of significant differ-
ence in cortical thickness between controls and ALS-TP3 in the pres-
ent study suggests the floor effect is an unsustainable argument.
Furthermore, absence of motor cortical thinning in ALS is anticipated
from pathology. Although degeneration of Betz cells in the motor
cortex is a very well documented finding, these cells make up only
a tiny fraction of the motor cortex. Past quantitative post-mortem
analysis in patients dying of ALS (therefore, more advanced than
those typically participating in imaging studies) showed no evidence
of reduction in motor cortex volume or thickness compared to age-
matched controls (Toft et al., 2005).

The lack of significant differences using VBM in the present study, al-
though consistent with a tensor-based morphometry study (Agosta
et al., 2009b), is strikingly at odds with a recent study that reported
ormultiple comparisons. (For interpretation of the references to color in thisfigure legend,
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extensive longitudinal changes in grey matter density using the FSL-
VBM method (Menke et al., 2014). Differences in scanning interval
might have contributed to this discrepancy between studies, in that
the study in question had a mean time span of 16 months between
the two scans compared to a mean of six months from first to third
scans in the present study. There are, however, several reasons to sug-
gest that these previously reported results using VBM may possibly be
spurious. Firstly, although only statistically significant differences (but
no effect sizes) were reported, it appeared that VBMwas far more sen-
sitive to detect longitudinal change than DTI, yet in the present study,
that had the advantage of three time-points, DTI changes were not
only more sensitive, but followed a highly linear trajectory over time.
Secondly, using exactly the same method, FSL-VBM, and analysis steps
as those reported by Menke et al. (2014) but also repeating the analysis
using SPM-VBM, no significant effects were noted fromALS-TP1 to ALS-
TP3. Thirdly, Menke et al. (2014) emphasized significant longitudinal
change in deep grey matter of caudate and thalamus, yet in the present
study using the independent method of FIRST volumetry to examine
these structures, no significant longitudinal change was found. Further-
more, an absence of significant volumetric changes in these structures
in a comparable time interval—5.5 months—was recently reported in
another study (Westeneng et al., 2015). Similarly, a previous cross-
sectional study was unable to demonstrate volumetric changes in
these structures in non-demented ALS patients compared to controls
(Machts et al., 2015). Time will tell with further studies, but perhaps
the most important point is that studies on longitudinal biomarkers
that only report statistical differences between two time points are
very hard to interpret—a systematic artefact between measurements
can also yield highly “significant” statistical effects. Plotting effect sizes
to ensure biological plausibility, and, moreover, including more than
two time points to ensure a plausible trajectory are, therefore, highly
desirable.

To date, only a couple of longitudinal studies have examined more
than one metric in the same study (Kwan et al., 2012, Menke et al.,
2014) yet comparing across measures is an important step in putting
findings in an overall context. The present study completed a head to
head comparison of several MR-based measurements but also, impor-
tantly, compared findings to the standard clinical outcome measure,
the ALSFRS-R. The results clearly indicated that although FA of the
corticospinal tract is a robust biomarker, it was considerably less sensi-
tive to change than the ALSFRS-R. This was exemplified by the power
calculations that showed that to detect a comparable treatment effect,
one would require a more than five-fold increase in numbers using FA
when compared to ALSFRS-R. This is unsurprising considering the
ALSFRS-R is a clinical severity summary score that can be influenced
byboth upper and lowermotor neuron degeneration aswell as all levels
of the motor system whereas the FA biomarker is only measuring the
central corticospinal tract. One caveat is that the follow-up ALSFRS-R
scores in this study were not collected blind to preceding measure-
ments; this could have introduced some bias due to examiner anticipa-
tion of decline. That said, the rate of ALSFRS-R decline in the present
study was of the same order as that previously described (1.02 ±
2.3 points/month) from a pooled analysis of over 8000 clinical trial par-
ticipants (Atassi et al., 2014). In contrast, theALS-MITOS stagingwas not
very sensitive in this relatively mild cohort—only 5 subjects moved one
level over the course of the three time-points; in otherwords, 85% of pa-
tients' staging remained static. The power calculation for FA decline in
the present study also suggested that more than double the number of
subjects would be required to detect significant effect compared to a
previous estimate for FA in the corticospinal tract (Zhang et al., 2011).
This discrepancy is likely explained by the methodology in the earlier
study in which the authors based their power calculation post-hoc on
the most statistically significant sub-region of the corticospinal
tract—clearly choosing the most significant sub-region will improve a
power calculation, but the post-hoc approach required to do this
would not be desirable for a trial.
5. Conclusion

Although the clinical scale was superior to FA change in the
corticospinal tract, the robustness of the FA effect to track change argues
that it still is a useful biomarker formechanistic understanding. It would
be desirable to confirm the site of action along the motor system for an
intervention and this cannot be answered by a clinical measure that
gives a summary score of the motor system. Ideally, biomarkers along
the entire motor pathway are needed for this goal, and to this end, FA
of the central corticospinal pathway can serve as one. Furthermore, im-
aging biomarkers rely on hardware sensitivity, which obviously goes
hand in hand with technological developments. Future technological
improvements, especially those capable of increasing resolution and
signal to noise ratio are likely to translate to an increase in sensitivity.
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