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Bacterial conglomerates such as biofilms and microcolonies are ubiquitous in

nature and play an important role in industry and medicine. In contrast to well-

mixed cultures routinely used in microbial research, bacteria in a microcolony

interact mechanically with one another and with the substrate to which they

are attached. Here, we use a computer model of a microbial colony of rod-

shaped cells to investigate how physical interactions between cells determine

their motion in the colony and how this affects biological evolution. We show

that the probability that a faster-growing mutant ‘surfs’ at the colony’s frontier

and creates a macroscopic sector depends on physical properties of cells

(shape, elasticity and friction). Although all these factors contribute to the surf-

ing probability in seemingly different ways, their effects can be summarized

by two summary statistics that characterize the front roughness and cell align-

ment. Our predictions are confirmed by experiments in which we measure the

surfing probability for colonies of different front roughness. Our results show

that physical interactions between bacterial cells play an important role in

biological evolution of new traits, and suggest that these interactions may be

relevant to processes such as de novo evolution of antibiotic resistance.
1. Introduction
Bacteria are the most numerous organisms on Earth capable of autonomous

reproduction. They have colonized virtually all ecological niches and are able

to survive harsh conditions intolerable for other organisms such as high salinity,

low pH, extreme temperatures, or the presence of toxic elements and compounds

[1]. Many bacteria are important animal or human pathogens, but some bacteria

find applications in industry as waste degraders [2] or to produce fuels and chemi-

cals [3]. In these roles, biological evolution of microbes is usually an undesired

side effect, because it can disrupt industrial processes or lead to the emergence

of new pathogenic [4] or antibiotic-resistant strains [5].

Experimental research on bacterial evolution has been traditionally carried

out in well-stirred cultures [6,7]. However, in their natural environment, bacteria

often form aggregates such as microcolonies and biofilms. Such aggregates can be

found on food [8], teeth (plaque), on catheters or surgical implants [9], inside

water distribution pipes [10] or in the lungs of people affected by cystic fibrosis

[11]. Bacteria in these aggregates adhere to one another and the surface on

which they live, form layers of reduced permeability to detergents and

drugs, and stochastically switch to a different phenotype that is more resistant

to treatment [12–14]; this causes biofilms to be notoriously difficult to remove.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsif.2017.0073&domain=pdf&date_stamp=2017-06-07
mailto:bwaclaw@staffmail.ed.ac.uk
https://dx.doi.org/10.6084/m9.figshare.c.3785618
https://dx.doi.org/10.6084/m9.figshare.c.3785618
http://orcid.org/
http://orcid.org/0000-0003-4599-1859
http://orcid.org/0000-0002-1312-5975
http://orcid.org/0000-0001-5355-7994
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


variable
length

F
tim

e growth

division

a small, random ‘kick’

1 µm

(a) (b) (c)

–F

Figure 1. (a) Illustration of the computer algorithm. Bacteria are modelled as rods of varying length and constant diameter. When a growing rod exceeds a critical
length, it splits into two smaller rods. (b) A small simulated colony. (c) The same colony with nutrient concentration shown as different shades of grey (white,
maximal concentration; black, minimal); the cells are represented as thin green lines. (Online version in colour.)
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An important aspect of bacteria living in dense conglom-

erates is that they do not only interact via chemical signalling

such as quorum sensing [15] but also through mechanical

forces such as when they push away or drag other bacteria

when sliding past them. Computer simulations [16–19] and

experiments [20–24] have indicated that such mechanical

interactions play an important role in determining how

microbial colonies grow and what shape they assume. How-

ever, the impact of these interactions on biological evolution

only recently came into focus [25].

A particularly interesting scenario relevant to microbial

evolution in microcolonies and biofilms is that of a range

expansion [26] in which a population of microbes invades a

new territory. If a new genetic variant arises near the invasion

front, it either ‘surfs’ on the front and spreads into the new

territory, or (if unlucky) it lags behind the front and forms

only a small ‘bubble’ in the bulk of the population [27]. This sto-

chastic process, called ‘gene surfing’, has been extensively

studied [25,28–34], but these works have not addressed the

role of mechanical interactions between cells. Many of the

existing models do not consider individual cells [28], assume

Eden-like growth [32], or are only appropriate for diluted

populations of motile cells described by reaction–diffusion

equations similar to the Fisher–Kolmogorov equation [35].

On the other hand, agent-based models of biofilm growth,

which have been applied to study biological evolution in

growing biofilms [36–38], use very simple rules to mimic

cell–cell repulsion which neglect important physical aspects

of cell–cell and cell–substrate interactions such as friction.

In this work, we use a computer model of a growing

microbial colony to study how gene surfing is affected by

the mechanical properties of cells and their environment.

In our model, non-motile bacteria grow attached to a two-

dimensional permeable surface which delivers nutrients to

the colony. This corresponds to a common experimental

scenario in which bacteria grow on the surface of agarose gel

infused with nutrients. We have previously demonstrated [17]

that this model predicts a non-equilibrium phase transition

between a regular (circular) and irregular (branched) shape of

a radially expanding colony of microbes, and that it can be

used to study biological evolution in microbial colonies [25].

Here, we use this model to show that the surfing probability

of a beneficial mutation is determined by the roughness and

the cellular ordering at the expanding front of the colony.

We also investigate how mechanical properties of cells, such

as elasticity, friction and cell shape, affect these two quantities.

We corroborate some of our results in experiments with

microbial colonies that display varying degrees of roughness
of the growing front and show that it influences the surfing

probability as expected.
2. Computer model
We use a computer model similar to that from [17,23,25], with

some modifications. Here, we discuss only the generic algor-

ithm; more details will be given in subsequent sections where

we shall talk about the role of each of the mechanical factors.

We assume that bacteria form a monolayer as if the colony

was two dimensional and bacteria always remained attached

to the substrate. This is a good approximation to what occurs

at the edge of the colony and, as we shall see, is entirely justifi-

able because the edge is the part of the colony most relevant

for biological evolution of new traits. We model cells as spher-

ocylinders of variable length and constant diameter d ¼ 2r0 ¼

1mm (figure 1a). Cells repel each other with normal force deter-

mined by the Hertzian contact theory: F ¼ (4/3)Er1/2
0 h3/2,

where h is the overlap distance between the walls of the inter-

acting cells and E plays the role of the elastic modulus of the

cell. The dynamics is overdamped, i.e. the linear/angular

velocity is proportional to the total force/total torque acting

on the cell:

dri

dt
¼ F

zm
ð2:1Þ

and

dfi

dt
¼ t

zJ
, ð2:2Þ

where ri is the position of the centre of mass of cell i, fi is the

angle it makes with the x-axis, F and t are the total force and

torque acting on the cell, m and J are its mass and the momen-

tum of inertia (perpendicular to the plane of growth),

respectively, and z is the damping (friction) coefficient.

We initially assume that friction is isotropic and explore aniso-

tropic friction later in §4.3. Note that the mass m and the

momentum of inertia J are the proxy for cell size. These quan-

tities are not constant because cells change their size over time,

and hence m, J cannot be absorbed into the friction coefficient.

Bacteria grow by consuming nutrients that diffuse in the

substrate. The limiting nutrient concentration dynamics is

modelled by the diffusion equation with sinks corresponding

to the bacteria consuming the nutrient:

@c
@t
¼ D

@2c
@x2
þ @

2c
@y2

� �
� k

X
i

d(ri � r): ð2:3Þ
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Figure 2. (a) Snapshots of a radially growing simulated colony taken at different times (sizes), for k ¼ 2. Growing bacteria are bright green, quiescent (non-
growing) bacteria are dark green. (b) The radius of the colony increases approximately linearly in time. (c) The expansion speed tends to a constant value for
long times. (d ) Example configuration of cells from a simulation in a tube of width L ¼ 80 mm. The colony expands vertically; h is the thickness of the growing
layer (equation (4.1)) and r is the roughness of the front (equation (4.2)). (e,f ) Roughness r and thickness h as functions of the position y of the front, for L ¼
1280 mm and k ¼ 2.5, and for 10 independent simulation runs (different colours). (Online version in colour.)
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Here, r ¼ (x, y), c ¼ c(r, t) is the nutrient concentration at

position r and time t, D is the diffusion coefficient of

the nutrient and k is the nutrient uptake rate. The initial

concentration c(r, 0) ¼ c0.

A cell elongates at a constant rate vl as long as the local

nutrient concentration is larger than a certain fraction (more

than 1%) of the initial concentration. When a growing cell

reaches a predetermined length, it divides into two daughter

cells whose lengths are half the length of the mother cell. The

critical inter-cap distance lcap-cap at which this occurs is a

random variable from a Gaussian distribution with mean ‘c

and standard deviation+0.15‘c. Varying ‘c allows us to extrap-

olate between quasi-spherical cells (e.g. yeasts S. cerevisiae or

the bacterium S. aureus) and rod-shaped cells (e.g. Escherichia
coli or P. aeruginosa), whereas the randomness of lcap-cap

accounts for the loss of synchrony in replication that occurs

after a few generations (the coefficient of variation of the time

to division approximately 0.1–0.2 [39–41]). The two daughter

cells have the same orientation as the parent cell, plus a small

random perturbation to prevent the cells from growing in a

straight line.

We use two geometries in our simulations: a radially expand-

ing colony that starts from a single bacterium (figure 2a), and a

colony growing in a narrow (width L) but infinitely long verti-

cal tube with periodic boundary conditions in the direction

lateral to the expanding front (figure 2d). While the radial

expansion case represents a typical experimental scenario,

only relatively small colonies (106 cells as opposed to more

than 108 cells in a real colony [25]) can be simulated in this

way due to the high computational cost. The second method

(growth in a tube) enables us to simulate growth for longer

periods of time at the expense of confining the colony to a

narrow strip and removing the curvature of the growing

front. This has, however, little effect on the surfing probabi-

lity of faster-growing mutants if the width L of the tube is

sufficiently large [42].

Figure 1b shows a snapshot of a small colony; the concen-

tration of the limiting nutrient is also shown. Table 1 shows

default values of all parameters used in the simulation. Many

of these parameters have been taken from the literature data

for the bacterium E. coli [25], but some parameters such as
the damping coefficient must be estimated indirectly [17].

We note that the assumed value of the diffusion constant D
is unrealistically small; the actual value for small nutrient

molecules such as sugars and amino acids would be appro-

ximately 106 mm2 h–1, i.e. four orders of magnitude larger.

Our choice of D is a compromise between realism and compu-

tational cost; we have also shown in [17] that the precise value

of the diffusion coefficient is irrelevant in the region of par-

ameter space which we are interested in here. We also note

that in reality cessation of growth in the centre of the colony

and the emergence of the growing layer may be due to the

accumulation of waste chemicals, pH change, etc., rather

than nutrient exhaustion. Here, we focus on the mechanical

aspects of growing colonies and do not aim at reproducing

the exact biochemistry of microbial cells, as long as the simu-

lation leads to the formation of a well-defined growth layer

(as observed experimentally).
3. Experiments
Experiments were performed as described in our previous work

[25]. Here we provide a brief description of these methods.

3.1. Strains and growth conditions
For the mixture experiments measuring surfing probability,

we used pairs of microbial strains that differed in fluorescence

colour and a selectable marker. The selective difference

between the strains was adjusted as in [25] using low doses

of antibiotics. The background strains and antibiotics used

were E. coli DH5a with tetracycline, E. coli MG1655 with

chloramphenicol and S. cerevisiae W303 with cycloheximide.

Selective differences were measured using the colliding

colony assay [33]. E. coli strains were grown on LB agar (2%)

medium (10 g l21 tryptone, 5 g l21 yeast extract, 10 g l21

NaCl) at either 378C or 218C. S. cerevisiae experiments were

performed on either YPD (20 g l21 peptone, 10 g l21 yeast

extract, 20 g l21 glucose) or CSM (0.79 g l21 CSM (Sunrise

media Inc.), 20 g l21 glucose) at 308C. Agar 20 g l21 was

added to media before autoclaving. Antibiotics were added

after autoclaving and cooling of the media to below 608C.



Table 1. Default values of the parameters of the model. This gives �30
min doubling time and the average length of bacterium �3 mm. If not
indicated otherwise, all results presented have been obtained using these
parameters.

name value units

nutrient diffusion constant D 50 mm2 h21

nutrient concentration c0 1 a.u.

nutrient uptake rate k 1 – 3 a.u. h21

Young’s modulus E 100 kPa

elongation length vl 4 mm h21

cell diameter 1 mm

average max. inter-cap distance lc 4 mm

damping coefficient z 500 Pa h
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3.2. Measuring surfing probability
For each pair of mutant and wild-type, a mixed starting popu-

lation was prepared that contained a low initial frequency Pi of

mutants having a selective advantage s. Colony growth was

initiated by placing 2 ml of the mixtures onto plates and incu-

bated until the desired final population size was reached. The

initial droplet radius was measured to compute the number

of cells at the droplet perimeter. The resulting colonies were

imaged with a Zeiss AxioZoom v16. The number of sectors

was determined by eye. The surfing probability was calculated

using equation (5.1).

3.3. Time-lapse movies
For single cell-scale time-lapse movies, we used a Zeiss

LSM700 confocal microscope with a stage-top incubator to

image the first few layers of most advanced cells in growing

S. cerevisiae and E. coli colonies between a coverslip and an

agar pad for about 4 h, taking an image every minute.

3.4. Measuring roughness
Images of at least 10 equal-sized colonies per condition were

segmented and the boundary detected. The squared radial

distance dr2 between boundary curve and the best-fit circle

to the colony was measured as a function of the angle and

averaged over all possible windows of length l. The resulting

mean dr2 was averaged over different colonies.

Images of moving fronts at the single-cell level from the

time-lapse movies were first segmented using a local adapta-

tive threshold algorithm to identify cells. The front was found

by the outlines of cells directly at the front. For all possible

windows of length l, a line was fitted to the front line and

the mean squared distance from the best-fit line was

measured, as in [28]. The resulting mean squared distance

was averaged over all windows of length l and all frames.
4. Simulation results
4.1. Growth and statistical properties of the simulated

colony
We now discuss the properties of our simulated colonies. When

the colony is small, all bacteria grow and replicate. As the
colony expands, the nutrient becomes depleted in the centre

of the colony because diffusion of the nutrient cannot com-

pensate its uptake by growing cells. This causes cessation of

growth in the centre. When this happens, growth becomes

restricted to a narrow layer at the edge of the colony;

figure 2a, and the electronic supplementary material, video 1.

The radius of the colony increases approximately linearly in

time (figure 2b,c). The presence of a ‘growing layer’ of cells

and the linear growth of the colony’s radius agree with what

has been observed experimentally [25,43].

Statistical properties of the growing layer can be con-

veniently studied using the ‘tube-like’ geometry. Figure 2d
shows a typical configuration of cells at the colony’s frontier

(see also the electronic supplementary material, video 2). The

growing layer can be characterized by its thickness h and

roughness r, which we calculate as follows. We first rasterize

the growing front of the colony using pixels of size 1 � 1 mm,

and find the two edges of the front: the upper one (the colony

edge) fyþi g and the lower one (the boundary between the

growing and quiescent cells) fy2
i g. We then calculate the

average thickness as

h ¼ 1

L

XL

i¼1

min
j¼1,...,L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(i� j)2 þ (yþi � y�j )2

q
: ð4:1Þ

This method takes into account that the growing layer can

be curved and does not have to run parallel to the x-axis.1

Similarly, we calculate the average roughness as

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL

i¼1

(yþi � Yþ)2

vuut , ð4:2Þ

where Yþ ¼ (1=L)
P

i yþi . Note that all quantities (L, Yþ, yþi ,

y2
i ) are in pixels and not mm.

After a short transient, the expansion velocity, the nutri-

ent profile, and other properties of the growing layer

stabilize and vary little with time (figure 2e,f ). It is therefore

convenient to choose a new reference frame co-moving with

the leading edge of the colony. Since cells that lag behind

the front do not replicate, we do not have to simulate these

cells explicitly. This dramatically speeds up simulations and

enables us to study stripes of the colony of width L . 1 mm

and length .10 mm.

We have shown previously [17] that the thickness of the

growing layer of cells is controlled by the nutrient concen-

tration c0, nutrient uptake rate k, growth rate b and

elasticity E of cells. This in turn affects the roughness of the

leading edge of the colony. This relation is illustrated in

figure 3, where we vary the uptake rate k while keeping the

remaining parameters constant. Figure 4 shows that front

thickness decreases and its roughness increases with increas-

ing k; eventually, when a critical value kc � 2.5 is crossed, the

growing front splits into separate branches. This transition

has been investigated in detail in [17]. Although this scenario

can be realized experimentally [44,45], here we focus on the

‘smooth’ regime in which colonies do not branch out and

the frontier remains continuous.
4.2. Surfing probability of a beneficial mutation
When a mutation arises at the colony’s frontier, its fate can be

twofold [25,28]. If cells carrying the new mutation remain in

the active layer, the mutation ‘surfs’ on the moving edge of

the colony and the progeny of the mutant cell eventually
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Figure 3. The frontier of the colony for three different nutrient uptake rates k ¼ 1.8 (a), k ¼ 2.2 (b) and k ¼ 2.6 (c). The thickness of the growing layer (bright
green) decreases only moderately (1.64�) from h ¼ 13.5+ 0.1 mm for k ¼ 1.8 to h ¼ 8.2+ 0.1 mm for k ¼ 2.6, but this has a large impact on the front
roughness which changes from r ¼ 2.1+ 0.2 mm to r ¼ 9.3+ 0.4 mm, correspondingly. For k ¼ 2.6, the growing layer begins to lose continuity and splits
into separate branches. (Online version in colour.)

5 10 15 20
0
5

10
15
20
25
30

thickness h (µm)

th
ic

kn
es

s 
h 

(
m

)

ro
ug

hn
es

s 
r 

(
m

)

ro
ug

hn
es

s 
r 

(
m

)
1.0 1.5 2.0 2.5 3.0

0

5

10

15

20

25

1.0 1.5 2.0 2.5 3.0
0
5

10
15
20
25
30

uptake rate k uptake rate k

(a) (b) (c)

L = 160
L = 320
L = 640
L = 1280

Figure 4. Roughness (a) and thickness (b) of the growing layer for different front lengths (tube widths) L ¼ 160 (red), L ¼ 320 (green), L ¼ 640 (blue) and L ¼ 1280
mm ( purple). (a) Roughness r increases with both the nutrient uptake rate k and the length L of the front. (b) Thickness h decreases as k increases; h does not depend on
L. (c) Roughness versus thickness; different points correspond to different k from panels (a,b). (Online version in colour.)
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Figure 5. The fate of mutants. Panels (a) and (b) show different fates of a sector of fitter (s ¼ 0.1) mutant cells (red) in a colony of ‘wild-type’ cells (green). The
sector can either expand (a) or collapse and become trapped in the bulk when random fluctuations cause mutant cells to lag behind the front (b). Panel (c) shows a
sector with larger (s ¼ 0.5) growth advantage; significantly faster growth of mutant cells leads to a ‘bump’ at the front. In all cases, k ¼ 1.8, L ¼ 160 mm.
(Online version in colour.)
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forms a macroscopic ‘sector’ (figure 5). On the other hand, if

cells carrying the mutation leave the active layer, the

mutation becomes trapped as a ‘bubble’ in the bulk of the

colony [27]. Owing to the random nature of replication and

mixing at the front, surfing is a stochastic process; a mutation

remains in the active layer in the limit t!1 with some prob-

ability Psurf, which we shall call here the surfing probability.

Surfing is a softer version of fixation—a notion from popu-

lation genetics in which a mutant takes over the population.

The soft-sweep surfing probability has therefore a hard-

selection-sweep counterpart, the fixation probability, which is

the probability that the new mutation spreads in the popu-

lation so that eventually all cells have it. Both surfing and

fixation probabilities depend on the balance between selection
(how well the mutant grows compared to the parent strain) and

genetic drift (fluctuations in the number of organisms due to

randomness in reproduction events) [46]. In [25], we showed

that Psurf increased approximately linearly with selective

advantage s—the relative difference between the growth rate

of the mutant and the parent strain. Here, we study how the

properties of the active layer affect Psurf for a fixed s.

We first run simulations in the planar-front geometry in

which a random cell picked up from the growing layer of

cells with probability proportional to its growth rate is

replaced by a mutant cell with selective advantage s . 0.

This can be thought of as mutations occurring with infinitely

small but non-zero probability per division. The simulation

finishes when either fixation (all cells in the growing layers
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become mutants) or extinction (no mutant cells in the grow-

ing layer) is achieved. Before inserting the mutant cell, the

colony is simulated until the properties of the growing

layer stabilize and both thickness and roughness reach

steady-state values. The simulation is then repeated many

times and the probability of surfing is estimated from the pro-

portion of runs leading to fixation of the mutant in the

growing layer. Snapshots showing different fates (extinction,

surfing) of mutant sectors are shown in figure 5.

4.2.1. Surfing probability depends on the position of the cell
in the growing layer

In [25], we showed that the surfing probability strongly

depends on how deeply in the growing layer a mutant was

born. Here, we would like to emphasize this result as it

will become important later. Let D be the distance from the

edge of the colony to the place the mutant first occurred.

Figure 6 shows the probability density P(Dj surf) that a cell

was born a distance D behind the colony front, given that it
went on to surf on the edge of the expanding colony. It is evident

that only cells born extremely close to the frontier have a

chance to surf. Cells born farther from the frontier must get

past the cells in front of them. This is unlikely to happen,

even if the cell has a significant growth advantage, as the

cell’s growth will also tend to push forward the cells in

front of it. This also justifies why we focus on two-

dimensional colonies only; even though real colonies are

three dimensional, all interesting dynamics occurs at the

edge of the colony, which is essentially a monolayer.

Given that surfing is restricted to the first layer of cells, and

the distribution P(Dj surf) is approximately the same for all

explored parameter sets (different k and s), for our purpose it

would be a waste of computer time to simulate mutants that

occurred deeply in the growing layer. To save time, and to

remove the effect the front thickness has on Psurf (thicker

layer¼ lower overall probability), we changed the way of intro-

ducing mutants. Instead of inserting mutants anywhere in the

growing layer, we henceforth inserted them only at the frontier.
4.2.2. Roughness of the front is more predictive of Psurf than its
thickness

Using the new method of introducing mutants (only the first

layer of cells), we run simulations for s ¼ 0.02 and for different

widths L and nutrient uptake rates k as in figure 4. Figure 7

shows how the surfing probability Psurf varies as a function

of the thickness and the roughness of the front. Psurf increases

with increasing thickness h and decreases with increasing

roughness r. We know from figure 4 that thickness and rough-

ness are inversely correlated, so this reciprocal behaviour is not

surprising. An interesting question is whether any of the two

quantities, roughness or thickness, directly affects the prob-

ability of surfing? From a statistics point of view, thickness h
seems to be a better predictor of Psurf because data points for

the same h but for different L correlate better. However, it

could be that it is actually front roughness that directly (in

the causal sense) affects the surfing probability and that Psurf

and h are anti-correlated because of the relationship between

h and r.

We performed two computer experiments to address the

above question. First, we simulated a colony that had a very

low and constant roughness r � 1 mm, independently of the

front’s thickness. This was achieved by introducing an external

force Fy ¼ 2gy acting on the centre of mass of each cell, where

g . 0 was a ‘flattening factor’ whose magnitude determined

the strength of suppression of deviations from a flat front.

Psurf plotted in figure 8a, as a function of h for two cases:

‘normal’, rough front (g ¼ 0) and ‘flattened’ front (g . 0),

demonstrates that the surfing probability does not depend on

h in the case of flat front.

Second, we varied roughness while keeping the thickness

constant. This was done by measuring front roughness

in each simulation step, and switching on the external
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‘flattening’ force Fy ¼ 2gy if the roughness was larger than a

desired value rmax. Figure 8b shows that although thickness

remains the same for all data points, Psurf decreases with

increasing roughness.

We can conclude from this that it is the increase in the rough-

ness, and not decreasing thickness, that lowers the surfing

probability for thinner fronts (larger nutrient intake rate k). How-

ever, the data points in figure 7b, from different simulations,

do not collapse onto a single curve as it would be expected if

average, large-scale front roughness was the only factor.
4.2.3. Local roughness predicts Psurf
According to the theory of ref. [30], the dynamics of a mutant

sector can be described by a random process similar to Brow-

nian motion in which the sector boundaries drift away from

each other with constant velocity. The velocity depends on

the growth advantage s, whereas the amplitude of random

fluctuations in the positions of boundary walls is set by the

microscopic dynamics at the front. We reasoned that these

fluctuations must depend on the roughness r of the frontier,

and that a mutant sector should be affected by front rough-

ness when the sector is small compared to the magnitude

of fluctuations. This means that local roughness r(l ), deter-

mined over the length l of the front, should be more

important than the global roughness r(L). We calculated the
local roughness as

r(l) ¼ 1

n

Xn

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l

Xiþl

j¼i

(yþj � Yþ)2

vuut : ð4:3Þ

Here, Yþ is the average height of the interface and fyþi g are the

vertical coordinates (interface height) of the points at the lead-

ing edge, obtained as in §4.1. Figure 9 shows that Psurf for

different L now collapse onto a single curve, for all lengths

l � 10 ... 100mm over which roughness has been calculated.
4.2.4. Orientation of cells affects Psurf
So far we have focused only on the macroscopic properties of

the leading edge of the colony, completely neglecting its gran-

ular nature due to the presence of individual cells. Recall that,

in our model, each cell is rod-shaped, and the direction in

which it grows is determined by the orientation of the rod.

Figure 10a shows that cells at the leading edge assume orien-

tations slightly more parallel to the direction of growth

(vertical) in the flattened front than in the normal simula-

tion. A natural question is how does cellular alignment affect

Psurf independently of the roughness? To answer this question,

we simulated a modified model, in which external torque

t ¼ 2 tmaxsin[(f 2 fpreferred) mod p] was applied to the

cells, forcing them to align preferentially in the direction

fpreferred. We investigated two forced alignments: fpreferred ¼

0 corresponding to cells parallel to the x-axis and hence to

the growing edge of the colony, and fpreferred ¼ p/2, which

corresponds to the vertical orientation of cells (perpendicular

to the growing edge).

Figure 10b compares these two different modes with pre-

vious simulations with no external torque, for approximately

the same thickness and roughness of the growing layer. It is

evident that the orientation of cells strongly affects the surfing

probability: horizontally forced cells have around 3 � smaller

Psurf compared with the normal case, which in turn has

Psurf � 5� smaller than vertically forced cells.
4.2.5. Shorter cells have higher Psurf than long cells
To check how the aspect ratio of cells affects Psurf, we simulated

cells whose maximal length was only 2 mm and the minimal
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separation before the spherical caps was zero, i.e. the cells

became circles immediately after division. As before, we

selected a set of k’s such that the thickness and roughness

were approximately the same for all simulations. In order to

make a fair comparison between ‘short rods’ and ‘long rods’

from previous simulations, thickness and roughness were

expressed in cell lengths rather than in micrometres. This was

done by dividing both h and r by the average length of a cell

measured for cells from the growing layer. Figure 10c shows

that short rods have a much higher surfing probability than

long rods.

In all previous simulations, even for short rods, cells remem-

bered their orientation from before division and growth always

initially occurred in that direction. To see whether this has any

impact on Psurf, we considered a scenario in which the new

direction of growth is selected randomly and does not correlate

with the direction prior to division. Figure 10c shows that Psurf

almost does not change regardless whether a short cell

randomly changes its orientation after division or not.

4.3. Surfing probability and the mechanical properties
of bacteria

Our results from the previous section demonstrate that surfing

is affected by (i) the roughness of the growing layer, (ii) the

orientation of cells, and (iii) the thickness of the growing

layer if mutations occur inside the growing layer and not

only at its edge. To show this, we varied thickness, roughness

and orientation of cells by using ad hoc external forces flatten-

ing out the front or forcing the cells to order in a particular way.

In this section, we investigate what parameters of the model

affect surfing in the absence of such artificial force fields.
4.3.1. Thickness of the growing layer
If cells are prohibited to form multiple layers, as in our two-

dimensional simulations, thickness h can be determined from

the parameters of the model by a simple dimensional analy-

sis. Assuming that h is proportional to the characteristic scale

over which the nutrient concentration and cell density

reaches bulk values [17], we can approximate h by

h �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

E
(z=a)f

s
1

b
� 1

� �3=4

, ð4:4Þ

where E is the elastic modulus of the bacterium (Pa), a is the

average area per cell (mm2), z is the friction coefficient (Pa h),

f is the replication rate (h21) and b , 1 is a dimensionless

ratio of the nutrient consumption rate to the biomass

production rate (i.e. new bacteria): b ¼ (kr0)/(fc0). Equation

(4.4) shows that thickness h increases with increasing cell stiff-

ness (larger E) and replication rate f, and decreases with

increasing nutrient uptake k and increasing friction z. The

aspect ratio of the cells does not affect h in our model. Equation

(4.4) suggests that the thickness of the growing layer can be

conveniently controlled in an experiment by varying tempera-

ture or growth medium (both of which affect the growth rate),

or by varying the nutrient concentration c0. We shall use

the first two methods when discussing the experimental

verification of our theory.
4.3.2. Orientation of cells
A useful measure of the global alignment of cells in the

colony is the order parameter S ¼ kcos2(f 2 F)l. Here, f is

the angle a cell makes with the x-axis and F is the angular

coordinate of the vector normal to the front; this is to



A = 1

A = 4

A = 1/3

Figure 11. Snapshots of a growing colony with different friction anisotropy
A. The global order parameter S ¼ 0.79 (isotropic friction A ¼ 1), S ¼ 0.53
(rolling rods A ¼ 4) and S ¼ 0.63 (sliding rods A ¼ 1/3). See figure 10 for
the key. (Online version in colour.)

(a)

(b)

0

0.02

0.04

0.06

0.08

A = 1
A = 2
A = 4
A = 1/3

1.6 1.8 2.0 2.2 2.4 2.6 2.8

r
(l

)(
m

)

r (l) (m)

P
su

rf

k

2 3 4 5

0

1

2

3

4

5

6

Figure 12. (a) Local roughness r(l ) as the function of k, for different levels
of friction anisotropy: no anisotropy (black points, A ¼ 1), ‘rolling rods’ A ¼

rsif.royalsocietypublishing.org
J.R.Soc.Interface

14:20170073

9

remove a trivial contribution to S due to the curvature of the

front caused by roughness. According to this definition, S ¼ 1

if all cells are perfectly vertically aligned (in the direction of

growth), S ¼ 0 if they are horizontal (parallel to the front)

and S ¼ 1/2 if their orientations are random. It turns

out that changing the uptake rate (and hence thickness h)

from k ¼ 1.6 to k ¼ 2.8 changes S by a small amount from

S ¼ 0.77 to S ¼ 0.70. Here, we are more interested in other

factors that do not affect h.
2 (red), A ¼ 4 (orange) and ‘sliding rods’ A ¼ 1/3 (blue). (b) Surfing prob-
ability versus local roughness r(l ) for the same parameters as in panel (a).
In all cases, L ¼ 320 and l ¼ 80 mm. (Online version in colour.)
4.3.3. Friction

One such factor is the nature of friction between cells and

the substrate. So far, in all simulations the friction force was

proportional to the cell’s velocity, irrespective of the direction

of motion. To test whether this assumption affected front

roughness and the surfing probability, we ran simulations

in which friction coefficients were different in the directions

parallel and perpendicular to the cell’s axis. We replaced

equation (2.1) for the dynamics of the centre of mass with

the following equation:

dri

dt
¼ K�1F

m
, ð4:5Þ

where the matrix K accounts for the anisotropy of friction:

K ¼
zkn2

x þ z?n2
y ðzk � z?Þnxny

ðzk � z?Þnxny z?n2
x þ zkn2

y

" #
: ð4:6Þ

We now have two friction coefficients: z? is the coefficient in

the direction perpendicular to the cell’s major axis n, whereas

zk is the coefficient in the parallel direction. For convenience,

we shall assume that zk ¼ Az, z? ¼ z/A where A is the ‘asym-

metry coefficient’ and z is the isotropic friction coefficient,

same as in previous simulations (table 1). For isotropic fric-

tion, A ¼ 1; hence z? ¼ zk;z and K ¼ 1z, and we recover

equation (2.1). If A . 1, it is easier for the rod to ‘roll’ than

to slide along the major axis. If A , 1, it is easier for the

rod to slide.

Figure 11 shows images of the front for different levels

of friction anisotropy. In the anisotropic ‘rolling rods’ case

(A . 1), cells are significantly more oriented edge-on to the

colony, and the roughness is noticeably larger. In the ‘sliding

rods’ case (A , 1), the roughness is even larger but the

orientation of cells falls between the isotropic and the ‘rolling

rods’ case. This is quantified in figure 12a, where we

plotted the local roughness r(l ) as a function of k, for a fixed
l ¼ 80 mm. Figure 12b shows that, as expected, the surfing

probability goes down with increasing local roughness.
5. Comparison with experiments
We next checked whether the predicted dependence of the

surfing probability on the roughness of the growing layer

agree with experiments. We measured surfing probabilities

of beneficial mutants with different selective advantages

s ¼ 2 5 . . . 25% in colonies of E. coli and S. cerevisiae (Methods)

grown at different conditions affecting the roughness of the

growing layer. A small number of fluorescently labelled

mutant cells was mixed with a much larger number of wild-

type cells, and a small droplet of the mixture was used to

inoculate a colony on a Petri dish. After a few days, colonies

with a characteristic sectoring pattern emerged (figure 13).

By zooming into the colony edge, we confirmed that some

mutants ‘surfed’ at the front and expanded into large sectors,

whereas some mutants did not make it and became trapped

as bubbles in the bulk of the colony (figure 13; cf. figure 5).

We counted the number Nsec of sectors and estimated the

surfing probability Psurf from the following formula [25]:

Psurf ¼
Nsec

2pr0Pi
, ð5:1Þ

where Pi is the initial fraction of mutant cells in the population

and r0 is the initial radius of the colony (in units of cell diam-

eters). Note this equation makes sense only if surfing is

restricted to the first layer of cells; we have shown that this is

true in computer simulations and we shall experimentally vali-

date it later in this section. Figure 14a shows Psurf for E. coli and

S. cerevisiae, and for different conditions. In the limit of low



(a) (b)

(c)

(iii)(ii)(i)

(iii)(ii)(i)
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selective advantage s , 10% which we focus on here, the

surfing probability is highest in colonies of roughly spherical

S. cerevisiae, which have rather smooth boundaries, and smal-

lest for the rod-shaped bacterium E. coli, characterized by

rough fronts. This agrees with our predictions (figure 10); how-

ever, it does not yet show whether this is due to difference in
the cell shape (aspect ratio; cf. the penultimate paragraph of

§4.2) or different thickness or roughness of the growing layer.

To study the connection between surfing and surface

roughness, we computed the local roughness r(l ) as a func-

tion of window length l (figure 14b; cf. equation (4.3) and

Methods) for the same colonies for which we previously
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calculated Psurf (figure 14a). In all cases, r2(l ) showed a linear

dependence on window length l after a transient at small

window lengths, i.e. the colony boundary behaved like a

standard random walk (figure 14c).

We then tested the correlation of colony roughness with

surfing probability in a similar way to what we did in computer

simulations. In figure 14d, we plot the surfing probability Psurf

as a function of colony roughness measured at one specific

window length l ¼ 17 mm (dotted line in figure 14c), for differ-

ent selective advantages s. We observe that the surfing

probability of E. coli decreases with increasing roughness

(figure 14d) for all s, in good qualitative agreement with our

simulations. Similar results are obtained for different choices

of the window length l for which roughness is calculated.

The situation is less clear for S. cerevisiae; we hypothesize

that this is due to roughness being too small (cf. figure 9) to

markedly affect the surfing probability.

We next examined how microscopic properties of the

front (cellular orientation) correlated with macroscopic

roughness. We analysed microscopic images of the fronts of

E. coli and S. cerevisiae fronts (Methods, data from [25]), and

measured local roughness r(l ) over submillimetre length

scales l. Example snapshots in figure 15a,b show that rough-

ness of the fronts indeed differ very much for these two

microorganisms. Figure 15c confirms that E. coli has a much

higher roughness compared to S. cerevisiae, suggesting that

macroscopic roughness on the colony scale is a consequence

of microscopic front roughness on the single-cell level.

To study the dynamics of surfing, we tracked E. coli cells

over 200 min and measured their distance from, and orientation

relative to the edge of the colony, as well as the number of off-

spring for all cells in the initial image. Figure 15d shows that

cells only have an appreciable number of offspring if they are
within about one cell diameter of the front. This agrees with

our conclusion from simulations and justifies inserting mutants

only directly at the front.

Figure 15e shows the order parameter S ¼ kcos2(f 2 F)l,
which measures the orientation of cells and has been defined

in §4.3, as a function of the distance from the front. Cells near

the front tend to align parallel to the front. This changes

quickly behind the front, with most cells being perpendicular

to the growth direction starting about 5 mm behind the

front. Figure 15f shows the distribution of S obtained from

simulations; the agreement with the experimental data

from figure 15e is excellent, suggesting that our model

indeed captures the dynamics of the growing bacterial front

reasonably well.
6. Conclusion
In this work, we have focused on the role of mechanical

interactions in microbial colonies. We first used computer

simulations to show that the speed of biological evolution,

measured by the probability that a new mutation ‘surfs’

at the growing edge of a microbial colony, depends mostly

on the thickness and roughness of the growing layer of cells

at the colony’s front. Thicker fronts decrease the per-cell surf-

ing probability because only cells from the very first layer of

cells create successful progenies, and the fraction of such

cells decreases with increasing front thickness. Rougher

fronts also decrease the surfing probability for a similar

reason; only cells at the tips of the front’s protrusions are suc-

cessful and these tips become smaller for rougher fronts.

Moreover, roughness and thickness are related; thicker front

have lower roughness and vice versa. While the dependence
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between genetic segregation and the front thickness [47], and

between thickness and roughness [48] has been known

previously, in this work we have shown that it is actually

the roughness of the growing layer that should be thought

of as affecting the surfing probability in the causal sense. We

have also linked thickness and roughness to the mechanical

properties of cells for the first time. Moreover, we have discov-

ered that the orientation of cells has also a significant effect,

irrespective of front roughness, on the surfing probability.

Finally, we have confirmed some of our predictions (surfing

probability versus front roughness and the orientation of

cells versus distance from the front) in experiments in which

we varied the growth rate and the type of cells.

All three quantities, front thickness, front roughness and

cellular alignment depend in a very non-trivial way on the

properties of cells and their environment: cell-surface friction

(and anisotropy of thereof), elasticity of cells, their growth/

nutrient uptake rate and their shape. Many of these par-

ameters are very difficult to control experimentally without

affecting other parameters. To properly disentangle the

effect of the shape of cells, friction, growth rate, etc., on the

surfing probability, further experiments are required in

which these factors are varied independently. For example,

the shape of E. coli can be varied by using MreB mutants

[49]; while this often also affects the growth rate [50],

an experiment with round E. coli MreB mutants could

complement our results in an interesting way.

Microbial evolution is a research area that is important

both from fundamental and practical viewpoints. In particu-

lar, our research shows that mechanical forces such as friction

can play a significant role in biological evolution of micro-

organisms. To our knowledge, this article is the first that

not only puts forward this idea but also provides concrete

arguments in its support.

From a more practical point of view, our results are rel-

evant to the evolution of antimicrobial resistance. It has
been demonstrated that even a small bacterial population

can develop de novo resistance to some antimicrobial drugs

in less than a day [51]. This rapid evolution makes the most

popular drugs—antibiotics—increasingly ineffective [52].

Since the rate of discovery of new antibiotics has steadily

declined over years [53], the evolution of drug-resistant bac-

teria has been highlighted as one of the major challenges

we will face in the coming decades. By demonstrating the

role of mechanical interactions on biological evolution in

microbial aggregates, our research opens up a new antimicro-

bial paradigm in which the physical properties of microbes

could be targeted alongside standard antimicrobial therapy

to reduce the probability of evolving resistance to drugs.
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1Alternatively, h can be defined as the area of the colony that contains
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