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Abstract: The available interventions for people who are at risk of suicide have limited efficacy.
Recently, research on new mental health treatments has started to consider psychedelic compounds,
particularly psilocybin, a molecule with a few thousand years of history of use in human societies.
The possible effects of psilocybin on suicidal ideation and behaviors have not been specifically studied
yet; however, the current knowledge on the suicidal process and the available data on es/ketamine
suggest that psylocibin could be used to modulate the thoughts and behavioral patterns in individu-
als who are at risk of suicidal behaviors. Here, we summarize the available evidence on the possible
mechanisms underlying psilocybin positive effects on suicide risk. Major pathways related to suicidal
behaviors that might be modulated by psylocibin include serotonin receptors. Specifically, psylocibin
directly stimulates the serotonin 2A receptor (5HT2A), targeting the inflammatory and oxidative
stress pathways and leading to a rapid increase in brain plasticity and inflammation suppression and
increases in cognitive flexibility, spirituality, and empathy. We also present preliminary epidemio-
logical data and provide a rationale for studying psilocybin in individuals with suicidal ideation or
who are at risk of suicidal behaviors. This review presents a framework to understand the basis for
psilocybin use in individuals who are at risk of suicidal behaviors and calls for clinical studies.

Keywords: psilocybin; suicidality; suicidal behaviors; psychedelics; psychiatry; serotonin; inflamma-
tion; oxidative stress; pharmacology; treatment

1. Introduction

In recent decades, research on psychedelic treatments for mental disorders has gained
new interest [1]. Psilocybin is one of the most studied psychedelic substances and has been
associated with the sustained remission of depression for weeks, and in some patients, for
years [2]. Based on these findings, the United States Food and Drug Administration defined
psilocybin as a “breakthrough therapy” for treatment-resistant depression [1]. Studies on
psilocybin have mainly been focused on treatment-resistant depression, addiction, eating
disorders, and end of life anxiety in patients with cancer [2–4]. However, on the basis of
its mechanisms of action, it might be useful to determine the use of psilocybin to prevent
suicidal behaviors (SB) (suicide, suicide attempt (SA)) and to decrease suicidal ideation
(SI) [5].
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Despite its entry in the 5th edition of the Diagnostic and Statistical Manual (DSM5) as a
putative disorder, SB are generally considered as a symptom or a consequence of a con-
comitant psychiatric disorder [6], most frequently major depressive disorder. Consequently,
in clinical settings, antidepressants and psychotherapy remain the two main strategies to
prevent SB and to reduce SI. However, classic antidepressants are not very effective in
suicidal patients. Indeed, patients with depression and with current SI and/or past SA (i.e.,
suicidal patients) tend to respond less well to classic antidepressant treatments [7,8]. More-
over, some patients (~10% according to different studies) experience treatment-emergent SI
or treatment-worsening SI, especially young (18 to 24-year-old) adults [9]. In addition, in
some patients with SI (10 to 20% according to different studies), SI does not decrease despite
the improvement of depressive symptomatology following treatment [10,11]. Importantly,
the full clinical response to classic antidepressants is generally observed after at least two
weeks, and the unfavorable side-effect profile frequently results in premature or abrupt
discontinuations [12,13]. Similarly, the response delay to psychotherapy is an issue in
patients with SB and SI despite the recent emergence of promising specific regimens [14].
Moreover, the high price, low accessibility, and requirement of a sustained commitment to
psychotherapy can be overwhelming for patients who are experiencing a suicidal crisis [15].
SB and SI are a major public health problem: 800,000 suicides occur worldwide each year,
SA are approximately 20 to 30 times more frequent, and 45 to 70% of patients with psychi-
atric disorders experience SI [16]. Therefore, it is crucial to find rapidly effective drugs to
decrease SI and to prevent SB. New treatments are emerging (i.e., ketamine and esketamine)
and have shown promising results [17,18]. However, not all patients respond to these
treatments. In addition, multiple administrations are required, and these drugs most often
must be taken in combination with a classic antidepressant after their intake. Psilocybin
could be an interesting alternative because it (i) acts on mechanisms that are implicated in
SB and SI physiopathology [5]; (ii) could produce results with just one administration [4];
(iii) acts rapidly [19]; (iv) may not require co-therapy with a classic antidepressant after
intake [20]; (v) has demonstrated sustained long-term efficacy (up to 6 months) [2]; and
(vi) does not present any risk of addiction or discontinuation syndrome [2]. For patients
taking an antidepressant therapy, a wash-out period of at least 7 days will be needed
for psilocybin intake. Thus, a progressive discontinuation of an antidepressant followed
by a wash out period of at least 7 days may require strict medical supervision during
hospitalization to prevent suicidal risk.

Although psilocybin and other psychedelic compounds have never been specifically
tested in patients with a history of SI or SA, some previous studies reported their effects
on SI and SB. For instance, the use of psilocybin and other psychedelics (e.g., lysergic acid
diethylamide, LSD) has been linked to lower odds of past SB and SI in a large American
epidemiological study (190,000 people), which is unlike other illicit drugs (e.g., heroin) [21].
A recent systematic review investigated the effects [22] that psychedelics used in non-
clinical (e.g., recreational, mystical) and in clinical contexts have on suicidality. The results
were contradictory. Indeed, some studies found an increase in suicidality, while others
found a decrease or no effect. However, the authors of the review highlighted that these
studies had some biases (e.g., not adjusted for potential cofounders, such as use of other
drugs) and small sample sizes (many were case reports). Furthermore, it seems logical
that without adequate medical supervision and careful patient selection (e.g., exclusion
of patients with schizophrenia), psychedelics can have deleterious effects. On the other
hand, the authors found that in more recent clinical trials, classic psychedelics, including
psilocybin, showed promising results for rapidly reducing SI. Importantly, in these recent
clinical trials, no suicide-related events were reported. This confirms that when used
correctly (e.g., strict selection criteria, under medical supervision, taking into account all
potential cofounders) these substances could have beneficial effects in patients with SB.
Interestingly, two recent studies on ayahuasca (a serotoninergic agonist like psilocybin)
demonstrated that this psychedelic drug decreases SI in patients with major depressive
disorder and with treatment-resistant depression [23,24]. Moreover, a recent open-label
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study found a significant decrease of demoralization in old long-term AIDS survivors of
up to 3 months after psilocybin administration [25]. In another study in patients with
advanced cancer (an important risk factor of SI/SB), psilocybin-assisted psychotherapy
was associated with a significant decrease of SI 8 h after the session and up to 6.5 months
after treatment [19]. Similarly, an open-label study reported a significant SI reduction in
patients with treatment-resistant depression 1–2 weeks after psilocybin administration [20].
Lastly, a recent randomized controlled trial in patients with major depressive episode found
that psilocybin significantly decreased SI up to 8 weeks after treatment [26]. Although the
effects of psilocybin on suicidality (i.e., suicide, SA, and SI) have never been specifically
studied (except SI reduction in few trials), these preliminary data concerning psilocybin
activity on the pathways that are impaired in SB suggest that this psychedelic drug could
be useful to decrease SI and to prevent SB.

The aims of this review were (i) to describe the pharmacological properties of psilocy-
bin and its action on systems that are known to be impaired in suicidal patients (serotonin-
ergic system, neurotrophic factors, and inflammatory and oxidative systems) and (ii) to
discuss how the psychological effects of psilocybin could explain the putative reduction of
SI and SA.

2. Suicidal Behaviors Need Specific Therapeutics

As ~90% of people who die by cause of suicide have a psychiatric disorder (mainly
depression), SB and SI are still often considered to be a consequence or a symptom of
another psychiatric disorder rather than a disorder in its own [27]. Consequently, non-
specific treatments are used to prevent/treat SB/SI. For example, it is generally thought
that targeting the depression symptomatology will also decrease the suicide risk, which is
mostly true, although not without caveats. Furthermore, as suicidal patients are almost
systematically excluded from clinical trials, the treatments that have been proposed have
never been tested (e.g., efficacy, tolerability, safety) in this specific patient population [28,29].
Understandably, clinicians and researchers are afraid to test medications on suicidal pa-
tients for various reasons (e.g., participant safety, decisional capacity), but it is now possible
to conduct a safe protocol within these patients, as seen in those conducted with ketamine
and esketamine [28,29]. Furthermore, growing evidence suggests that although SB and SI
are certainly associated with other disorders, they have their own physiopathology [30].
This is stressed by the entry of SB in the DSM5, which denotes it as a pathology that should
be studied further. This suggest that SI/SB must be studied independently and in addition
to depression. On the one hand, suicidal patients do not respond as well to antidepressant
treatment (e.g., persistence of SI despite remission of depression [11]), and on the other
hand, it seems that the physiopathology of depression with and without SI is different.

To support this, several recent studies suggest that patients with depression and SB/SI
could represent a specific group that is different from patients without SB/SI. Depression
(the most frequent accompanying diagnosis in patients with SB/SI) and SB/SI are two
separate dimensions that can often overlap [31]. A recent study described two trajectory
types for SI and for depressive symptoms, with independent class membership for the two
outcomes [32]. In addition, the latent variable structures (i.e., the factorial structures of
scales used to measure psychopathology) are significantly different in patients with de-
pression according to the presence/absence of SI [33]. Furthermore, clinical characteristics
(e.g., higher hopelessness, psychological pain and anxiety and more sleep disturbances)
are more severe, and the course of the depressive symptoms is different in suicidal pa-
tients with depression (unipolar or bipolar disorder) compared to non-suicidal patients
with depression [10,11,34,35]. Laboratory/imaging parameters are also different between
suicidal and non-suicidal patients [30,36]. Indeed, for instance, it has been found that
depressed patients with lifetime SA present lower serotonin transporter binding in the
midbrain than a depressed subject without history of SA and healthy controls [37]). In
the same vein, neuro-imaging studies in patients with psychiatric disorders showed that
some brain areas (e.g., prefrontal cortex, amygdala) present different activation profiles
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during social exclusion or during decision-making process with emotional feedback in the
function of whether there is a presence of a history of SA or not [38,39]. Basal cortisol levels
and interleukin (IL)-2 levels are lower in suicidal patients than they are in patients with
depression [40].

These findings and the absence/limited response to classic antidepressants reinforce
the hypothesis that suicidal patients represent a specific group and that they need specific
therapeutics to specifically target the systems that are involved in SB/SI.

3. Psilocybin Pharmacological Properties

Psilocybin, or 4-phosphoryloxy-N,N-dimethyltryptamine, is an indoleamine. It is the
main psychoactive compound of Psilocybe mushrooms and is one of the so-called “classic”
serotonergic hallucinogens [41]. Psilocybin has been integrated in cultural, religious, and
spiritual practices for thousands of years before it attracted the interest of the scientific
community. In 1958, Albert Hofmann and his colleagues at Sandoz Laboratories identified
and synthesized psilocybin and its most prominent active metabolite psilocin (4-hydroxy-
N,N-dimethyltryptamine) [42,43]. Later, psilocybin was marketed under the name of
Indocybin® as a promising agent for psychiatric disorders.

3.1. Pharmacokinetics

Even if psilocybin is not a novel therapeutic, a brief reminder on its pharmacokinetics is
needed in order to better understand this molecule. The chemical structure of psilocybin as
well as its other parameters suggest that it cannot freely cross the blood–brain barrier, unlike
its metabolite psilocin, which is more lipophilic than the parent drug [44,45]. Therefore,
psilocybin should be considered as a pro-drug, and psilocin should be considered as the
active metabolite [46]. After oral administration, psilocybin is quickly converted to psilocin
in the acidic environment of the stomach or by the action of alkaline phosphatases, probably
by luminal and first-pass dephosphorylation [45,46].

In humans, psilocin is detected in the plasma 20–40 min after oral administration [47],
and the plasma concentration reaches a peak (mean concentration: 8.2 ± 2.8 ng/mL) at
80–105 min post-administration [47,48]. The estimated normalized bioavailability of psilo-
cybin is ~50% [48]. Unsurprisingly, the intravenous administration of psilocybin has been
associated with faster mean maximum plasma level peaks of psilocin: 12.9 ± 5.6 ng/mL at
1.9 ± 1.0 min post-injection.

A more recent open-label study [49] analyzed the pharmacokinetics and safety profile
of psilocybin (sequential, escalating oral doses of 0.3, 0.45, and 0.6 mg/kg) in 12 healthy
adults. Psilocybin was not found in plasma or urine, and the renal clearance of intact
psilocin accounted for less than 2% of the total clearance. This confirmed that psilocybin
is dephosphorylated to psilocin. Although doses of 0.6 mg/kg are higher than the dose
that is generally used in clinical trial settings, no serious side effect was reported in the
month following administration [50]. The differences between the oral and intravenous
administration of psilocybin are the speed of onset and the intensity of the subjective effects.
After oral administration, the first effects are observed after approximately 40 min, and
they last 4–6 h [51]. Conversely, after the intravenous administration of 2 mg psilocybin,
effects in healthy adults peaked after 4 min and diminished after 45–60 min [52].

Studies in rats have shown that the half-life of psilocin in plasma is 2.5 h after oral
ingestion and is 1.23 h after the intravenous administration of psilocybin [53]. Most of
the drug is excreted 3 h after ingestion and is eliminated from the body within 24 h [54].
Psilocin and its metabolites are mainly excreted in the urine (approximately 65% of the
administered dose in 24 h), followed by elimination in bile and feces (15–20%). Most of
these metabolites are excreted within the first 8 h, but up to 20% are retained for longer,
and significant quantities are still found in urine at day 7 post-administration [55].
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3.2. Pharmacodynamics

Classic psychedelics differ between each other in terms of receptor binding specificity.
Preclinical studies have shown that psychedelics, including psilocybin, exert their hallu-
cinogenic effects through serotonin receptor activation in the cortical and subcortical struc-
tures [56]. Studies in rats showed the typical signs of stimulation of the 5-hydroxytryptamine
2A (5-HT2A) receptors, such as head twitching and wet-dog shakes, after the injection of
psilocybin. These behaviors could be blocked or significantly reduced by the pharmacologic
inactivation of the 5-HT2A receptors [57].

Psilocybin mainly interacts with serotonergic system components, such as the 5-HT1A,
5-HT2A, 5-HT2B, and 5-HT2C receptors [53]. This is relevant for SB because SB have been
linked to alterations in the serotonergic system [58,59]. Pre-treatment with the 5-HT2A re-
ceptor antagonist ketanserin blocks most of the psychedelic effects of psilocybin, suggesting
that they are mainly mediated through the activation of postsynaptic the 5-HT2A recep-
tors [56,60–62]. The agonism of the 5-HT2A receptor has been linked to increased memory
formation and learning as well as to the contraction of the bronchial and gastric smooth
muscles as well as the cardiovascular and gastrointestinal anti-inflammatory effects and
the release of certain hormones [45]. The plasma levels of psilocybin directly correlate with
neocortical 5-HT2A stimulation and the subjective evaluation of its psychoactive effects [63].
In studies in healthy participants, positron emission tomography imaging showed that
psilocybin increases the absolute metabolic rate of glucose in the frontal cortical regions as
well as in the striatal and limbic subcortical structures [64–66].

Although the binding to the 5-HT2A receptors explains most of the effects of psilocy-
bin, interactions with other pre- and post-synaptic 5-HT subtypes might also contribute.
However, the available data are limited. It has been shown that psilocin binds to many
different serotonin receptors [67,68]. Furthermore, 5-HT2A receptor activation by psilo-
cybin could modulate striatal dopamine release because psilocin increases extracellular
dopamine levels in the mesoaccumbens pathway in rats that are awake [69]. This could
help to ameliorate the reward deficits in suicidal patients [70] in whom the reward-related
pathways are impaired. For example, individuals who attempt suicide show prefrontal al-
terations during reward-based learning and decision making with emotional feedback [39].
Moreover, SB have been associated with impaired reward-based learning, and this might
undermine the search for alternative solutions [71]. A recent electroencephalography study
showed that suicidal individuals display specific deficits in reward anticipation [72]. In ad-
dition, increased dopamine levels enhance pleasure. For example, the hedonic experience
of music is increased by levodopa (dopamine precursor) and is decreased by risperidone
(dopamine receptor antagonist) [73]. Similarly, another experimental study showed that
increasing dopamine levels enhances motor vigor, a proxy to effort allocation for high
rewards [74]. A psilocybin-mediated dopamine level increase could have similar effects
that would be especially beneficial in suicidal individuals.

4. Neuroplastic Changes in Neurons and Synapses

Psilocybin-mediated neuroplastic changes are mediated through the brain-derived
neurotrophic factor (BDNF) [75] that is implicated in brain neurogenesis, neuroplasticity,
and regeneration. By stimulating the 5-HT2A receptors on large glutamatergic pyramidal
cells in the deep cortical layers (V and VI) projecting to the layer V pyramidal neurons,
psilocybin increases the extracellular glutamate levels in the pre-frontal cortex (PFC) [76].
Glutamate activates the alpha-amino-3-hydroxy-5-methylisoxazol-4-propionate (AMPA)
and N-methyl-D-aspartate (NMDA) receptors on the cortical pyramidal neurons, resulting
in increased PFC neuroplasticity via BDNF increase and other mechanisms [76]. A transient
state of high neuroplasticity can already be observed after a single dose of psilocybin, which
could translate into long-lasting synaptic changes [77]. This hypothesis is supported by
the finding that AMPA receptors play a major role in neural network formation during
development [78]. Besides its action on BDNF, psilocybin rapidly increases the expression
of genes related to neuroplasticity (e.g., c-Fos, Junb, Dusp1, Iκβ-α) in the PFC and to a lower
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extent, in the hippocampus of rats [79]. Another recent in vivo study in mice demonstrated
that psilocybin increases the density and strength of neuronal connections by about 10%
in the medial frontal cortex [80]. This led to an increase of excitatory neurotransmission.
The growth of dendritic spines was observed 24 h after psilocybin intake and persisted
up to 1 month. Psilocybin might also stimulate neuroplasticity by activating the mam-
malian target of rapamycin (mTOR). Indeed, psilocybin promotes neuritogenesis, resulting
in increased dendritic arbor complexity (higher number of dendritic spines and higher
connections). However, this effect is blocked by treatment with rapamycin (an mTOR
inhibitor) [81]. In in vivo studies, the stimulation that is achieved in the molecular and
neuronal pathways related to neuroplasticity after treatment is psychedelics is accompa-
nied by an increase in learning behavior [82]. Furthermore, in the acute state, psilocybin
intake leads to a global decrease in functional network integrity but higher connectivity
between networks. Magnetoencephalography and electroencephalography studies found
that psilocybin causes a major loss of rhythmical activity, resulting in a state of extreme
desynchronization or enhanced entropy in the acute state as well [2]. By escaping from
its usual way of working and due to the global increase in connectivity, the brain might
create new behavioral and thought patterns. Indeed, the cortical disintegration of the
default mode network has been related to changes in thoughts and behavior [77]. The acute
desynchronization and the increase in neuroplasticity in the long-term are complementary.
Indeed, both are needed to stimulate the creation of news networks. Consequently, psilocy-
bin could improve functional integration and decrease negative thinking and rumination.

These effects could be beneficial in patients who are at a high risk of SB because
SB have been associated with neuroplasticity dysfunction (e.g., low BDNF levels) [40,59].
Indeed, current evidence suggests that brain neuroplasticity is altered in most SB-associated
psychiatric disorders [83]. Furthermore, postmortem studies showed that BDNF levels are
significantly lower in different brain regions, especially in the hippocampus and PFC, in
patients who died from suicide [84]. Epigenetic modifications that alter BDNF expression
have also been detected in patients who died by suicide [85]. In agreement, a recent
meta-analysis found that plasma BDNF levels are significantly lower in patients with
depression with than in patients without a history of SA [84]. Moreover, psilocybin-
mediated neuroplasticity seems to be linked to mTOR induction. This is particularly
interesting because the expression of the mTOR protein and its related genes has been
strongly linked to death by suicide and SB. Indeed, mTOR expression has been found to be
lower in patients who died from suicide and with SB [86,87]. Thus, by promoting mTOR
expression, psilocybin could compensate for its decrease observed in suicidal patients.
Finally, suicide has been associated with lower cortical thickness, a decreased number of
dendritic spines, and the atrophy of neurons in the PFC [88,89]. By increasing the number of
dendritic spines and by promoting neuritogenesis, psilocybin could correct this phenotype.
In view of these elements, it seems that the psilocybin modulation of neuroplasticity could
support its putative anti-suicidal effect.

5. Anti-Inflammatory Effects of Psilocybin

Psilocybe mushrooms have a specific anti-inflammatory effect. It has been reported
that extracts of these mushrooms inhibit the lipopolysaccharide-induced production of
the pro-inflammatory cytokine tumor necrosis factor α (TNF-α) and IL-1β and decrease
the concentration of IL-6 and cyclooxygenase 2 (COX-2) in human U937 macrophage
cells [90]. Moreover, the mushroom Psilocybe cubensis protects cardiomyocytes against
TNF-α-induced injury and cell death [91]. These effects are exerted by mimicking the
action of serotonin on 5-HT2A receptors [92].

Increasing evidence supports the notion that serotonin modulates inflammation in
the brain. In psychiatry, the role of inflammation-related kynurenine pathway alterations
in mood disorders has been extensively studied [93–95]. Indoleamine 2,3-dioxygenase is
the most important enzyme that shifts the metabolism of tryptophan to serotonin in the
kynurenine pathway. One of its main inductors is TNF-α [96,97]. It has been shown that
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the pharmacological agonists of the 5-HT2A receptors block the pro-inflammatory effects of
TNF in smooth muscle vascular cells [98] and that they a potency that exceeds that of all of
the current drugs or small therapeutic molecules. However, these effects are restricted to
5-HT2A receptors because 5-HT2B and 5-HT2C receptor-selective agonists cannot suppress
TNFα-induced inflammation, further supporting the major role of 5-HT2A binding.

Indirect evidence has also shown that single-nucleotide genetic polymorphisms in
the 5-HT2A receptor gene are associated with rheumatoid arthritis [99], a disease that is
linked to increased TNF-α levels, and are responsive to TNF-α antagonists. Interestingly,
mirtazapine, a potent 5-HT2A antagonist, increases TNF-α levels [100,101]. Furthermore,
a retrospective analysis reported a 45-fold excess rate of joint disorder complaints in
patients treated with 5-HT2A-blocking antidepressants, such as mianserin, nefazodone, and
mirtazapine, compared to patients treated with selective serotonin reabsorption inhibitors
that indirectly stimulate 5-HT2A receptors [102].

Interestingly, mirtazapine is among the least effective antidepressants that can be
used for the prevention of SA and death by suicide in patients with major depressive
disorder [103]. Different mechanisms could contribute to this. First, by blocking the 5HT2A
receptors, mirtazapine could impair neuronal plasticity. Second, mirtazapine is not a
serotonin reuptake inhibitor and is very unlikely to induce serotonin toxicity compared to
many other antidepressants. It modestly increases serotonin levels only indirectly through
alpha 2 receptor antagonism [104]. This may be sufficient to treat patients with depression,
but not enough for suicidal patients. Nevertheless, the most likely explanation is probably
linked to 5HT2A impairment [101] because suicide has been associated with increased
levels of pro-inflammatory cytokines in the brain [105].

The mechanisms underlying the anti-inflammatory actions of 5-HT2A agonists are
not entirely clear [106]. Studies on psilocybin and LSD (which is closely related to psilo-
cybin and also activates the 5HT2A receptors) found significant acute effects on circu-
lating steroids, especially glucocorticoids [107,108]. As glucocorticoids have major anti-
inflammatory properties, their rapid increase might immediately suppress inflammation,
reducing chronic inflammation, as commonly observed in patients with depression, espe-
cially those who are at an increased suicide risk. Indeed, in patients with depression, the
hypothalamic–pituitary–adrenal axis is deregulated, the glucocorticoid response to stress
is flattened, morning cortisol concentrations are low, and glucocorticoid receptor resistance
is observed. Moreover, SA history and SI have been specifically linked to decreased cor-
tisol response to stress [109,110]. Therefore, a psilocybin-induced significant release of
anti-inflammatory cortisol, corticosterone, cortisone, and 11-dehydrocorticosterone could
activate an anti-inflammatory response (similar to how insulin activates insulin receptors
in insulin-resistance syndrome) and could reduce the levels of pro-inflammatory cytokines,
such as TNFα and IL-6 [107].

It is not fully understood whether these anti-inflammatory effects are generated
upon the central or peripheral activation of the 5-HT2A receptors. Some studies suggest
that it is the subjective intensity of the subjective experience that produces the thera-
peutic effects [111,112]. However, 5-HT2A receptor (mRNA and protein) expression has
also been detected in many peripheral immune-related tissues (e.g., spleen, thymus, and
circulating lymphocytes) [113] and in innate and adaptive immune response cells (e.g.,
eosinophils [114] human peripheral blood mononuclear cells [115], and T cells [116]). One
may wonder whether a psilocybin-like molecule that does not cross the BBB and does not
have subjective psychedelic effects may still be effective [117,118]. One rodent study found
that psilocybin and LSD have a persistent antidepressant-like effect, but not ketamine. As
it is impossible to measure the subjective effects in rodents (only head-twitch behaviors can
be measured, but this was not done in this study), the authors hypothesized that subjective
experience may not be necessary for the therapeutic effects of these molecules [119].

The anti-inflammatory effects of psilocybin could be useful in suicidal behaviours, as
patients with history of SA and SI have increased levels of inflammatory markers [40,93],
psilocybin might rapidly reduce this chronic low-grade inflammation, restoring the brain
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plasticity capacity. Then, psilocin strongly binds to the 5-HT2A receptors, the expression
of which is increased in postmortem brain samples from patients with depression and
suicidal tendencies [120–122]. The alterations in the 5HT2A receptors in the brain [123] and
in the peripheral tissues (platelets) [124] have been associated with suicidality. Moreover,
two polymorphisms of this receptor have been linked to SA [125]. It has been proposed
that 5HT2A receptor upregulation is a compensatory mechanism that can decrease the
availability of serotonin or the increased demand of 5-HT2A function [126,127]. As classic
antidepressants decrease 5-HT2A density, it has been suggested that 5-HT2A receptor down-
regulation may be the underlying mechanism of their effect [128]. However, the effect of
traditional antidepressants is generally observed after few weeks of treatment, whereas
psilocybin induces this downregulation rapidly. This might explain the rapid antidepres-
sant effect observed in the clinical studies that have been conducted on psilocybin [129].
Therefore, 5-HT2A and 5-HT1A signaling normalization might help to explain the possible
antidepressant and anti-suicidal effects of psilocybin [130].

6. Antioxidant Effects of Psilocybin

It is known that indole ring-containing molecules, including psilocybin, have antiox-
idant effects [131–133]. Mushrooms are rich in antioxidants, such as ergothioneine and
glutathione [134]. However, specific data on the antioxidant effects of Psilocybe mush-
rooms are scarce. One study reported that Psilocybe natalensis has a potent antioxidant
effect [135]. Studies on other similar molecules support this putative antioxidant effect. For
instance, dimethyltryptamine (DMT), which is an endogenous neurotransmitter, displays
potent protective effects against hypoxia by acting on sigma 1 receptors [136]. It has been
hypothesized that the main purpose of endogenous DMT is to protect the brain in case
of hypoxia [137]. Moreover, a study demonstrated that the closely related 5-methoxy-N,
N-DMT (5MeO-DMT) rapidly decreases IL-6 levels and increases cortisol levels [138]. As
such changes have been associated with reduced suicide risk [139,140], these effects might
be implicated in the anti-suicidal effects of these molecules.

Indirect evidence also supports these observations. The activation of 5-HT2A in-
hibits the activity of the inducible nitric oxide synthase in C6 glioma cells, reducing
oxidative stress [141]. Selective serotonin reabsorption inhibitors also suppress oxidative
stress [142–144]. Although the underlying mechanism is not clear, the modulation of
5-HT2A receptor and brain steroid expression has been implicated [145].

Similar to inflammation, oxidative stress also has been associated with SB [146]. A
recent meta-analysis found an association between SA history and increased nitro-oxidative
stress [147]. Many abnormalities in oxidative stress systems have been implicated in
SB pathophysiology [148]. Moreover, it has been suggested that classic antidepressants
reduce depressive symptomatology and SI by improving oxidative stress and antioxidant
function [149].

7. Neuropsychological Aspects

As described previously, psilocybin alters the default mode network connectivity, and
this might enhance cognitive flexibility [1]. This rapid increase of cognitive flexibility could
mediate the switch from avoidance to acceptance thought and behavioral patterns. It is
thought that cognitive flexibility and acceptance are increased in response to individual
experience. Interestingly, this change might be maintained for a long time after psilocybin
intake [150]. Such remodeling might be particularly important in suicidal patients because
they present altered decision making, reduced cognitive flexibility, and poor problem-
solving ability [30]. In addition, SB could be considered as the most extreme expression of
avoidance, and acceptance therapy is effective in patients with SI [14].

Increased empathy is another psychological change that has been associated with
psilocybin administration [77]. The theory of “ego dissolution” (i.e., a disrupted sense of
self [151] following psilocybin intake) suggests that the experience caused by psilocybin
allows patients to be more open to their social surroundings [77]. This may lead to an
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increase in connectedness with the surrounding environment and people. This effect
could be important in patients who are at an increased risk of suicide because they often
present thwarted feelings as though they belong [152]. Therefore, one can speculate that
by promoting connectedness, psilocybin might help to prevent SB. Moreover, it has been
shown that psilocybin significantly improves emotional face recognition [153] and reduces
feelings of social exclusion [154]. Patients with a history of SA are particularly sensitive to
social exclusion [38]. Psilocybin might reverse this excessive feeling of not-belonging.

SB has also been associated with reduced specific autobiographical memories [40]. A
meta-analysis reported that long-term memory is significantly impaired in patients with
history of SA compared to healthy controls as well as compared to psychiatric patients
without a history of SA. Moreover, it has been observed that autobiographical memory is
less specific in patients with SA history [155]. It has been hypothesized that the system
that is involved in thinking about the future overlap with the one that is implicated in
episodic memory. Consequently, the capacity to solve problems and to find solutions
could also be impaired [155]. On the other hand, psilocybin administration enhances
autobiographical recollection by stimulating the recall/re-experiencing of autobiographical
memories and by accentuating the vividness of memories during its acute effects [156,157].
A functional magnetic resonance imaging study demonstrated the greater activation of the
bilateral auditory cortex, somatosensory cortex, superior parietal cortex, and occipital pole
following the administration of psilocybin compared to a placebo [156]. This could explain
the vividness of memories upon psilocybin intake. This visual and sensorial activation
and the reports of more visual and vivid recollections after psilocybin administration
suggest that psilocybin stimulates the neural processes underlying autobiographical recall.
This effect is amplified by music during the session. Indeed, music increases the visual
imagery that is involved in autobiographical memory [150]. Interestingly, recent studies
have shown that emotional breakthrough (EB) also contributes to the increased well-being
after psilocybin intake [158,159]. EB overlaps with the psychoanalytic notion of catharsis
and is influenced by the context. Greater EB during the psychedelic experience has been
linked to greater well-being afterwards [159]. It could be hypothesized that EB occurs
during the autobiographical recall induced by psilocybin and “liberates” patients from
the negative emotions that are linked to their memories. This could be useful in suicidal
patients who often have history of childhood trauma, other negative life events, and/or
biased memories. Indeed, the recall of their trauma or negative life events and/or a
biased memory accompanied by the effects of psilocybin discussed here could help them to
overcome these memories by liberating them from the negative emotions that are associated
with them. Thus, it is primordial for suicidal patients to be briefed before the session and
to be supported throughout it by a professional.

Finally, psilocybin administration has been associated with “mystical” or “quantum
change” experiences. This last term also takes into account the long-term changes that
are associated with such experiences. A “quantum change” experience can be defined
as a “sudden, distinctive, benevolent and profoundly meaningful experience resulting
in personal transformation that affects a broad range of emotions, cognitions and behav-
iors” [160]. Such experiences (e.g., mystical, quantum change, religious) might lead to
sustained behavioral changes. For instance, the total scores of the Mystical Experience
Questionnaire following psilocybin administration positively predict psilocybin-related
changes in behavior and well-being [1]. Moreover, previous therapeutic trials found a
positive association between the magnitude of mystical experiences and sustained posi-
tive outcomes (e.g., well-being, positive attitude, and mood) [161]. Thus, psilocybin may
enhance spirituality, which is also associated with a reduced suicide risk [162]. Figure 1
summarizes the main mechanism of possible psilocybin antisuicidal action.
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Figure 1: Main mechanisms of action of Psilocybin that could be useful to prevent SB 
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Figure 1. Main mechanisms of action of psilocybin that could be useful to prevent SB.

8. Risks

As is the case with any medical intervention, the safety of an intervention must be
confirmed before assessing its efficacy. Psilocybin has a favorable physiological safety
profile [108]. Although it can raise the heart rate and blood pressure, cardiovascular events
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and deaths have never been recorded following psilocybin administration. Moreover, there
could be yet unknown risks from psilocybin acting in peripheral tissues, as 5HT2A and
other receptors are also expressed there. Concerning overdose, due to its pharmacodynamic
profile, psilocybin overdose and dependence are also unlikely because tolerance builds up
quickly due to the rapid receptor desensitization [129,163].

However, the psychological risks that are associated with psilocybin should not be
neglected [164]. The patient must be psychoeducated about the reality-altering effects of
this drug that can be disturbing for many and traumatizing for some. Although some
people may seek these mind-altering effects, patients with psychiatric diseases generally
just want to feel better. Therefore, hallucinations could be considered as a side effect
that can be minimized with psychological preparation and that can be accepted if the
anti-inflammatory properties of psilocybin also are taken into account. In people with a
personal or family history of psychosis, the risk-benefit ratio might be less favorable.

After treatment with psilocybin, follow-up with a trained specialist is of the utmost
importance to integrate the experience. Indeed, the molecule produces reality-altering
effects and can also bring up various traumatic memories, inducing a fear response. For
instance, case reports have described post-traumatic stress disorder following a challenging
psilocybin experience [165]. Moreover, the theoretical possibility of a rare condition, called
hallucinogen persisting perception disorder [166,167], should also be considered. Although
its existence is discussed and it seems to be responsive to antipsychotic or benzodiazepine,
it might cause major psychological suffering [168].

Clinicians and researchers may be afraid to test this drug in suicidal patients because
many think that without good monitoring, psilocybin can be quite stressful and may lead
to a suicidal act. These negative responses could be favored by psychiatric comorbidities.
However, safe clinical trials in these patients can be conducted using an adapted protocol
(e.g., staying with the patient throughout the session, confirming the patient’s family and
social support, preparing emergency plans with the patient, implementing strict clinical
monitoring) [28,29,169].

9. Conclusions

In this review, we summarized the existing data on the mechanisms that might
underlie the putative anti-suicidal effects of psilocybin, a naturally occurring compound.
This molecule acts by binding to the 5-HT2A receptors, resulting in a rapid decrease of
inflammation and oxidative stress and neuroplasticity promotion. These effects might
underlie the shift from the cognitive patterns that are frequently observed in patients with
SA history and SI (e.g., cognitive rigidity, impaired decision making, and feelings of a
thwarted sense of belonging) to more adaptive thoughts and behaviors (e.g., increased
cognitive flexibility, spirituality, and empathy).

Despite the great deal of progress that has been made in suicide prevention, the
current therapies are insufficient, and there is a large unmet care need. Psilocybin seems
safe, rapidly effective, and has been used for thousands of years due to its presence in
the natural world. We propose that the effects of psilocybin and ketamine should first
be compared in patients some days (at least 7) after a suicidal crisis (i.e., SA and/or
hospitalization for SI), regardless of the associated psychiatric disorder (i.e., depressive
disorder and bipolar disorder), as ketamine is already used in clinical practice for these
patients. Patients who are at risk (e.g., schizophrenia, psychotic symptoms, imminent risk
of suicidal act) must be excluded, and psychotherapy (e.g., mindfulness therapy) must be
offered after psilocybin intake under strict medical supervision. This first trial type could
allow for the assessment and confirmation of the safety and efficacy of psilocybin before
studying its effects in “active” suicidal patients (i.e., with active SI). Future clinical trials
will then specifically investigate psilocybin effects on SI and SB risk as a primary outcome
in order to determine the best optimal dose, clinical settings, safety, and interactions with
current pharmacotherapies and psychotherapies [170].
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