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Abstract

Item response theory ‘‘dual’’ models (DMs) in which both items and individuals are
viewed as sources of differential measurement error so far have been proposed only for
unidimensional measures. This article proposes two multidimensional extensions of
existing DMs: the M-DTCRM (dual Thurstonian continuous response model), intended
for (approximately) continuous responses, and the M-DTGRM (dual Thurstonian graded
response model), intended for ordered-categorical responses (including binary). A ratio-
nale for the extension to the multiple-content-dimensions case, which is based on the
concept of the multidimensional location index, is first proposed and discussed. Then,
the models are described using both the factor-analytic and the item response theory
parameterizations. Procedures for (a) calibrating the items, (b) scoring individuals, (c)
assessing model appropriateness, and (d) assessing measurement precision are finally
discussed. The simulation results suggest that the proposal is quite feasible, and an illus-
trative example based on personality data is also provided. The proposals are submitted
to be of particular interest for the case of multidimensional questionnaires in which the
number of items per scale would not be enough for arriving at stable estimates if the
existing unidimensional DMs were fitted on a separate-scale basis.
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A line of psychometric thought that can be traced back to the 1940s considers that

‘‘dual’’ models (DMs; see Ferrando, 2019, and Fiske, 1968) in which both persons

and items are sources of measurement error are the most plausible for personality

measurement (e.g., Ferrando, 2019; Fiske, 1968; Guilford, 1959). Furthermore, pro-

ponents of this view generally consider that the amount of error varies over both

respondents and items (see Lumsden, 1980), which agrees with experience. On the

one hand, personality items generally vary in their discriminating power (Reise &

Waller, 2009), and these variations possibly reflect the degree of item ambiguity as

well as such characteristics as type of stem and average item length (e.g., Ferrando,

2013; Lumsden, 1980; Taylor, 1977). On the other hand, individuals generally differ

in the sensitivity of their responses to the different item locations (Ferrando, 2013;

Fiske, 1968; Guilford, 1959), and this variation is thought to mainly reflect the rele-

vance, degree of clarity, and strength with which the trait is internally organized in

the individual (e.g., LaHuis et al., 2017).

A DM fits naturally in a unidimensional item response theory (IRT) framework.

The item response can then be viewed as the momentary encounter between an indi-

vidual, who has a certain trait level, and an item which has a location on the same

trait continuum (Lumsden, 1980; Torgerson, 1958), so that, at the moment of

responding, the respondent compares his or her perceived momentary level (subject

to error) to the perceived item location (also subject to error) on the same continuum.

In spite of the simplicity of this mechanism, however, IRT-based attempts to forma-

lize and develop it are relatively recent, and start with the seminal works by Weiss

(1973), Levine and Rubin (1979) and, particularly, Strandmark and Linn (1987).

Between then and now, the existing proposals have used different parameterizations,

response mechanisms, and terminology, and have generally considered restricted ver-

sions of the general model outlined above (see Ferrando, 2019). A general, fully

workable framework for modeling responses with different amounts of error in both

persons and items has been proposed by Ferrando (2013, 2019), and is the basis for

the developments proposed here.

To the best of our knowledge all the IRT-based DMs proposed so far are intended

for measures of a single content variable, and, in principle, we do not see this restric-

tion as a shortcoming. First, the response mechanism above is quite clear in this con-

text. Second, scores derived from a unidimensional (or essentially unidimensional)

instrument are the most univocal, meaningful, and clear to interpret (McDonald,

2000). Multidimensional extensions of the existing proposals, however, are of inter-

est for at least two reasons. First, most personality measures are inherently multidi-

mensional, so that more than one content dimension is needed to understand what

their items measure (e.g., Cattell & Tsujioka, 1964). Second, accurate estimation of

the person parameter that models the amount of individual error generally requires

relatively long tests. So, although a DM can be fitted to multidimensional personality

measures on a separate-scale basis, the number of items per scale is generally not

large enough to arrive at stable estimates.
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The aim of this article is to extend the general modeling framework proposed by

Ferrando (2013, 2019) to the case of item sets intended to measure multiple dimen-

sions. The spirit of the proposal is mainly applied, and feasible, simple, and robust

procedures are proposed for (a) calibrating the items and assessing model–data fit

and appropriateness, (b) estimating the person parameters (scoring), and (c) assessing

the precision with which the individual parameters are estimated. As far as we know,

the proposal as a whole is a new contribution.

The remainder of the article is as follows: (a) the existing unidimensional DMs

intended for continuous and graded-responses dual Thurstonian continuous response

model (DTCRM) and the dual Thurstonian graded response model (DTGRM; see

Ferrando, 2019; including binary) are revised; (b) the proposed multidimensional

extensions of these models, M-DTCRM and MDGRM, are developed in detail; (c)

two-stage (calibration and scoring) procedures for fitting the models and assessing

their appropriateness are then described; (d) their behavior is assessed with simula-

tion studies; and (e) they are implemented in an extended R package; and finally (f)

the functioning of the proposal is illustrated with an empirical example in the person-

ality domain.

A Review of the Unidimensional DTCRM and DTGRM

For item scores that can be treated as (approximately) continuous, the structural equa-

tion of the DTCRM is

Xij = g + lj(Ti � bj): ð1Þ

where Xij is the score of individual i on item j, g is the response scale midpoint, and

lj is a scaling parameter that relates the item score scale to the latent scale of u. Ti is

the momentary trait (or perceived trait) value of this individual at the moment of

responding, and bj is the momentary (perceived) location of item j on the trait

continuum:

Ti = ui + vi; bj = bj + ej: ð2Þ

The distribution of Ti over the test items is assumed to be normal with mean ui

and variance s2
i , which are the parameters that characterize respondent i, and that

remain constant across items. The distribution of bj, over respondents is assumed to

be normal, with mean bj, and variance s2
ej

. Finally, the item and person residuals are

assumed to be independent (e.g., Torgerson, 1958). As for interpretation, ui (person

location), is the single value that best summarizes the standing of individual i on the

trait, whereas bj (item location) can be interpreted as a conventional IRT item loca-

tion index (see below). The square roots of the variance terms, s2
i and s2

ej
(i.e., the si

and sej
standard deviations) are referred to as the person discriminal dispersion

(PDD; Mosier, 1942) or person fluctuation (Ferrando, 2013), and the item discrim-

inal dispersion (IDD; Thurstone, 1927), respectively. The PDD is a direct measure of
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fluctuation in (perceived) trait location over items while the IDD is an inverse mea-

sure of item discriminating power.

The conditional distribution of Xj for fixed ui and s2
i is normal, with expectation

and variance given by

E(Xijjui, s2
i) = g + lj(ui � bj); Var(Xijjui, s2

i) = lj
2(s2

i + s2
ej): ð3Þ

Note that the expected value of Xj when the trait level matches the item location

is the scale midpoint. So, bj can be interpreted as a difficulty index in the IRT sense

(Ferrando, 2009): It is the point on the trait continuum that marks the transition from

the tendency to disagree with/not endorse the item to the tendency to agree with/

endorse it.

By assuming that the population mean and variance of u are 0 and 1, respectively,

the marginal mean and variance of Xj over the entire population of respondents are

E(Xj) = g � ljbj = mj;

Var(Xj) = lj
2 Var(u) + E(s2

i ) + s2
ej

h i
= lj

2 1 + E(s2
i ) + s2

ej

h i
:

ð4Þ

where E(s2
i ) is the expected value of s2

i in the population (i.e., the average of the

PDDs). The covariance between Xj and Xk is

Cov(Xj, Xk) = ljlkVar(u) = ljlk : ð5Þ

We turn now to the factor analysis (FA) parameterization of the DTCRM. By mak-

ing the transformation (Ferrando, 2009):

bj =
g � mj

lj

, ð6Þ

the expectation in Equation (3) can be written as

E(Xijjui, s2
i) = mj + ljui: ð7Þ

which only depends on u and is the structural equation of Spearman’s congeneric

item score model (Mellenbergh, 1994). By further defining a j residual term as

u2
j = lj

2 E(s2
i ) + s2

ej

h i
: ð8Þ

The covariance structure implied by the DTCRM can be written as

C = ll0 + U2 ð9Þ

where l is the column vector containing the lj scaling weights, and U2 is a diagonal

matrix whose nonzero elements are the residuals in Equation (8). So, with the
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proposed transformations, the covariance structure for the DTCRM is then equivalent

to that of the congeneric model.

The correlational structure corresponding to Equation (9) is

R = aa0 + D2, ð10Þ

where R is the interitem correlation matrix, the elements of a are the standardized

loadings

aj =
ljffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Xj)
p =

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + E(s2

i ) + s2
ej

q , ð11Þ

and the nonzero elements of the diagonal matrix D2 are 1 2aj
2. It then follows from

Equation (11) that

1� a2
j

a2
j

= E(s2
i ) + s2

ej: ð12Þ

In the DTCRM formulation so far, Xj is bounded while u is thought of as

unbounded. So, the model cannot be strictly correct, since some values of u would

lead to expected values of Xj outside the boundaries of the item format. Rather, under

this formulation, the item–trait regressions are expected to be nonlinear and hetero-

scedastic, with asymmetric conditional distributions and reduced variances toward

the end of the scale. Therefore, the DTCRM must be viewed as an approximation

(Mellenbergh, 1994). This approximation, however, is expected to work well when

items are not too extreme and their loading values in Equation (11) are only moder-

ate, which means that, in general, the item–trait regressions do not substantially

depart from linearity, or, in other words, that they are well approximated by a

straight line in the range of values that contains most of the respondents (Ferrando,

2002). Personality and attitude items generally fulfill the conditions above (Ferrando,

2002; Hofstee et al., 1998). So, the linear approximation is expected to work reason-

ably well with this type of item. On the other hand, in scenarios in which the items

are both extreme and highly discriminating, a transformation of Xj may also make

the transformed responses unbounded. This point is further discussed below.

We turn now to the ordered-categorical-response case. Ferrando (2019) explicitly

distinguished between a submodel for binary responses (DTBRM) and a submodel

for graded responses (DTGRM). However, the DTBRM can be obtained as a particu-

lar case of the DTGRM simply by substituting the usual 0 to 1 scoring for the integer

1 to 2 scoring. So, we shall provide here a unified treatment, and revise only the

DTGRM, which is based on the underlying-variables-approach (UVA, e.g., Edwards

& Thurstone, 1952; Muthén, 1984). Let Xj be the observed item response, scored as

1, 2, . . ., c. The first part of the UVA assumes that there is an underlying, normally

distributed latent variable Yj that generates the observed item categorical score

according to a step function governed by c 2 1 thresholds (t):
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X = 1 if Y\t1

X = 2 if t1 � Y\t2

X = 3 if t2 � Y\t3

..

.

X = c if tc�1\Y

: ð13Þ

In the present proposal, the second part of the UVA assumes that the structural

model in Equations (1) and (2) holds for the underlying response variable Yj

Yij = aj(Ti � bj): ð14Þ

Compared with Equation (1) the midpoint intercept term g is now zero, and the

scale parameter lj is directly a standardized loading aj (as in Equation 11). This is

because the origin and scale for the latent Yj are now undetermined, and this indeter-

minacy is (partly) solved by assuming that the scale midpoint is zero and the variance

of the marginal distribution of Yj is 1. With these restrictions, the marginal mean and

variance of Yj, are given by

E(Yj) = � ajbj = mj;

Var(Yj) = 1 = aj
2 1 + E(s2

i ) + s2
ej

h i
:

ð15Þ

And the correlational structure and derived results for the Yjs are the same as in

Equations (10) to (12).

In contrast to the DTCRM, the DTGRM explicitly treats the observed item scores

as discrete and bounded, which is what they really are, so it is theoretically more

plausible. Under this treatment, the observed item-trait regressions are nonlinear and

heteroscedastic, the conditional distributions are asymmetric, and the variances are

reduced toward the end of the scale. Whether this greater appropriateness translates

into practical advantages with respect to the simpler, approximate DTCRM for the

case of personality and attitude items is still not clear, however.

The Multidimensional Proposal: M-DTCRM and M-DTGRM

An extended formulation for the DTCRM in m (possibly correlated) dimensions can

be obtained by assuming that, for each dimension k, item j has an element of loca-

tion, denoted by bjk, which is related to the position it occupies along the correspond-

ing uk axis (this rationale is further discussed). The proposed structural equation of

the M-DTCRM is

Xij = g + lj1(Ti1 � bj1) + � � � + ljm(Tim � bjm), ð16Þ

where, for each individual i and each item j, the momentary trait values and the

momentary item locations on each trait continuum are now vectors, and their ele-

ments are given by
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Tik = uik + vik ; bjk = bjk + ejk : ð17Þ

The Tik distributions over items are assumed to be normal with means uik and com-

mon variance s2
i . The distributions of bj over respondents are assumed to be normal,

with means bjk, and variances s2
ej. Finally, the item residuals of different dimensions

are assumed to be independent, the person residuals of different dimensions are also

assumed to be independent, and the item and person residuals are assumed to be inde-

pendent from each other. So, apart from the full independence among residual terms,

the model which is proposed assumes that (a) the variance over respondents around

each bjk, is the same (s2
ej; it only depends on the item) and (b) the amount of person

fluctuation s2
i still remains constant over the different items of the questionnaire,

even when these items measure different factors. Assumption (a) seems reasonable if

the amount of IDD is viewed as a general characteristic of the item, and the plausibil-

ity of (b) is discussed below. From a practical point of view, all these new restrictions

make model estimation feasible and allow stable estimates to be obtained. They also

show that the conditional distribution of Xj for fixed ui and s2
i is normal, and given

by

E(Xijjui, s2
i ) = g + lj1(ui1 � bj1) + � � � + ljm(uim � bjm);

Var(Xijjui, s2
i ) =

Xm

k

ljk
2

 !
(s2

i + s2
ej):

ð18Þ

And, by assuming again that the marginal means and variances of the uks are 0

and 1, respectively, the marginal mean and variance of Xj over the entire population

of respondents are

E(Xij) = g �
Xm

k

ljkbjk = mj;

Var(Xij) =
Xm

k

l2
jk

 !
1 + E(s2

i ) + s2
ej

h i
+
X
k 6¼l

X
ljkljlukl ,

ð19Þ

where ukl is the correlation between uk and ul (i.e., the interfactor correlation).

By using the definition,

bjk =
ljk(g � mj)Pm

k = 1

l2
jk

: ð20Þ

the expectation in Equation (18) can be written in standard FA form as

E(Xijjui, s2
i ) = mj + lj1ui1 + � � � + ljmuim: ð21Þ
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And, by further defining a j residual term as

u2
j =

Xm

k

l2
jk

 !
E(s2

i ) + s2
ej

h i
: ð22Þ

the covariance structure implied by the M-DTCRM can be written as

C = LFL0 + U2, ð23Þ

where L is the matrix containing the ljk scaling weights, F is the interfactor correla-

tion matrix, and U2 is a diagonal matrix whose nonzero elements are the residuals in

Equation (22). The covariance structure (Equation 23) is indeed that of the standard

correlated-factors FA model.

We shall now discuss the rationale for the choice of Equation (16) as the multidi-

mensional extension of the DTCRM. Reckase (2009, chap 5) proposed a multidimen-

sional difficulty (location) index, which, Ferrando (2009) adapted to the linear FA

case. For the sake of simplicity we shall focus on the bidimensional case. Consider

first the expectation in Equation (21) as a function defined on the (u1, u2) plane. The

graph of this function is the item response surface of the bidimensional DTCRM and

is a plane. The direction in which the slope of this plane is maximal can be deter-

mined, but, once a particular direction has been determined, the slope along it

remains constant. Now, define the multidimensional location as the signed distance

from the origin on the (u1, u2) plane to the point at which the expected item score is

g (the response scale midpoint) in the direction of the maximum slope of the item

response surface (plane). This multidimensional location index, denoted by bj, is

given, in the general multidimensional case, by (see Ferrando, 2009)

bj =
g � mjffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm

k

l2
jk

s : ð24Þ

It can be seen as a vector whose norm is intended to reflect the overall ‘‘diffi-

culty’’ or extremeness of the item. The direction cosines that define the position of

this vector (i.e., the direction of maximum slope) are given in the general case of m

dimensions by (Ferrando, 2009)

cos fjk =
ljkffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k

l2
jk

s : ð25Þ

If we define the location element bjk, in FA terms as in Equation (20), it then fol-

lows that
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bjk = cos fjkbj

b2
j =
Xm

k

b2
jk :

ð26Þ

So, each location element bjk, is the orthogonal projection of the multidimensional

location vector bj on the uk axis. Overall then the rationale is to consider (a) a vector

bj that reflects the general ‘‘difficulty’’ or extremeness of the item and (b) the ortho-

gonal projections of this vector on each uk axis as vectors that reflect the ‘‘difficulty’’

or extremeness of this item along this particular dimension. Note also that the element

bjk, can be interpreted as the contribution of the location element to the multidimen-

sional location, and that this contribution will increase as the multidimensional loca-

tion bj vector gets closer to the corresponding uk axis.

The correlational structure corresponding to Equation (23) is

R = AFA0 + D2, ð27Þ

where the elements of A are the standardized loadings:

ajk =
ljkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var(Xj)
p : ð28Þ

Finally, the multidimensional extension of Equation (12) is

1� a0jFaj

a0jaj

= E(s2
i ) + s2

ej: ð29Þ

where a0j is the j row vector of A. As discussed below, the expression on the left-

hand side of Equation (29) is a direct measure of IDD. As a simple and familiar aux-

iliary measure of overall item discriminating power, which has values between 0 and

1, the commonality estimate: a0jFaj can also be used.

We turn now to the M-DTGRM, which will again be derived by using the UVA.

The first part of the approach is the same as in Equation (13), because the relation

between the observed and the latent response does not depend on the number of

dimensions. As for the second part, we consider the modified multidimensional struc-

ture (Equation 16):

Yij = aj1(Ti . . . Tim � bj1) + � � � + ajm(Ti . . . Tim � bjm): ð30Þ

which has the same assumptions as detailed following Equations (16) to (18), and the

additional restrictions that (a) the midpoint intercept term g is zero, and (b) the scale

parameters are directly standardized factor loadings ajk. The marginal mean and var-

iance of Yj are
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E(Yij) = �
Xm

k

ajkbjk = mj;

Var(Yij) =
Xm

k

a2
jk

 !
1 + E(s2

i ) + s2
ej

h i
+
X
k 6¼l

X
ajkajlukl ,

ð31Þ

The multidimensional location index and the location elements are now given by

bj =
�mjffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
k

a2
jk

s : ð32Þ

and,

bjk =
ajk(� mj)Pm

k = 1

a2
jk

: ð33Þ

However, unlike in the M-DTCRM case, they cannot be obtained directly from

the marginal means in Equation (19) because the latent responses Yj cannot be

observed. The identification conditions for estimating Equations (32) and (33) are

discussed below. As for the correlational structure, it is the same as in the continuous

case in Equation (27), and the result for identifying the sources of error is the same

as in Equation (29).

Finally, we shall discuss the IRT modeling (conditional probabilities as they are

used in the Supplemental Appendix; available online) of the M-DTGRM. The prob-

ability of scoring in the v category (i.e., Xj = n) on item j for fixed ui and s2
i is

P(Xij = vjui, s2
i ) =F

a0ui � (a0b + tjv�1)ffiffiffiffiffiffiffiffi
a0a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
i + s2

ej

q
0
B@

1
CA� F

a0ui � (a0b + tjv)ffiffiffiffiffiffiffiffi
a0a
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
i + s2

ej

q
0
B@

1
CA

=F j0ijui � dijv�1

� �
� F j0ijui � dijv

� �
:

ð34Þ

where F is the cumulative distribution function of the standard normal distribution.

Note that the elements of the reparameterized discrimination vector jij (and also the

reparameterized scalar location d) depend on both item and person. Now, if the PDDs

are equal for all the respondents (i.e., s2
i = s2) while the IDDs are allowed to vary

over items, the discrimination vector will reduce to jj, and the last expression in

Equation (34) for the conditional probability will be that of the standard multidimen-

sional normal-ogive graded response model (e.g., Reckase, 2009). The role of the

PDD and the IDD in Equation (34) is the same as in the unidimensional case (see

Ferrando, 2019). The ui vector determines the response category that has the greatest

probability of being endorsed by i. As the PDD and the IDD approach zero, the
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probability of endorsing this category increases, whereas the probability of endorsing

the remaining categories decreases. So, the response certainty increases (see, e.g.,

Tutz & Schauberger, 2020) and the response process becomes more and more

deterministic.

Fitting the M-DTMs

The two-stage approach (calibration and scoring) proposed for the unidimensional

models (Ferrando, 2019) is also proposed here so only relevant points related to the

multidimensional expansion will be discussed below.

Item Calibration

In the most general scenario, a canonical unrestricted FA solution in m specified

dimensions is fitted to the appropriate interitem correlation matrix: product–moment

(M-DTCRM), or polychoric (M-DTGRM). The fit of the chosen model at the struc-

tural (correlational) level is then assessed, and finally the canonical solution is rotated

to an interpretable solution with, generally, correlated factors. We note also that more

restricted solutions, such as independent-cluster (confirmatory) or target rotations can

also be fitted to the correlation matrix. In both cases (unrestricted or restricted), the

estimates obtained by fitting the multiple FA solution are the standardized loadings a

(Equations 28 and 30), the interfactor correlation matrix F (Equation 27) and the

standardized residual variances. Now, for both the M-DTCRM and the M-DTGRM,

Equation (29) shows a well-known result (e.g., Cronbach & Warrington, 1952;

Torgerson, 1958): that the interitem correlation matrix does not contain sufficient

information to separately identify the average PDD and IDDs. So, as in the unidimen-

sional proposals, we chose the item with the smallest IDD as a marker for identifying

the average PDD. In more detail, we chose as the marker the item for which the left-

hand side of Equation (29) attains its minimal value, and we assumed that its IDD is

zero. Then, relative to this scaling, the average PDD is estimated as

1� a0jFaj

a0jaj

� �
(min)

= Ê(s2
i ): ð35Þ

The results so far are common to both the M-DTCRM and the M-DTGRM.

The ‘‘marker’’ identification constraint used to obtain estimate Equation (35) is,

in our view, unavoidable and very simple, but theoretically unsatisfactory, because it

assumes that the best item in the bank is a ‘‘perfect’’ item with zero IDD, which is

clearly unrealistic. So, the result of Equation (35) is best viewed as an upper bound

for the average PDD rather than as a proper estimate. Perhaps better estimates could

be obtained in scenarios in which more information is available (repeated measure-

ments, multiple groups analyses, or already calibrated item banks). This is a point

that clearly warrants further research.
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We turn now to the item location parameters. In the M-DTCRM, we first need the

L matrix containing the ljk scaling weights. It is estimated by

L = DXA, ð36Þ

where DX is the diagonal matrix containing the items’ standard deviations. Next, the

location elements bjk, are estimated using Equation (20) together with the marginal

item means according to Equation (19). Finally, the multidimensional location index

bj, is obtained by using Equation (24).

In the M-DTGRM, the marginal means of the latent response variables are

unknown, but assumed to be different among them (Equation 31). So, constraints on

the thresholds should be applied to identify these means, and we propose here to use

those by Lubbe and Schuster (2017): to fix the middle threshold (even number of

categories) or the sum of the two central thresholds (odd number of categories) to

zero. With these constraints, the original thresholds are completely determined by

the probabilities of the categorized outcomes (Equation 13) and, within each item,

the transformed thresholds differ from the original ones by a constant term which is

the latent mean of Yj (i.e., mj). Once this estimate has been obtained, both bj and the

bjks can be further estimated by Equations (32) and (33). We should point out that,

with the proposed constraints, the estimates of bj, and bjk, obtained from the M-

DTCRM and the M-DTGRM were almost identical in all the previous checks we

made.

Individual Scoring and Score-Based Measures of Accuracy and
Appropriateness

The approach proposed for estimating the individual parameters in the M-DTCRM

and the M-DTGRM is a straightforward extension of the one proposed for the origi-

nal unidimensional models (Ferrando, 2019). So it will only be summarized here and

more details are provided in the Supplemental Appendix (available online). The esti-

mates are Bayes expected a posteriori (EAP, Bock & Mislevy, 1982); the priors for

the us are standard normal, the prior for the PDDs is the scaled inverse x2 distribu-

tion (Novick & Jackson, 1974), and both types of priors are approximated by rectan-

gular quadrature.

For each individual i, the outcome of the scoring process consists of (a) m point

estimates of the central trait levels of this individual on each factor (ûik); (b) the

PDD point estimate (ŝ2
ik) assumed to be constant over dimensions; and (c) the m + 1

posterior standard deviations (PSDs) corresponding to each point estimate, which

would serve as standard errors (e.g., Bock & Mislevy, 1982). By extending Bock and

Mislevy’s (1982) proposal, PSD-based conditional reliability estimates can further

be obtained as
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r(ûik) = 1� PSD(ûik)
2

Var(uk)
= 1� PSD(ûik)2

r(ŝ2
i) = 1� PSD(ŝ2

i)
2

Var(s2)
,

ð37Þ

where Var(uk) refers to the population variance of the k trait and Var(s2) refers to the

population variance of the PDDs. As stated above, the population trait variances are

all fixed at 1. As for Var(s2) we use the empirical estimate obtained from the ŝik
2

point estimates (Brown & Croudace, 2015).

As overall measures that assess the precision of the estimates in the population of

respondents, empirical marginal reliability estimates can be obtained by averaging

the squared PSDs in the sample of N individuals (Brown & Croudace, 2015):

�r(ûk) = 1�

PN
i

PSD(ûik)
� �2
NVar(uk)

= 1�

PN
i

PSD(ûik)
� �2

N

�r(ŝ2) = 1�

PN
i

PSD(ŝ2
i)

� �2
NVar(s2)

: ð38Þ

As it should be, for both uk and s2 the conditional and marginal reliability esti-

mates in Equations (37) and (38) are unitless numbers between 0 and 1 that do not

depend on the particular choices of Var(uk) and Var(s2).

We turn now to the assessment of model appropriateness. The multiple FA model

based on product–moment interitem correlations, and the corresponding UVA-based

model based on polychoric correlations can be viewed as restricted versions of the

M-DTCRM and the M-DTGRM, respectively, and are obtained from the latter by

restricting the PDDs to be the same for all respondents. Furthermore, at the structural

level each ‘‘normative’’ FA model (i.e., equal PDDs) and its corresponding DM are

indistinguishable, as they give rise to the same correlational structure. So, the greater

appropriateness of the more flexible but complex DM with regard to the more

restricted normative model must be assessed from the individual estimates.

The common approach used in previous developments is based on a likelihood

ratio (LR) statistic. For a single respondent i, let L0
i (ûi, ŝ2) be the value of the likeli-

hood function evaluated by using the vector of central trait estimates obtained under

the restriction that all the PDDs have a constant value. Now, let L1
i (ûi, ŝi

2) be the cor-

responding value using both the person locations and the PDD estimate. The LR sta-

tistic and the transformed value also proposed here are

Li =
L0

i (ûi, ŝ2)

L1
i (ûi, ŝi

2)
; si = � 2 ln (Li): ð39Þ
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Statistic Li is a descriptive normed index with values in the range 0 to 1. Values

close to 0 indicate that the dual TM provides a substantially better fit than the corre-

sponding standard model. As for si, it is a x2-type statistic, and the sum Q = Ssi is

also a x2-type statistic referred (approximately) to a x2 distribution with N degrees

of freedom (see Ferrando, 2013, 2019). We should stress that Q is only meant to be

used as a useful approximate reference, not as a strict test of fit. In this respect, simu-

lation results in the unidimensional case suggest that it is a conservative index, which

is only to be expected, because (a) in an LR test the likelihoods must be evaluated at

their ML estimates whereas here they are evaluated at their EAP estimates, and (b)

these EAP estimates are regressed toward the mean, which brings them closer to the

constant PDD restriction than the more ‘‘spread out’’ ML estimates would be.

Substantive and Practical Considerations

Dual Thurstonian models are more flexible than their normative counterparts, but

this flexibility has a price in terms of complexity and proneness to providing unstable

or implausible estimates. In the multidimensional case dealt with here, we have

addressed this issue by imposing additional restrictions that keep the models rela-

tively simple and allow plausible person estimates to be obtained for all the respon-

dents in realistic conditions.

The most important restriction we propose is that the amount of person fluctuation

is the same over the different items, even when these items measure different dimen-

sions. However, the amount of PDD might well be (at least partly) intrinsic to the trait

being measured (Taylor, 1977). If so, the present proposal would be most plausible in

the case of questionnaires designed to measure related dimensions that, to a greater or

lesser extent, are influenced by a more general dimension (such as a second-order fac-

tor). At the other extreme, the restriction would possibly be unrealistic for instruments

that aim to measure broad and unrelated personality traits. In this case, the person

estimate s2
i would probably reflect the average fluctuation of this individual across

the different traits.

A second potential practical concern of the proposal lies in identifying the average

PDD at the calibration stage based on the most discriminating item (Equation 35).

The presence of one or more items with unusually high communality estimates would

result in a near-zero estimate for the average PDD, which, in turn, would make valid

assessment of individual differences in PDD difficult. In FA terms, this problem is

that of a quasi-Heywood case (see Lorenzo-Seva & Ferrando, 2020), and is expected

to be worse here than in the unidimensional case, especially for the M-DTGRM. The

presence of redundant items that are nearly linear composites of the remaining test

items, and particularly doublets and triplets (McDonald, 1985), overfactoring, poorly

defined factors (McDonald, 1985), and excessive sampling variability are, among,

other things, potential causes of this phenomenon (see Lorenzo-Seva & Ferrando,

2020, for a detailed discussion). Our recommendation is to (a) ‘‘clean’’ the data set
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and remove the offending items before applying the DM and (b) avoid overfactoring

when fitting the model.

Finally, we shall move on to discuss the potential practical advantages of using

the models proposed here. As discussed in greater depth in Ferrando (2019) there are

three main ones. First, they provide additional information about the response consis-

tency of the individual when answering the test. Second, they allow a meaningful

assessment of the differential accuracy of the central trait point estimates as a func-

tion of the amount of PDD. Finally, the PDD estimates might have a moderating role

in external validity assessment: Individuals with small PDDs are expected to be more

predictable (see Ferrando, 2019). However, the moderating effects of the PDD in

practice are expected to be modest at best (Ferrando, 2013, 2019).

The second advantage above (differential accuracy) is illustrated in Figure 1 using

one of the data sets of the simulation study. It is a three-factor solution, and the ordi-

nate axis shows the conditional reliability of the factor score estimates (Equation 37)

averaged across the three factors, as a function of the amount of PDD.

Two main results are apparent from the graph. First, the accuracy of the individ-

ual trait estimates decreases with the amount of person fluctuation, as expected.

Second, the variability of the conditional reliabilities also depends on the amount of

PDD, the scatter approaching the so-called ‘‘twisted-pear’’ contour (Fisher, 1959).

Figure 1. Average conditional reliability over factors as a function of person discriminal
dispersion.
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When the amount of person fluctuation is low, the accuracy of the trait estimates

mainly depends on the trait level, so accuracy can vary considerably. On the other

hand, however, high PDD values mean that the trait estimates cannot be very accu-

rate no matter what the trait levels are. The expected differential accuracy of the trait

estimates as a function of the amount of PDD is empirically assessed in the illustra-

tive example.

Simulation Studies

For both the M-DTCRM and the M-DGRM, two initial simulation studies were car-

ried out to (a) check the correctness of the results and expectations derived from the

proposal and (b) assess the functioning of the estimation procedures proposed. The

complete studies as well as the tables of results are presented in the Supplemental

Appendix (available online), and only a summary is given here.

For each of the two models, the study had two parts. The first part assessed

whether appropriate calibration results could be attained. The second part assessed

the expected conditions under which accurate individual estimates could be obtained.

So, the first part of the study was essentially a model check and aimed to assess

whether data generated from a multidimensional dual model did in fact behave like a

multiple FA model at the correlational level. More in detail, what was assessed was

whether the items could be well calibrated by fitting a FA solution to the appropriate

(Pearson or polychoric) interitem correlation matrix in which (a) the correct number

of factors was specified and (b) the direct solution was rotated using a semispecified

oblique target rotation with a target matrix that was congruent with the ‘‘true’’ pat-

tern. The calibration results were quite clear: For both models, and in all conditions,

when the number of factors and the expected target matrix were well specified, the

structural solution was well recovered and the model–data fit was good.

The main focus of the second part of the study was on whether the ‘‘true’’ indi-

vidual parameters could be appropriately and accurately recovered. Results were also

positive and agreed with expectations. In summary, for items of reasonable quality,

accurate trait estimates are expected to be obtained from small instruments or item

sets with two factors and seven items per factor. Reasonably accurate PDD estimates,

however, require larger item sets, but can be obtained from moderately large instru-

ments of about 25 items and two or three factors.

Implementation

The proposal so far is contained in an existing R package: InDisc (Ferrando &

Navarro-González, 2020). Originally, this package was designed for fitting the unidi-

mensional IRT dual models described in Ferrando (2019). Several modifications

have been made so that the multidimensional models (up to four dimensions) can be

assessed. The usage is the same as that described in the original article: It consists of

a main function (InDisc), which calls all the subfunctions required for (a) item
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calibration in the first stage and (b) item scoring in the second stage (including mea-

sures of reliability and model appropriateness).

The new version of InDisc has been developed in R Version 4.0.2 and runs with

R versions more recent than 3.5.0. The number of variables and respondents the pro-

gram can handle is not limited but can heavily impact computing time.

Illustrative Example

A data set containing the responses of 384 undergraduates to the Statistical Anxiety

Scale (SAS; Vigil-Colet et al., 2008) was reanalyzed with the M-DTCRM and the

M-DTGRM. It had been previously fitted with standard procedures (Ferrando &

Lorenzo-Seva, 2019), and more details can be found there. As a summary, the SAS

is a 24-item measure intended to assess the anxiety levels of students taking a statis-

tics course. It was designed for assessing three related dimensions: Examination

Anxiety (eight items), Asking for Help Anxiety (eight items), and Interpretation

Anxiety (eight items). All of the items are positively worded and use a five-point

Likert-type response format, ranging from no anxiety (1) to considerable anxiety (5).

Previous analyses not only obtained a clear solution in three highly related factors

that matched the theoretical structure but also found that an essentially unidimen-

sional solution was tenable. Additional assessment concluded not only that informa-

tion and accuracy were greater when the tridimensional solution was used but also

that the use of total raw (or factor) scores as if they were essentially unidimensional

was acceptable. So, the dataset is ‘‘a priori’’ appropriate for the present proposal. On

the one hand, the strong interfactor relations and essential unidimensionality suggest

that the assumption of constant PDD over items is plausible. On the other, fitting the

DTCRM or the DTGRM to short sets of five to eight items is practically unfeasible

if accurate estimates of the person parameters (particularly the PDDs) are to be

obtained.

Although both the M-DTCRM and the M-DTGRM were fitted to the data, we

found that (a) the results provided by both models agree closely (as expected) but (b)

the simpler M-DTCRM fitted the data slightly better and provided clearer results in

this case. For this reason, only the M-DTCRM–based results are reported here.

Item Calibration

A canonical solution in three factors was fitted to the interitem product–moment cor-

relation matrix by using robust unweighted least squares estimation as implemented

in the FACTOR program (Lorenzo-Seva & Ferrando, 2013) and then obliquely rotat-

ing using Promin (Lorenzo-Seva, 1999). Goodness-of fit was assessed by using both

the conventional approach and the equivalence testing approach by Yuan et al.

(2016). The fit results were excellent, and are indeed the same as those reported in

Ferrando and Lorenzo-Seva (2019), who used the same fitting procedure.
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Table 1 shows the rotated pattern of standardized loadings (A) and the interfactor

correlation matrix (F) together with the communality estimates (a0jFaj), which, as

discussed below (Equation 29), are measures of overall item discriminating power.

As in the previous analyses, the rotated pattern agrees quite well with the prescribed

‘‘a priori’’ structure, with all the salient loadings (boldfaced) located in the corre-

sponding factor, and with the three factors positively and substantially correlated with

each other. Note that the item communalities tend to be rather high, which indicates

not only high internal consistency but also possibly a certain amount of redundancy,

Table 1. Calibration Results. Illustrative Example.

(a) Rotated pattern of standardized loadings with the communality estimates

F1 F2 F3 Communality estimates

I1 0.0156 0.6803 0.0200 0.4974
I2 –0.2636 –0.2636 0.8115 0.4197
I3 0.9521 –0.0312 –0.2236 0.6520
I4 –0.0811 0.7738 –0.0500 0.4720
I5 0.6025 –0.1295 0.2081 0.4378
I6 –0.0536 –0.1971 0.8281 0.4603
I7 0.9214 –0.0654 –0.0537 0.7131
I8 0.1609 0.1885 0.3628 0.4047
I9 –0.0163 0.8675 –0.1797 0.5543
I10 –0.1954 –0.1165 0.7516 0.3392
I11 0.0283 0.8156 –0.1747 0.5261
I12 0.9606 –0.0488 –0.1517 0.7056
I13 –0.2043 0.8214 –0.0636 0.4303
I14 0.1105 0.6572 –0.0516 0.4944
I15 –0.2577 0.9808 –0.1280 0.5605
I16 0.0526 0.1821 0.3024 0.2372
I17a 0.9726 –0.1155 –0.0786 0.7225
I18 –0.0195 –0.0708 0.6331 0.3305
I19 0.1245 0.0671 0.4741 0.3761
I20 –0.2147 0.9139 –0.0862 0.5294
I21 0.7080 –0.1985 0.2835 0.6047
I22 –0.1210 –0.1261 0.9144 0.5871
I23 0.9714 –0.0577 –0.1908 0.6821
I24 0.7240 –0.1645 0.1750 0.5383

(b) Interfactor correlation matrix

F1 F2 F3

F1 1 0.6997 0.6422
F2 0.6997 1 0.6889
F3 0.6422 0.6889 1

Note. Salient loadings are presented in bold face.
aItem used as marker.
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as the item contents are quite similar. The most discriminating item is 17, which was

chosen as a marker for obtaining the initial estimate of the average PDD. The initial

estimate of the average PDD obtained using Equation (29) was E(s2
i�) = 0:30 The

final empirical estimate based on the average of the individual estimates was

E(s2
i�) = 0:45.

We turn now to the item location measures. For each item, Table 2 shows (a) the

location elements along each factor (Equation 33) and (b) the multidimensional loca-

tion in Equation (32). First, note that, overall, the items tend to be ‘‘easy’’ (i.e., very

low levels of anxiety are required to agree with the item content). Second, the most

extreme items (e.g., Item 4) tend to be aligned along the second factor, which is

‘‘Examination Anxiety.’’

Individual Scoring and Score-Based Measures of Accuracy and
Appropriateness

EAP score estimates for the three content dimensions and the PDDs, together with

their corresponding PSDs, were obtained as described in the Supplemental Appendix

Table 2. Item Location Elements and Multidimensional Item Locations: Illustrative Example.

Item bj1 bj2 bj3 bj

1 20.02 21.02 20.03 21.02
2 20.22 20.04 0.68 0.71
3 0.16 20.01 20.04 0.16
4 0.28 22.65 0.18 22.67
5 0.98 20.21 0.35 1.06
6 20.06 20.23 0.95 0.98
7 0.45 20.03 20.02 0.45
8 20.20 20.24 20.47 20.57
9 0.04 22.07 0.43 22.11
10 20.33 20.20 1.28 1.34
11 20.03 21.05 0.23 21.07
12 0.31 20.02 20.05 0.31
13 0.54 22.16 0.17 22.24
14 20.12 20.73 0.06 20.74
15 0.50 21.92 0.26 22.00
16 0.22 0.77 1.29 1.51
17 0.48 20.06 20.04 0.49
18 20.03 20.12 1.06 1.07
19 0.41 0.22 1.59 1.66
20 0.31 21.34 0.13 21.38
21 1.13 20.32 0.46 1.26
22 20.13 20.13 0.94 0.96
23 0.11 20.01 20.02 0.11
24 1.16 20.27 0.29 1.23
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(available online). The accuracy of the resulting estimates was assessed in two ways.

First, the PSD-based marginal reliability estimates were obtained according to

Equations (38). Second, empirical split-half reliability estimates were obtained by

using the standard approach: The correlations between the estimated EAP scores

based on equivalent halves were first obtained, and then they were stepped-out using

the Spearman–Brown prophecy. The results are in Table 3.

Overall, there is good agreement between the outcomes produced by the two relia-

bility approaches. Note that the marginal reliabilities of the content scores are quite

high, but those of the PDD estimates are far lower. These results are generally in

agreement with those of the simulation study in the situation most similar to this one

(21 items/three factors, large item discriminations, and medium sample size; see

Table 6 in the Supplemental Appendix).

We turn finally to the score-based measures of model appropriateness. The aver-

age of the LR Li estimates was 0.29, and the Q = Ssi value was 531.21 with 384

degrees of freedom as a reference (see Equation 39). Taken together, these results

suggest that the M-DTCRM is more appropriate than the corresponding normative

model. This potential appropriateness is assessed in the next section using additional

evidence.

The Role of PDD in the Accuracy and Validity of Trait Scores: Extended
Analyses

As discussed above, other things being equal, more accurate trait estimates should be

obtained for individuals with low PDD (see Figure 1). To check this prediction with

real data, we extended the split-half schema above in two ways. First, we used mod-

erated multiple regression (e.g., Baron & Kenny, 1986) to see if the PDD estimates

had a role in moderating the correlations between the content factor score estimates

based on the two test halves. Second, two extreme subgroups (low-PDD and high-

PDD) were formed using Cureton’s (1957) 27% rule, and the split-half correlations

between the three factor score estimates were obtained. For the first procedure, sig-

nificant results in the expected direction at the .05 level were obtained for the first

two factors, in which R2 increased from .60 to .64 (F1) and .60 to .62 (F2). As for the

second, Table 4 shows the split-half correlations in each group, together with the cor-

responding 90% confidence intervals.

Table 3. PSD-Based and Split-Half–Based Marginal Reliability Estimates: Illustrative Example.

u1 u2 u3 s2
i

PSD-based .93 .90 .85 .63
Split-half .91 .91 .89 .60

Note. PSD = posterior standard deviation.

1048 Educational and Psychological Measurement 81(6)



The results from both procedures are in agreement, and they are quite clear: As

expected, the accuracy of the ‘‘content’’ factor estimates is greater for the individuals

with low PDD.

Finally, we shall assess the role of PDD as a potential moderator of validity rela-

tions with external variables. For 238 respondents, the marks on a final statistical

exam were available and were used as a criterion. We again used the extreme-groups

approach based on the 27% rule (Low-PDD vs. High-PDD) and chose as a measure

the multiple R between the criterion and the EAP score estimates on the three content

factors. For the low-PDD group, R and the 90% confidence interval were .55 and

(.38, .69). For the high-PDD group, they were .47 and (.23, .57). So, the results are

in the expected directions, but the intervals overlap, and so differential validity can-

not be considered to be significant.

Discussion

The starting point of this article is that DMs are a flexible and plausible way of mod-

eling personality item scores, and that their use in applications shows promise both

at the substantive and practical levels. If this is so, existing models clearly need to be

extended to the multidimensional case for both substantive and practical reasons.

Substantively, most personality questionnaires are multidimensional. At the practical

level, minimally accurate person fluctuation estimates necessarily require a relatively

large number of items, and this requirement makes it unfeasible to fit multidimen-

sional measures on a scale-by-scale basis.

The multidimensional extension of the existing DMs has been developed on the

basis of the concept of a general item location index that can be viewed as a vector.

Projections of this vector on each factorial axis provide a location element along each

dimension, which, in turn, allows the response mechanism considered in the unidi-

mensional case to be extended to all the dimensions under study. The results obtained

from this approach are plausible and can be considered as natural extensions of the

previous unidimensional proposals.

Overall, the modeling proposal as well as the estimation and scoring procedures

have been purposely kept as simple and robust as possible. Thus, a simple two-stage

estimation approach (calibration and scoring) is proposed in which the calibration is

generally based on unweighted least squares estimation, while the score estimates

Table 4. Split-Half Correlations Between the Trait Estimates in the Low-PDD and High-PDD
Groups: Illustrative Example.

u1 u2 u3

Low-PDD .95 (.93, .96) .90 (.86, .93) .88 (.83, .91)
High-PDD .57 (.42, .67) .64 (.51, .73) .70 (.59, .78)

Note. PDD = person discriminal dispersion.
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are obtained using Bayes EAP estimation. The most important simplification, how-

ever, is that the person fluctuation parameter (the PDD), which is the most important

contribution of the DM at the individual level, is considered to be constant over test

items. This restriction allows for a ‘‘borrowing strength’’ mechanism in which more

stable estimates are obtained based on all the items, regardless of the particular fac-

tors on which they mainly load. The simulation results suggest that the restriction

functions quite well as far as parameter recovery is concerned, and the illustrative

example arrived at plausible results and behaved in accordance with the expectations

derived from the simulation results. However, whether our simple proposal is plausi-

ble in practice requires further research.

If the usefulness of the proposal is supported by further evidence, many points

can be worked on and improved. To start with, as discussed above, the M-DTCRM

can be viewed as an approximation in the case of (necessarily) bounded item scores.

Furthermore, in situations in which the item-factor regressions are expected to be

markedly nonlinear, this approximation would probably be poor, and an alternative

approach should be considered. The most workable approach may be to apply a logit

transformation to the direct scores, use the UVA, and assume that the M-DTCRM, as

is proposed here, holds for the transformed scores. The nonlinear relations between

the factors and the original scores could then be obtained as in Ferrando (2002), and

the result would be a continuous item response model with additional person para-

meters. Apart from this new development, more sophisticated procedures for estimat-

ing parameters and assessing model–data fit could be attempted, and

recommendations and cutoff or reference values obtained from further intensive

simulation could be proposed. For the moment, experience suggests that proposals

such as the present one can be used in practice only if they are implemented in

widely available (and preferably free) programs, and we note that this is the case

here. The R package InDisc implements the procedures described in this article, and

it is already fully available for the interested readers and practitioners from the

CRAN website (https://cran.r-project.org/package=InDisc).
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