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Abstract 

Background:  Zambia has set itself the ambitious target of eliminating malaria by 2021. To continue tracking trans-
mission to zero, new interventions, tools and approaches are required.

Methods:  Urban reactive case detection (RCD) was performed in Lusaka city from 2011 to 2015 to better understand 
the location and drivers of malaria transmission. Briefly, index cases were followed to their home and all consenting 
individuals living in the index house and nine proximal houses were tested with a malaria rapid diagnostic test and 
treated if positive. A brief survey was performed and for certain responses, a dried blood spot sample collected for 
genetic analysis. Aggregate health facility data, individual RCD response data and genetic results were analysed spa-
tially and against environmental correlates.

Results:  Total number of malaria cases remained relatively constant, while the average age of incident cases and the 
proportion of incident cases reporting recent travel both increased. The estimated R0 in Lusaka was < 1 throughout 
the study period. RCD responses performed within 250 m of uninhabited/vacant land were associated with a higher 
probability of identifying additional infections.

Conclusions:  Evidence suggests that the majority of malaria infections are imported from outside Lusaka. However 
there remains some level of local transmission occurring on the periphery of urban settlements, namely in the wet 
season. Unfortunately, due to the higher-than-expected complexity of infections and the small number of samples 
tested, genetic analysis was unable to identify any meaningful trends in the data.
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Background
Transmitted by mosquitoes of the Anopheles genus, 
malaria killed an estimated one million people in the year 
2000, the vast majority of whom lived in sub-Saharan 

Africa. Scale-up of insecticide-treated mosquito nets 
(ITN) to prevent malaria transmission and effective 
artemisinin-based combination therapy (ACT) to treat 
malaria among those infected have greatly reduced the 
burden of malaria in sub-Saharan Africa [1]. Inspired by 
the progress that these interventions have made, atten-
tion is turning away from just controlling malaria dis-
ease and reducing deaths to eliminating transmission of 
the parasite. Zambia is one country that has made great 
strides in reducing malaria through implementing proven 
interventions [2], and has now set itself the ambitious 
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goal of eliminating malaria by 2021 [3]. To realize this 
goal, elimination will have to be achieved in all environ-
mental settings.

Malaria transmission is most intense in rural areas [4, 
5], which provide preferred habitat for the Anopheles 
mosquitoes that tend to lay eggs in clean water. While 
rural settings contribute the majority of transmission 
events, urban malaria persists and unless understood 
presents a threat to elimination [4, 6]. Many malaria-
endemic regions are becoming more urban [7]. Indeed 
Zambia’s urban population increased from 35% of the 
total in 2000 to 40% in 2010 [8].

In Zambia, like many developing countries, urban 
growth is fastest in unplanned settlements that are prone 
to flooding [9], and hence may be at increased risk for 
malaria transmission. Unplanned peri-urban areas lack 
sewers or drainage systems, which allows for pooling of 
water to provide breeding sites for malaria vectors and 
increase the risk of malaria transmission [10–15]. Fur-
thermore, unplanned settlements are typically built upon 
less desirable land, and often in proximity to existing 
natural breeding sites such as swamps or other hydro-
logical networks associated with increased malaria risk 
[11, 13, 16–19]. Finally, agricultural activities, with their 
associated irrigation systems, can provide breeding sites 
and, therefore, increase malaria transmission in urban 
and peri-urban areas [19–23]. The spatial heterogeneity 
of these factors in urban areas leads to huge variation in 
the entomological inoculation rate (EIR) both across and 
within urban cities throughout malaria endemic regions. 
Keiser et al. found the EIR varied from 0 to 54 infective 
bites per person per year in urban areas throughout sub-
Saharan Africa [24], although this range was estimated 
before the escalation of ITNs and ACT across the conti-
nent [25].

In Lusaka, the majority of malaria cases are associ-
ated with travel outside the city [26]. Because of the 
lower inherent transmission capacity for urban malaria, 
travel outside of urban areas to areas of higher malaria 
transmission is a primary risk factor for a case [27–30]. 
The risk that a traveller who acquires a malaria infection 
poses to neighbors upon the traveller’s return, i.e. the risk 
of onward transmission, depends upon the transmission 
capacity of the traveller’s return site [31], and will vary 
based upon the characteristics described previously.

In most settings it is possible to measure and then 
track changes in malaria transmission dynamics 
through cross-sectional parasite prevalence surveys, 
longitudinal routine health system metrics, or longi-
tudinal entomological surveillance [32]. However, as 
malaria approaches elimination, the ability to define 
transmission with statistical confidence requires sam-
ple sizes that are often unachievable due to the rarity of 

malaria infections. While the rarity of an event cannot 
be changed, in this case the presence of a parasite in a 
person, the ability to sensitively and specifically detect 
and the amount of information derived from those 
events can be augmented through molecular tools. For 
example, PCR can be used to identify infections that 
are below the level of detection of rapid diagnostic tests 
(RDT) or microscopy. Furthermore, genetic analysis 
can determine both the complexity of infection i.e. the 
number of malaria co-infections, and/or the genetic 
haplotype of the infections. These genetic analyses have 
been used to show changes in transmission [33], as well 
as clonal expansion during an epidemic [34]. Where 
possible, molecular work, as reported here, should be 
performed locally [35] to ensure data is understood and 
applied to decision-making.

This manuscript examines the central question of 
whether there is ongoing malaria transmission within 
urban Lusaka, Zambia. Further, the ability to combine 
molecular and spatial tools to first identify whether 
transmission is occurring, and second to identify areas 
where transmission is more likely to be occurring, was 
examined.

Methods
Study site
Lusaka is the capital of Zambia and the prime economic 
hub of the country. The city lies at ~ 1300 m above sea 
level, and although it does not snow, temperatures in the 
cold season can drop to below 10  °C. Like many major 
cities in lower-income countries, Lusaka is made up of a 
combination of planned and unplanned settlements, and 
its workforce includes both formal and informal occu-
pations. No malaria infections have been found within 
Lusaka in any of the Malaria Indicator Surveys since 
2006, yet cases continue to be found through the public 
health system (Fig. 1). The reported primary malaria vec-
tors in Lusaka are Anopheles gambiae sensu stricto (s.s.) 
and Anopheles arabiensis [36], however entomological 
surveillance has been challenging due to the very low 
vector numbers. Malaria testing and treatment is free to 
all individuals in the public health centres, which have 
improved their malaria case management dramatically in 
recent years [26]. A total of 27 health facilities within the 
city of Lusaka and under the management of the Lusaka 
District Health Management Team (80% of total health 
facilities) were included in this study (Fig.  2). Ten of 
these facilities were included throughout the 2011–2015 
period, while 17 additional facilities were enrolled only 
during the final year. Facilities without an environmental 
health technician (EHT) were not included as the EHT 
co-ordinated the RCD responses.
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Reactive case detection
With funding from the Presidents Malaria Initiative 
(PMI), reactive case detection (RCD) commenced in 
10 health facilities in Lusaka in 2011 with the goal of 
improving understanding of malaria transmission within 
the city and finding problematic transmission hotspots 
[37]. Prior to this date, no community follow-ups had 
been made for any health facility (HF) incident case. 

RCD has been described in detail elsewhere [37]. In brief, 
a team follows up a confirmed index case and tests the 
index case household and 9 closest neighbouring houses 
for malaria infection, treating those who test positive.

While almost all government health facilities in Lusaka 
participated at some point in intensified surveillance 
activities, human and financial resources were insuffi-
cient to follow up all HF incident cases, particularly in the 
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Fig. 1  Trends in laboratory-confirmed and unconfirmed (clinical) malaria cases in the health management information system (HMIS) for all 
government health facilities in Lusaka district, Zambia

Fig. 2  Location of 27 health facilities enrolled in this study (red cross) and names of districts. Inset map shows outline of Zambia by province with 
Lusaka district (red) and surrounding districts of Lusaka Province (Chilanga, Kafue, Chongwe and Chibombo, green)
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wet season. For those index cases followed-up, a range of 
data was collected for both index cases and RCD partici-
pants, including demographic details, symptoms, travel, 
and malaria infection history in the last month (see Addi-
tional files 1 and 2). Household level data, including GPS 
location and history of IRS in the last 12  months, were 
also collected. In 2014, a grant from the Malaria Eradi-
cation Scientific Alliance (MESA), allowed RCD opera-
tions to be intensified and expanded to a total of 27 
health facilities in the city. The expansion ensured more 
case investigations were performed and the collection of 
dried blood spots (DBS) from consenting individuals was 
added to the information previously collected.

Data sources
Herein the RCD database, which was collected from 10 
HFs in 2011–2014, and 27 HFs in 2014–2015 was uti-
lized. The database contains more information than the 
standard health management information system in 
Zambia, with numerous characteristics about each inci-
dent malaria case including age, travel history, sex, and 
whether the case was followed up through RCD. The 
database also includes information of RCD responses, 
with individual-level information for all RCD households 
and participants.

Descriptive analysis
From the RCD data, trends were analysed as follows. 
First, the proportion of incident malaria cases that 
reported travel outside Lusaka district in the previous 
1 month was determined. Assuming that at least some 
portion of incident cases reporting travel outside Lusaka 
were imported, the formula from Churcher et  al. was 
used to estimate a crude reproductive number (R0) for 
the city [38]. The tolerance of the importation and travel 
assumption was tested by running simulations of differ-
ent levels of cases reporting travel outside Lusaka being 
considered as imported. Second, the age of incident 
malaria cases over time was determined, as the mean age 
of incident malaria in a population is an indicator of the 
intensity of malaria transmission [39–41].

Environmental analysis
The topographical position index (TPI) and topographi-
cal wetness index (TWI) are associated with increased 
risk of malaria vector breeding sites and in some cases 
increased risk of malaria transmission [42–45]. Both 
indices are derived from a digital elevation model. Google 
Earth Engine was used to calculate TWI as well as TPI at 
resolutions of 300 m and 2000 m. Additionally, enhanced 
vegetation index at a spatial scale of 250 m and monthly 
temporal scale were retrieved. Using Quantum GIS ver-
sion 2.0.1 and the OpenLayers plugin, uninhabited areas, 

defined as an area without a rooftop, were traced from 
satellite imagery. The Euclidean distance from the geo-
coordinates of the index case household to the nearest 
uninhabited area in increments of 50 ms, i.e. 0–50  m, 
50–100  m, were then measured. These environmental 
measures were matched to the geo-coordinates of RCD 
participant households in 2014 and 2015 using the Raster 
package [46, 47], in R version 3.3.1 [48].

Regression model analysis
Two separate outcomes with regards to the RCD data was 
examined. First, the probability of testing positive for a P. 
falciparum infection during RCD with RCD participants 
as the unit of analysis was assessed, and second the prob-
ability of finding a P. falciparum infection during RCD 
with each RCD investigation as the unity of analysis.

Factors associated with testing positive for a P. falcipa-
rum infection during RCD were examined as follows. A 
priori hypotheses suggested that travel outside of Lusaka, 
season, person’s age, person’s gender, and location of the 
household (person living in the index case household 
or not) could be associated with having a P. falciparum 
infection. A logistic regression approach with the index 
case included as a random intercept in the model was 
utilized. The general model used to assess the relation-
ship between testing positive for a P. falciparum infection 
during RCD and the hypothesized factors is given by the 
following equations:

where πijk is a dichotomous outcome for person i in 
household j participating in the RCD for index case k; 
Traveli is whether that person travelled outside Lusaka in 
the previous 2 weeks or not; Seasonk is whether the RCD 
was conducted during the high transmission season or 
not; Agei is the age of the person categorized as < 5, 5–15, 
and > 15 years of age; Sexi is whether the person is male 
or female; Locationj is whether the person lives in the 
index case household or not; and χk is a random intercept 
for RCD activities associated with index case k that is 
assumed to be normally distributed with a mean of zero.

Factors associated with finding an RDT-positive indi-
vidual during RCD were examined as follows. A priori 
hypotheses suggested that travel outside of Lusaka, sea-
son, distance from uninhabited areas, age, and sex (gen-
der) of the incident malaria case could be associated with 

yijk |πijk ∼ Binomial
(

1,πijk

)

logit
(

πijk

)

= β1Traveli + β2Seasonk + β3Agei

+ β4Sexi + β5Locationj + χk

χk ∼ N (0, δ)
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finding more positives during RCD. In the wet season 
distance from uninhabited area, travel, season, age and 
gender were all retrieved from the surveillance database. 
The number of positives found during an RCD response 
were skewed right and overdispersed, so a negative-bino-
mial regression was used to determine the association 
with the hypothesized factors. The general model used 
to assess the relationship between testing positive for a 
P. falciparum infection during RCD and the hypothesized 
factors is given by the following equations:

where μI is the number of P. falciparum infections found 
during RCD of index case i; ti is the number of people 
tested during RCD of index case i; Locationi is whether 
the household was located within 250 metres of an 
uninhabited area of Lusaka or not; Seasoni is whether 
the RCD was conducted during the high or low malaria 
transmission season; Agei is the age of the index case cat-
egorized as < 5, 5–15, or > 15  years; Sexi is whether the 
index case was male or female; and Traveli is whether or 
not the index case travelled outside Lusaka in the previ-
ous 2 weeks.

All regression analyses were conducted in Stata version 
13.1.

Genetic analysis
From 2014, a further aim of collecting a DBS from every 
index case and all RCD participants was added to the 
protocol. Unfortunately, challenges in the field meant that 
some DBS were not collected, were incorrectly labelled, 
incorrectly stored or lost during transit to the laboratory. 
A subset of RCD responses were selected for molecular 
analysis based on the completeness of the sample record, 
i.e. only those responses with a complete or near-com-
plete (> 85%) DBS sample repository were analysed.

DNA was extracted from RDT negative DBS either 
individually or in pools of 10 using a QIAamp (Qiagen) 
mini-spin column or DNA IQ system (Promega) as per 
manufacturer’s instructions, and amplified using photo-
induced electron transfer PCR (PET-PCR) as previously 
described [49]. Positive pools were deconvoluted to 
identify individual positives. PCR/RDT positives were 
then genotyped/barcoded using the Taqman assay as 
described elsewhere [50].

Barcoded samples with ≥ 11 missing loci (out of 24), 
were classified as incomplete and removed from any 
further analysis. Infections were classified as polyclonal 
using a cutoff of ≥ 4 loci with a mixed infection call [33, 
50, 51]. Genetic relatedness was calculated using a modi-
fied SNP π [52], which accounts for samples with missing 

µi = eln(ti)+β1Locationi×β2Seasoni+β3Agei+β4Sexi+β5Traveli

data and mixed infections [52], and visualized using a 
neighbour joining phylogenetic tree.

The complexity of infection (COI) was determined for 
complete barcoded samples using the COI Likelihood 
(COIL) calculator developed by Galinsky et  al. [53]. In 
brief, COIL uses Bayesian methodology to estimate the 
probable number of infections that are present within a 
single sample, based on the number of isolated pairs.

Results
Trends in incident malaria cases 2011–2015
Between 2011 and 2015, 14,966 confirmed incident 
malaria cases were reported for all health facilities within 
Lusaka district, of which 8723 confirmed cases were 
reported from health facilities which were participating 
in this study at the time (10 HFs in 2011–2014, 27 HFs 
in 2014–2015). Among these confirmed incident malaria 
cases the majority reported travel outside Lusaka in the 
previous 2 weeks (Fig. 3, Table 1), and the median age of 
incident malaria cases steadily increased from 8.9 years of 
age in 2011 (interquartile range = 2.7–26.7) to 16.1 years 
of age in 2015 (interquartile range = 6.1–28.2) (Fig.  4). 
Assuming that at least 40% of incident cases reporting 
travel outside Lusaka are imported cases, Lusaka has an 
estimated R0 < 1 since 2011, with a decrease in 2014–2015 
compared to 2011–2013 (Fig. 5).

Factors associated with finding additional positives 
during case investigations
From a total of 8723 confirmed incident malaria cases, 
428 (4.9%) index malaria cases were investigated during 
RCD, enrolling 11,954 RCD participants (community 
members tested by the RCD system), and 206 RDT-pos-
itive malaria infections found (RCD incident cases). Test 
positivity during RCD was typically lower than 5% (mean 
1.71% ± SD 1.65%), with higher test positivity during the 
high transmission season compared to the low transmis-
sion season (Fig. 6).

Among the RCD participants, a number of factors were 
associated with increased odds of individuals testing 
positive including seasonality and distance to uninhab-
ited areas, travel outside of Lusaka in the past month, age 
(children aged 5–15), and living in the same household 
as the index case (Table  2). Additionally, the proxim-
ity of the index case household to uninhabited areas of 
Lusaka during the high transmission season was asso-
ciated with an increased probability of finding malaria 
infections during RCD (Table 3). However, no association 
between RDT-positive RCD participants and any index 
case demographics, including travel history (Table 3) was 
detected. In addition, no association was found between 
finding a positive during RCD and any of the remotely 
sensed environmental factors that were examined, 
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specifically TPI at scales of 300  m and 2000  m, TWI, 
mean EVI, monthly EVI, minimum EVI, maximum EVI 
and altitude.

Genetic analysis
A subset of samples from 65 reactive case detection 
responses comprising 645 people (65 index cases and 
580 household members) from 204 houses were further 
assessed by genetic analysis. The RDT positivity during 
the responses was 0.47% (3/580), while 446 individuals 
had DBS collected (59 index cases and 387 household 
members). PCR analysis identified two false positives (1 
index case and 1 household member), and 4 false nega-
tive RDTs (all household members). The latter increased 
the positivity rate, to 1.55% (6/387), an approximate 
threefold increase.

Barcoding
Positive molecular barcode data was generated from 72 
individuals, with a range of completeness. Of these, 22 

samples had ≥ 11 missing loci (out of 24), were classi-
fied as incomplete and removed from any further anal-
ysis. The remaining 50 individuals had a median age of 
17 years and had a high proportion of travel (67%) with 
a median travel time of 8.5  days. The proportion of 
polyclonal infections was moderate (28%) and genetic 
relatedness was high (72%) (Additional file 3: Table  S1). 
Phylogenetic analysis did not show any evidence of clus-
tering of genetic structure between individuals with 
or without travel history. Individuals with a travel his-
tory were slightly older (18 vs. 10  years old, p = 0.5), 
more likely to be an index case (97% vs. 87%, p < 0.05), 
have more polyclonal infections (38% vs. 13%, p = 0.2), 
more febrile (82% vs. 73%, p = 0.2), and have slightly 
less related infections (74% vs. 75%, p = 0.7) in compari-
son to individuals who did not travel (Additional file  3: 
Table S1, Figs. 7 and 8). Individuals with a travel history 
had a slightly higher genetic relatedness compared to the 
overall genetic relatedness of individuals without a travel 
history (Fig. 8).
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Fig. 3  Trends in reactive case detection system in Lusaka, Zambia showing confirmed incident malaria cases with and without a history of travel in 
the last month

Table 1  Descriptive characteristics of incident malaria cases in Lusaka 2011–2015

Year Number of health facilities 
participating

Confirmed incident malaria 
cases

Number of cases reporting 
travel (%)

Median age in years 
(inter-quartile 
range)

2011 5 855 694 (81%) 9 (3–27)

2012 20 1869 1497 (81%) 12 (3–25)

2013 22 899 684 (79%) 13 (5–26)

2014 25 3688 3080 (86%) 14 (6–25)

2015 19 1411 1273 (90%) 16 (6–28)
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COIL analysis
COIL analysis predicted that 54 of 71 (76%) genotyped 
malaria samples were from single infections, however 
19 of these predicted single infections had posterior 
probabilities < 0.80 due to missing SNPs. Of the 50 gen-
otyped samples with high statistical certainty, 32 were 

single infections (64%), 12 were dual infections (24%) 
and six had three or more infections (12%).

Discussion
In this study, information from incident case informa-
tion, particularly spatial location, and later with genetic 
analyses of malaria infections was used to spatially review 
the extent and location of malaria transmission in the city 
of Lusaka, Zambia, an area approaching malaria elimina-
tion. The rationale for such an approach was to enhance 
the signal to noise ratio by swapping a binary uninfected/
infected output to an exponentially richer haplotype/
multiplicity of infection (MOI) output. Combined with 
the spatial data from reactive case detection, it was hoped 
that relationships between individual infections, through 
haplotype matching/relatedness, could be identified as 
well as estimates of transmission determined from the 
MOI. However, the study was not powered to measure a 
specific deviation, but rather aimed to describe the para-
site population from a molecular point of view.

Transmission trends
While the total number of incident malaria cases was rel-
atively constant, evidence was found to support the con-
clusion that transmission decreased over the study period 
from the standard measures of transmission available in 
the HMIS. This included an increase in the median age of 
incident cases, as well as a declining R0 of < 1, over time. 
Interestingly, the probability of finding infections during 
RCD was increased if the index malaria case lived on the 
periphery of human settlement and the index case was 
reported during the wet season, but not the dry season. 
Given these results from RCD, it appears that there may 
be malaria transmission which is not associated with 
travel occurring along the periphery of human settle-
ments during the wet season. A key challenge for RCD 
is determining the appropriate range for a response. In 
this study, living in the index house was associated with 
testing positive (adjusted IRR 4.03, Table  2), however a 
large number of positives were identified in non-index 
houses. Without additional information on the relation-
ship between, or source of these different infections, it is 
unclear whether the radius used in this study, nine closest 
neighboring houses, is sufficient or overkill.

Unfortunately, it was not possible to demonstrate 
any associations between remotely sensed topographi-
cal information and the probability of finding a malaria 
infection during RCD, other than distance from unin-
habited areas. RDT-diagnosed malaria infections were 
used as the primary outcome in these analyses, which 
could have added noise through false positives and false 
negatives. While this noise is likely to be present, it is 
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Fig. 4  Age distribution of RCD incident malaria cases in Lusaka, 
Zambia. Box represents interquartile range, dots represent statistical 
outliers > 2 standard deviations above the mean

Fig. 5  R0 estimated from enhanced surveillance system, with varying 
levels, from 40 to 100%, of assumed importation for incident malaria 
cases reporting history of travel within the last month
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unlikely to entirely account for the null results observed. 
More research on urban malaria transmission dynam-
ics is needed, particularly around risk mapping in urban 
environments. Distance to uninhabited areas is a known 
factor that increases the probability of being at risk 
of malaria transmission [54, 55], but more research is 
needed to identify specific characteristics of areas that 
make them more probable to continue onward malaria 
transmission so that they can be either modified or used 
to target for malaria control.

As Lusaka aims to become free of malaria transmis-
sion, increased mosquito control in the periphery may 

be of benefit, and linking malaria surveillance to vec-
tor control microplanning processes is important. 
The results found herein suggest that there is vectoral 
capacity in the periphery to facilitate malaria trans-
mission if malaria parasites are present or imported. 
Malaria control programmes aiming for elimination 
may be more successful when focusing on locations 
of human settlements where sufficient habitat enables 
malaria transmission [56].

Although of benefit in describing malaria trends [57], 
human movement is more challenging to address as a 
driver of malaria transmission and in this study was not 

Fig. 6  Distribution of malaria test positivity with 95% confidence intervals indicated by error bars among RCD participants from 2011–2015. Wet 
season (blue) and dry season (black) are indicated

Table 2  Random effects logistic regression results assessing, among  RCD participants, the  association between  risk 
factors and testing positive for a malaria infection during a case investigation

A total of 11,954 individuals were tested for malaria during 428 case investigations

Variable Factor Unadjusted IRR (95% CI) P value Adjusted IRR (95% CI) P-value

Season and distance from 
uninhabited areas

Dry season > 250 m Reference Reference Reference Reference

Dry season and ≤ 250 m 1.88 (0.80–4.42) 0.150 3.74 (0.50–28.13) 0.200

Wet season and > 250 m 2.06 (0.85–5.03) 0.150 6.16 (0.76–49.77) 0.088

Wet season and ≤ 250 m 2.27 (1.01–5.09) 0.048 8.90 (1.31–60.49) 0.025

Age of person tested < 5 years Reference Reference Reference Reference

5–15 years 1.74 (1.27–2.39) 0.001 2.01 (1.29–3.11) 0.002

> 15 years 1.24 (0.85–1.81) 0.273 1.47 (0.87–2.46) 0.146

Sex of person tested Female Reference Reference Reference Reference

Male 1.11 (0.83–1.49) 0.477 1.10 (0.74–1.64) 0.639

Travel in past 1 month None Reference Reference Reference Reference

Outside Lusaka 11.06 (5.14–23.80) < 0.0001 13.65 (6.28–29.64) < 0.0001

Location of household Adjacent to index case Reference Reference Reference Reference

Index case house 4.33 (3.18–5.90) < 0.0001 4.03 (2.57–6.33) < 0.0001
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associated with finding malaria cases among RCD par-
ticipants. In our view, chemoprophylaxis for travellers, 
while potentially challenging to implement would help 
alleviate malaria cases, but may not reduce transmis-
sion in the city.

Genetics
In contrast to the evidence derived from HMIS and RCD 
data, it was much harder to draw a clear conclusion from 
the spatial genetics data. Firstly, in this study, MOI (as 
determined by COIL) was higher than expected, even 
in individuals with no history of travel. While MOI is 
thought to correlate directly with transmission, where a 
large proportion of the infections are imported this rela-
tionship may be skewed. For example, if, as suggested 
here, local transmission represents a relatively small, but 
persistent fraction of the source of infections, the high 
importation of diverse polymorphic infections likely sus-
tains a high MOI for any locally transmitted cases. Where 
local transmission chains are very short, as supported by 
estimates of R reported here, this artificially high MOI 
would be more pronounced. Interestingly, the proportion 
of polygenomic infections correlated with travel (Fig.  7) 
suggesting that MOI decreases with local transmission.

The ability to utilize SNP-barcode methods to suc-
cessfully identify individual haplotypes decreases with 
increasing levels of MOI, making matching/determining 
relatedness between individual infections much harder. 
Indeed, it is possible that identical haplotypes were not 
identified as they were masked by other haplotypes in 
individuals with more than one parasite present. When 
designing the study it was hoped that genetic relatedness 
correlated across space at a local spatial scale (in terms of 
metres) for individuals without any recent travel history 

Table 3  Negative binomial regression analysis assessing the  association between  risk factors and  the  number of  RDT-
positive individuals found among reactive case detection participants

N = 428 case investigations

Variable Factor Unadjusted IRR (95% CI) P-value Adjusted IRR (95% CI) P-value

Season and distance 
from uninhabited 
areas

Dry season > 250 m Reference Reference Reference Reference

Dry season and ≤ 250 m 1.77 (0.79–3.94) 0.119 1.82 (0.81–4.10) 0.147

Wet season and > 250 m 1.95 (0.84–4.54) 0.164 2.06 (0.88–4.81) 0.096

Wet season and ≤ 250 m 2.06 (0.97–4.39) 0.061 2.14 (0.99–4.59) 0.051

Age of index case < 5 years Reference Reference Reference Reference

5–15 years 1.20 (0.76–1.88) 0.432 1.20 (0.76–1.89) 0.441

> 15 years 1.36 (0.88–2.11) 0.164 1.37 (0.88–2.12) 0.163

Sex of index case Female Reference Reference Reference Reference

Male 1.22 (0.85–1.76) 0.287 1.20 (0.83–1.74) 0.342

Index case travelled in 
the past month

None Reference Reference Reference Reference

Outside Lusaka 0.81 (0.48–1.37) 0.437 0.76 (0.44–1.29) 0.302

Fig. 7  Proportion of polyclonal infections in malaria-positive RCD 
participants with and without a travel history

Fig. 8  Overall genetic relatedness of parasites found during RCD, 
comparing RCD participants with and without a travel history
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[58]. However, due to the high MOI and high importa-
tion, with the majority of infections likely acquired across 
a large area of Zambia, it was not possible to perform 
genetic spatial analyses with the SNP-barcode methods. 
Future work aiming to examine spatial genetics as poten-
tial tools for assessing the epidemiology of malaria para-
sites should consider genetic barcoding methods such as 
amplicon deep sequencing which may allow analysis of 
polyclonal samples [59]. Otherwise, researchers should 
seek areas of low transmission where imported cases 
are relatively few. It is reasonable to expect the ability 
to differentiate imported from locally-acquired infec-
tions to increase in resolution as the repository of Zam-
bian barcodes grows. Future analyses of these data when 
equipped with a better understanding of the identity and 
spatial distribution of Zambian parasite populations may 
yield clearer results.

Conclusions
Results suggest there may be two separate malaria trans-
mission phenomena occurring simultaneously in Lusaka: 
low-level transmission circulating in the periphery as 
well as a high number of imported malaria cases. The 
vast majority (> 90%) of malaria cases is likely a result of 
travel outside Lusaka, however there appears to be per-
sistent unrelated malaria transmission on the periphery 
of the city. Spatial analyses can be combined with genetic 
analyses to investigate infectious diseases, but may be 
limited in their findings due to the rarity of the infection 
and are further complicated by infections with a multi-
plicity greater than one. The macro-level tools of median 
age of malaria cases and Churcher’s formula are useful 
in describing the former, however they appear less use-
ful in describing the latter. As Zambia continues its path 
towards malaria elimination, further fine-scale surveil-
lance data must be collected to better understand urban 
and peri-urban transmission dynamics and to plan, coor-
dinate and monitor malaria interventions.
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