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Oxidative stress occurs when there is an imbalance between reactive oxygen
species/reactive nitrogen species and antioxidant systems. The interplay between
these complex processes is crucial for normal pregnancy and fetal development;
however, when oxidative stress predominates, pregnancy related complications and
adverse fetal programming such as preterm birth ensues. Understanding how oxidative
stress negatively impacts outcomes for the maternal-fetal dyad has allowed for the
exploration of antioxidant therapies to prevent and/or mitigate disease progression.
In the developing kidney, the negative impact of oxidative stress has also been
noted as it relates to the development of hypertension and kidney injury mostly in
animal models. Clinical research addressing the implications of oxidative stress in the
developing kidney is less developed than that of the neurodevelopmental and respiratory
conditions of preterm infants and other vulnerable neonatal groups. Efforts to study
the oxidative stress pathway along the continuum of the perinatal period using a
team science approach can help to understand the multi-organ dysfunction that the
maternal-fetal dyad sustains and guide the investigation of antioxidant therapies to
ameliorate the global toxicity. This educational review will provide a comprehensive and
multidisciplinary perspective on the impact of oxidative stress during the perinatal period
in the development of maternal and fetal/neonatal complications, and implications on
developmental programming of accelerated aging and cardiovascular and renal disease
for a lifetime.
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OXIDATIVE STRESS AND THE PERINATAL PERIOD

Oxidative stress occurs when there is an imbalance between reactive oxygen species (ROS) (1)
and reactive nitrogen species (RNS) (2) and the innate antioxidant systems. Under normal
circumstances, the perinatal period is propagated by a balanced ROS production for the maternal-
fetal dyad. However, in some adverse pregnancy conditions, free radical generation due to the
imbalance between oxidants and antioxidants leads to oxidative damage in various organ systems
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in both the mother and fetus (3). ROS include free radicals,
such as superoxide anions which are characterized by highly
unstable unpaired electrons and non-radical molecules such
as hydrogen peroxide (3). Free radicals are the by-products of
metabolic redox reactions in the respiratory chain, microsomal
cytochrome P450, and immune response system triggered by
several endogenous and exogenous insults such as asphyxia,
inflammation, and hyperoxia (4). During pregnancy, a variety
of genetic and environmental stimuli can overwhelm the
innate antioxidant system allowing the free radicals to react
with cellular components and leading to oxidative damage
that impacts DNA, protein, lipid and mitochondrial function,
ultimately resulting in aberrant fetal programming (5) (Figure 1).
The most common ROS include superoxide ion (O2·-), hydrogen
peroxide (H2O2), hydroxyl radical (·OH), hydroperoxide
(ROOH), and peroxy radical (ROO·) (3). Nitric oxide (NO·)
is also a key driver of oxidative stress and usually reacts
with other ROS to form peroxynitrite (ONOO−), which
is part of the RNS. RNS are able to produce similar tissue
damage caused by oxidation through the introduction of a
nitrogen group into an organic compound (6). Antioxidants,
produced endogenously or assumed exogenously, are able
to counterbalance free radical production by neutralizing
or removing ROS/RNS (6). The most common antioxidants
include enzymes superoxide dismutase (SOD) and catalase
(CAT), glutathione peroxidase (GPX), vitamins (vitamins C
and E), minerals, and small-molecule thiols such as glutathione
(GSH) (5). How oxidative stress impacts tissue damage can be
evaluated by biomarkers that quantify the levels of oxidation
by-products from proteins, lipids, and DNA damage as shown in
Figure 2.

THE INTRAUTERINE ENVIRONMENT,
PLACENTATION, AND OXIDATIVE
STRESS

The placenta plays an indispensable and multifunctional role as
the interface between the two adjoined organisms, the mother
and the fetus. It provides an immune interface and serves to
transport nutrients and waste products between the mother and
the fetus and is a source of peptides and steroid hormones
that influence fetal, placental and maternal metabolism and
development (7, 8). Human pregnancy is characterized by deep
placental invasion, in which extravillous cytotrophoblasts invade
into the uterine decidua and the inner third of the myometrium.
In normal pregnancy, cytotrophoblasts extend to the spiral
arteries in the decidual and myometrial segments and destroy
the vascular musculature of the endothelium and the elastic
membrane, transforming the arteries into dilated, inelastic vessels
without maternal vasomotor control (9, 10). As a result, these
vessels are capable of high conductance at low pressure with a
low velocity of blood flow entering the placenta. This enables
sufficient exchange of nutrients and oxygen through adequate
perfusion. It is crucial for placental and fetal development,
especially toward the end of pregnancy when fetal demands are
highest (11).

In the earliest stage of pregnancy, normal embryogenesis and
organogenesis occur in a relatively low-oxygen environment.
This physiologic hypoxia in early pregnancy is essential to
promote placental angiogenesis, trophoblast cell proliferation
and to protect the developing embryo from the teratogenic effects
of oxygen free radicals. During this stage, relatively high oxygen
tension is toxic to the embryo because of its low antioxidant
capacity. As uteroplacental circulation becomes established, the
oxygen tension increases in the intervillous space, enhancing
the trophoblast invasion for further vascular remodeling
(12). There is also an increase in placental mitochondrial
mass and mitochondrial electron chain enzyme activity (13,
14) which leads to an increase in ROS production and an
increase in oxidative stress. While the placenta provides fetal
nutrition and oxygenation, it continuously generates ROS and
RNS as the consequences of active oxygen metabolism (14,
15). The increased ROS/RNS is counterbalanced throughout
pregnancy by the increased synthesis of antioxidants to maintain
homeostasis. To compensate for the increase in oxidative stress,
a rise in antioxidant activity (such as glutathione peroxidases
and catalases) have been observed as the placenta adapts to
the new high oxygen-rich environment (14). Consequently,
the embryo becomes more resistant to oxidative stress via
improved antioxidant defenses (16, 17). The well-controlled
oxidative stress in the placenta plays a role in modulating
angiogenesis, immunoregulation, cytotrophoblast invasion,
vasoactive function, cellular proliferation, necrosis and apoptosis
(18). Disruption of this balance induces inflammatory responses
and cellular damage on the developing fetus with teratogenic and
long-term consequences, depending on the timing of these events
(19–22). Defective deep placentation can lead to uteroplacental
insufficiency and chronic placental hypoxia/ischemia, resulting
in the adverse outcomes of pregnancy with oxidative stress,
especially recurrent pregnancy loss, hypertensive disorders of
pregnancy, fetal growth restriction (FGR), gestational diabetes
mellitus (GDM) and preterm birth (10, 23).

OXIDATIVE STRESS IN PLACENTAL
PATHOLOGIES

When the tight balance between ROS generation and antioxidant
generation is interrupted, it can lead to increased generation
of chronic oxidative stress leading to inflammatory responses
and damage to the cellular system at the DNA and RNA levels
(14). This can lead to premature placental aging and pathologies
including FGR, preeclampsia (PE), spontaneous pregnancy loss,
and GDM (24, 25).

Fetal growth restriction is the failure of the fetus to reach
its genetic growth potential (26). It is defined as an estimated
fetal weight less than the 10th percentile for gestational age.
It is one of the leading causes of fetal, neonatal and perinatal
mortality and morbidity. One of the main causes of FGR is
believed to be placental insufficiency in early gestation due to
abnormal trophoblast invasion in the spiral arteries and the
placental bed leading to increased generation of ROS which leads
to damage of the placental tissue (24, 27). In FGR placentas,
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FIGURE 1 | Schematic of The Impact of Perinatal Oxidative Stress on the Developing Kidney and Cardiovascular Systems. ROS, reactive oxygen species; FGR, fetal
growth restriction; RNS, reactive nitrogen species; NAC, n-acetylcysteine.

oxidative stress damage is thought to occur predominately in the
membrane lipids, proteins and nuclear and mitochondrial DNA.
Increased levels of malondialdehyde (MDA) (end products of
fatty acid oxidation) and xanthine oxidase (XO) levels have been
shown in maternal plasma, umbilical cord plasma and placental
tissues of patients with FGR pregnancies suggesting that oxidative
stress plays a role in FGR (27). Furthermore, FGR placentas
show signs of aging markers, including telomere shortening and
absence or reduction in telomerase activity (28, 29). In addition,
expression of telomere-induced senescence markers p21 and p16
are increased, while levels of anti-apoptotic proteins Bcl-2 are
decreased (28, 30).

Maternal preeclampsia is a life-threatening disorder of
pregnancy, characterized by new onset hypertension, proteinuria,
abnormal maternal and renal adaptations, poor placenta
vascularization and FGR (31). PE affects up to 10% of pregnancies
and is one of the leading causes of maternal and fetal/neonatal
mortality and morbidity worldwide (31). The etiology of PE
remains debatable, but its basic pathology is understood to be
vascular endothelial injury mediated by oxidative stress from
increased placental ROS and/or decreased antioxidant activity
leading to an increase in vascular resistance and a reduction in

uteroplacental perfusion (31). In PE, circulating and placental
tissue levels of oxidative stress markers such as MDA and 4-
hydroxynonenal (HNE) levels have been shown to be elevated
and antioxidant (such as catalase and glutathione peroxidase)
levels have been shown to be decreased (32–34).

Spontaneous pregnancy loss occurs when the initial onset of
the blood flow in the intervillous chamber occurs earlier and is
less organized than in normal pregnancies leading to an increase
in oxidative stress in the placenta (24).

Gestational Diabetes Mellitus is a serious pregnancy
complication, in which women without previously diagnosed
diabetes develop chronic hyperglycemia during gestation (35).
It is a heterogeneous disorder and involves a combination
of factors responsible for decreased insulin sensitivity and
inadequate insulin secretion leading to high glucose levels in the
maternal blood (35). This hyperglycemic environment is thought
to provoke placental oxidative stress and dysfunction, and GDM
women have been reported to overproduce free radicals and have
impaired free-radical scavenging mechanisms (35).

As described above, uteroplacental insufficiency from
defective placentation can provoke chronic hypoxia, leading
to PE, FGR, neurodevelopmental delay and intrauterine fetal
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FIGURE 2 | Oxidative stress, free radical mediated diseases of the preterm newborn, and biomarkers. Reprinted from Lembo et al. (3). BPD, bronchopulmonary
dysplasia; ROP, retinopathy of prematurity; NEC, necrotizing enterocolitis; IVH, intraventricular hemorrhage; PVL, periventricular leukomalacia; RDS, respiratory
distress syndrome; PDA, patent ductus arteriosus; AGE, advanced glycated end product; AOPP, advanced oxidation protein products; TH, total hydroperoxide;
IsoPs, isoprostanes; IsoFs, isofurans; NeuroPr, neuroprostanes; MDA, malondialdehyde; 4-HNE, 4-hydroxy-2-nonenal; SOD, superoxide dismutase; CAT, catalase;
GPX, glutathione peroxidase; GSH, glutathione; GSSG, glutathione disulfide; NPBI, non-protein-bound iron; 8-OHdG, 8-hydroxy-2′-deoxyguanosine; XO, xanthine
oxidase; MPO, myeloperoxidase; TAC, total antioxidant capacity; TOS, total antioxidant status; OSI, oxidative stress index.

death. Hypoxia can cause tissue damage via severe oxidative
stress. Recently, several experimental studies demonstrated
the beneficial effect of antioxidant administration via NO-
dependent mechanisms. In pregnant sheep, Melatonin or
vitamin C increased fetal umbilical blood flow through NO
synthase-dependent vasodilation (36). In pregnant mice,
N-acetylcysteine (NAC) decreased the cadmium (Cd)-induced
placental insufficiency and FGR (37). In addition, in pregnant
mice lacking a denitrosylase, S-nitrosoglutathione reductase,
vitamin C treatment rescued the maternal PE-like phenotype,
including hypertension, proteinuria, renal pathology, cardiac
concentric hypertrophy and decreased placental vascularization
(38). In humans, several studies have demonstrated that NO
donor improved maternal and fetal hemodynamics in PE and
FGR (39–42). However, the current studies are limited due to the
small sample size and the observational nature, although they
demonstrate the potential effectiveness of antioxidant therapy.

OXIDATIVE STRESS AND
PROGRAMMING OF NEPHRON
NUMBER AND KIDNEY INJURY

Nephrogenesis in humans is intended to be complete by 36 weeks’
gestation in utero (43, 44). Preterm infants are born during
active nephrogenesis, making them particularly vulnerable to

alterations imposed by the extra-uterine environment (45, 46).
The preterm-born individual’s kidney function will depend on
the effective nephron mass, which is proportional to the number
of perfused and fully formed glomeruli (47). The kidneys form
in parallel with other organ systems by a process of branching
morphogenesis (48–50). Among the organ systems that develop
by branching morphogenesis are the lungs, pancreas, vascular
tree and kidneys, which share genetic and physiologic functional
determinants within the fetal origins of adult disease paradigm
(51–53).

In several animal models of renal programming, maternal
malnutrition/diet, diabetes and steroid exposure have been linked
mainly to the development of hypertension in the offspring, and
have been associated with an increase in oxidative stress through
various mechanisms (5). These studies have been enumerated in
Table form by Hsu et al. (5). In addition, some animal studies have
reported specifically on a reduced nephron number associated
with increased oxidative stress in offspring after a maternal insult
(5). In particular, this has been reported in a caloric restriction
model (54), streptozotocin-induced diabetes (55), and maternal
smoking (56). Tain et al. showed that ureteric bud branching
morphogenesis was inhibited by asymmetric dimethylarginine
(ADMA), a ROS inducer and endogenous NOS inhibitor, leading
to decreased nephron number (55). However, some studies have
not shown a decreased nephron number but rather glomerular
hypertrophy (54, 57–60) and tubulointerstitial injury (54, 55,
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57, 59–61) as the renal phenotype associated with oxidative
stress and perinatal programming. The main mechanisms of
oxidative stress shown in these studies to be associated with renal
injury include increased levels of asymmetric dimethylarginine
(ADMA), F2 isoprostane, renal 8-hydroxydeoxyguanosine (8-
OHdG) and MDA and decreased levels of NO and superoxide
dismutase (62).

If birth occurs prematurely during active nephrogenesis, there
may be potential for ongoing or even accelerated nephrogenesis;
however, the often hostile extrauterine environment with various
oxidative stressors likely limits this window of opportunity.
However, our knowledge of ongoing nephrogenesis in preterm
humans is limited to a few postmortem studies, showing
abnormalities in postnatal nephrogenesis in preterm born
individuals (45, 46, 63). Rodriguez et al. showed that a full
complement of nephrons was never achieved in preterm as
compared to term newborns and that acute kidney injury
(AKI) led to further restriction of nephron endowment
(45). In addition, others have noted a high percentage of
morphologically abnormal glomeruli, including atubular and
cystic glomeruli, which would not be able to function as well
as high interindividual variability in radial glomerular counts
and glomerular morphology in postmortem studies of preterm
infants (46, 63). Importantly, a low nephron endowment has
been linked to the development of hypertension and cardiorenal
disease in adult life (64).

ACCELERATED AGING AND OXIDATIVE
STRESS IN PRETERM INFANTS

Preterm infants are known to have a shortened lifespan and
acceleration of aging in large part due to cardiovascular disease,
diabetes mellitus and chronic kidney disease (CKD) (65).
Evidence of accelerated aging has been noted in preterm infants
both early and in later life (66–68). Oxidative stress is a driver
of the natural aging process (69) and, as such, functions as a
therapeutic target. Leukocyte telomere length is a biomarker of
aging-related health risks (70, 71). Hospitalized preterm infants
frequently experience elevated oxidative stress and inflammation,
both of which contribute to telomere shortening. Belfort et al.
studied changes in telomere length during neonatal intensive care
unit (NICU) hospitalization in a cohort of preterm infants (71).
They noted that from birth to discharge, preterm infants (mean
gestational age 27 weeks, range 23.5–29 weeks) experienced a
significant weekly decline in relative telomere length (71). Luyckx
et al. showed in a rodent model that low-birth-weight rats
exhibited accelerated senescence in kidneys and hearts after rapid
catch-up growth (72).

POSTNATAL OXIDATIVE STRESS
INDUCED KIDNEY INJURY AND
EMERGING BIOMARKERS

In the developing kidney, the negative impact of oxidative
stress related to fluctuating oxygen exposure from hyperoxia

to intermittent hypoxia, has also been implicated in the
development of kidney injury in postnatal animal models (60,
73–78) (Table 1). Nephrogenesis is complete by the 36th week
of gestation in humans, but it continues until approximately
postnatal day 10–14 in rats (73). Hence, the various exposures
to oxygen in neonatal rats could have comparable consequences
to those seen in extremely premature infants during the critical
period of postnatal nephrogenesis, which is limited to 40 days
and occurs aberrantly (45, 63, 79). Experimental and early clinical
studies are now emerging that oxygen exposure in these preterm
babies can lead to vascular and renal axis alterations, leading to
hypertension, stroke and renal failure into adulthood (62, 80–
82). The discovery of biomarkers to better understand the role
of oxidative stress in early postnatal kidney injury is critical to
allowing for the development of translational studies aimed at
developing targeted therapies.

Advanced oxidation protein products (AOPPs) are an
established universal biomarker of oxidative injury. AOPPs are
crosslinked protein products formed during oxidative stress
by the reaction of plasma protein with chlorinated oxidants.
Accumulation of plasma and renal AOPPs is a common
pathologic finding in chronic kidney disease (CKD) patients
and is an independent risk factor for cardiovascular events in
CKD (83). AOPP have been studied in neonatal oxidative injury
and reference values established in a healthy population of term
newborns to allow for comparison in preterm groups (84). Few
studies have looked at the role of AOPPs in neonatal oxidative
stress related kidney injury in vivo. Perrone et al. investigated 55
preterm infants exposed to perinatal hypoxia and found increased
AOPP in the first 14 days of life as expression of oxidative
stress-induced cellular damage (85).

Alpha-Klotho is a transmembrane protein highly expressed
in the kidney, and its cleaved product in the circulation (soluble
Klotho) functions as an endocrine hormone with potent
antioxidant and antifibrotic properties (86). CKD is a state of
Klotho deficiency that exerts multiple systemic adverse effects,
including the vascular system (86–89). Our group demonstrated
in a rodent model of hyperoxia-induced kidney injury that
hyperoxia exposure during early postnatal nephrogenesis
was accompanied by a marked reduction of renal Klotho
expression, restricted renal perfusion, and glomerulomegaly
and tubular injury (60). Administration of exogenous Klotho
improved renal vascular perfusion, abrogated glomerulomegaly
and tubular injury, and restored kidney antioxidant capacity
[manganese superoxide dismutase (MnSOD) and catalase mRNA
expression] (60).

An experimental model of renal insufficiency in adult rats
showed that early administration of α-Klotho prevented the
progression of AKI to CKD and protected the heart from
cardiac remodeling (90). The supplementation of exogenous
Klotho and/or upregulation of endogenous renal Klotho
production may confer dual renal and lung protection, which
is proposed to be associated with, but not restricted to,
its antioxidant properties (91, 92). Our group also showed
that umbilical cord Klotho levels were depressed in infants
with bronchopulmonary dysplasia (BPD) and pulmonary
hypertension and that Klotho administration improved
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TABLE 1 | Rodent studies of hyperoxia and/or hypoxia related renal injury during postnatal nephrogenesis.

Study
reference

Year of
publication

Animal Oxygen
exposure

Sacrifice Glomerular
size

Tubular
injury

Fibrosis Nephron
number

(77) 2008 Rat 80% P3-P10 25–35 weeks NA NA NA Decreased by
25%

(76) 2013 Mouse 80% P3-P10 P5 and P10 P5 decreased
P10 no change

NA NA Not affected

(74) 2013 Rat 65% × 1 week P7 and P56 P7 no change
P56 increased
10 months no
change

NA NA Not affected

(78) 2015 Rat 95% × 1 week
85% ×
2 weeks

P7 and P21 P7 and P21
increased

P7 and P21
increased

Increased NA

(73) 2016 Rat 80% P3-P10 1 month,
5 months
11 months

No change at
any time point

NA No change Not affected

(75) 2020 Rat 85% P1-P21→
21% ×
3 weeks

P42 Increased Increased NA NA

(79) 2021 Rat 50% with IH
12% w/varying
exposure
durations

P7, P14, P21 Increased Increased NA Decreased

P, postnatal day; IH, intermittent hypoxia; NA, not applicable.
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pulmonary hypertension, left ventricular hypertrophy and
cardiac dysfunction in the same hyperoxia rat model (93).
Future studies should be directed toward understanding the
molecular pathways driving oxidative stress and injury, as
well as looking at the comparison between early and late
outcomes of these on the developing kidney. Therapeutic
strategies to prevent neonatal AKI and progression to CKD
are lacking. Our findings call for future translational studies
to explore the clinical applications of exogenous Klotho
administration and/or therapies that promote endogenous
Klotho production in premature infants with oxidative
stress-related renal injury.

Experimental and clinical data suggests that increased
Plasminogen Activator Inhibitor-1 (PAI-1), a marker of oxidative
stress and aging, is associated with cardio-renal dysfunction.
It is now well-recognized that natural aging is associated with
a decline in GFR related to a loss in nephron mass over
time due in part to progressive renal scarring (94). PAI-1
has been implicated in the mechanism of renal scarring seen
during aging (94). PAI-1 is a member of the superfamily
of serine protease inhibitors and plays a major physiologic
role in inhibiting tissue type plasminogen activator (t-PA) and
urokinase type plasminogen activator (u-PA), which both activate
plasminogen to plasmin thus promoting fibrinolysis. PAI-1
also assists with matrix degradation by regulating t-PA and
u-PA, which are both fibrinolytic. Hence, upregulation of PAI-
1 leads to accumulation of extra cellular matrix because t-PA
and u-PA are not allowed to proceed with normal fibrinolysis.
Angiotensin II is a promoter of PAI-1 and recently it was shown
in rats that use of angiotensin receptor blockers slowed the
progression and even led to regression of glomerular and vascular
sclerosis in aging through inhibition of PAI-1 expression (95).
In addition, investigators were able to show that transferring
bone marrow derived cells from young to old mice resulted
in alleviation of renal aging by decreasing cellular senescence
while reducing PAI-1 activity (96). How PAI-1 activity is altered
by preterm birth and postnatal oxygen exposure or whether it
can serve as a biomarker of early cardio-renal disease in this
population in unknown.

ORGAN CROSS TALK AND
PREMATURITY RELATED OXIDATIVE
INJURY

Lung-Kidney
Bronchopulmonary dysplasia (BPD) is a leading cause of
morbidity and mortality in preterm infants. Evidence from
preclinical studies demonstrate that preterm animals have
blunted antioxidant response to hyperoxia and exposure
to supraphysiologic postnatal oxygen levels was originally
thought to be a leading cause of BPD (97). More recent
data suggest that BPD is a multifactorial disease originating
prior to delivery. Suboptimal intrauterine conditions along
with adverse neonatal exposures during a pivotal period
of organogenesis increase oxidative stress and inflammation,

with damage to proteins, carbohydrates, DNA and lipids.
Activated inflammatory cells release free radicals, creating a
vicious cycle that disrupts intercellular communication, induces
cellular apoptosis and promotes organ injury (98). Interestingly,
preterm infants with AKI have a higher risk of BPD (99–
101). Most preterm infants who develop BPD are in the
cannalicular to saccular stage of lung development. Like
the kidney, the lungs develop by a process of “branching
morphogenesis” (44, 51, 52) and share genetic and physiologic
functional determinants, suggesting potential dysregulation
of overlapping signaling pathways by prematurity and its
associated insults.

High levels of oxidative stress markers, such as lipid or
protein oxidation products in the cord blood, plasma and
bronchoalveolar lavage fluid of preterm infants who develop
BPD suggests that oxidative stress plays a significant role in
the pathogenesis of BPD. Elevated lipid peroxidation products,
advanced oxidation protein products and non-protein bound
iron in cord blood is associated with increased risk of the preterm
free radical-related diseases, including BPD (102).

Cardiovascular-Kidney
Preterm birth occurs during a key period of cardiovascular
development, where the premature heart is exposed to the
rapid transition from a low resistance placental circulation to
a high resistance, high flow systemic circulation. The heart
grows in utero by increasing the number of cardiomyocytes
until term. Preterm birth leads to an abrupt reduction in
cardiomyocyte proliferation (103). There is also an increase
in the left ventricular mass by the first month of life
suggesting marked myocardial adaptation to the extra-uterine
environment (104). Evidence from animal models and clinical
studies of premature infants show that preterm birth interferes
with normal cardiac development with consequences beyond
childhood and into adulthood. A recent meta-analysis shows that
preterm-born individuals have morphological and functional
cardiac impairments across developmental stages from birth to
adulthood (105). Cardiovascular magnetic resonance of preterm-
born young adults showed that these individuals had a greater
left ventricular (LV) wall thickness and mass, and smaller LV end
diastolic volumes, LV cavity dimensions and length (106).

In animal models, postnatal hyperoxia induces cardiomyocyte
cell-cycle arrest through activation of the DNA damage response,
while scavenging ROS or inhibiting DNA damage delays cell cycle
arrest (107). Moreover, on long-term follow up, transient oxygen
exposure enhances fibrosis, increases oxidative stress, increases
expression of senescence-associated proteins and augments
susceptibility to heart failure under pressure overload (93, 108).
Preterm birth may disrupt or even prematurely arrest the
development of the vasculature, impacting the vessel structure
(109). Elastin, the scleroprotein that imparts distensibility to
the large vessels is accrued during the last trimester of rapid
vasculogenesis. Collagen, the structural protein that imparts
rigidity to the vessel, accrues at a slower rate in utero. At
term, the vascular wall contains at least 60–80% elastin and
less collagen. The turnover of elastin is extremely slow, with
a half-life of 40 years and almost no appreciable turnover of
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elastin in the adult aorta (110). Thus, a disruption of elastin
synthesis due to preterm birth is poised to have long term
consequences (111).

Oxidative stress and high oxygen exposure after birth may lead
to the increase of ROS and cause endothelial dysfunction, a well-
recognized marker of cardiovascular disease (112, 113). There
is evidence that neonatal hyperoxia exposure increases ROS
production and alters elastin and collagen distribution within the
systemic vasculature (112–114). Rat pups exposed to neonatal
hyperoxia demonstrated increased collagen to elastin ratio at
4 weeks (114). This was accompanied by increased aortic pulse
wave velocity (PWV), a marker of vascular stiffness when the
rats were evaluated at 6 and 9 months, suggesting that neonatal
hyperoxia plays a crucial role in the pathogenesis of systemic
vascular dysfunction in adults born preterm (62, 80, 82, 115, 116).
Evidence from epidemiological studies shows a significant inverse
correlation between systemic blood pressure and gestational
age at birth, which is consistently observed from childhood to
adulthood in preterm born adults (117–119). In addition, young
adults born preterm have reduced size of the ascending aorta and
increased stiffness of the brachial and carotid arteries (120). In
the HAPI study (Health of Adults born Preterm Investigation),
young adults born preterm had smaller kidneys, higher urine
albumin/creatinine ratios, higher angiotensin I levels, and higher
blood pressure compared to those born full-term (121).

ANTIOXIDANT THERAPIES TARGETING
MINIMIZATION OF NEONATAL KIDNEY
INJURY

As delineated above, perinatal oxidative stress is generated in
both environments of hypoxic ischemia as well as hyperoxia,
with excessive ROS associated with the downstream impact on
reduced nephron number and renal fibrosis as well as parallel
injury in the lungs, heart and vascular systems (122). As such,
the imbalanced increase in ROS may be amenable to antioxidant
therapy which, if administered in the perinatal period, may
impact the development of adult chronic diseases. Antioxidants
may be categorized as enzymatic or non-enzymatic, natural
or synthetic. By mechanism of action, they are classified as:
suppressants of radical formation, radical scavengers, or repair
agents of molecular damage (123). While no agent is currently
recommended for routine administration by clinical practice
guidelines, we recognize the potential benefit of antioxidant
therapy through the current evidence in pre-clinical animal
models, limited clinical trials, and the study of patients
with advanced CKD.

Vitamins
Vitamins C (ascorbic acid) and E (α-tocopherol) are scavengers
of free radicals. Vitamin E specifically interferes in lipid
peroxidation, while Vitamin C facilitates the recycling of Vitamin
E (124). When administered perinatally, they have been shown
to prevent the development of hypertension and kidney injury in
the adult offspring of the spontaneously hypertensive and Fawn
hooded hypertensive rat models, respectively (5). Furthermore,

clinical trial in a dialysis-dependent population revealed less
cardiovascular disease associated with decreased biomarkers of
oxidative stress (125). However, the same was associated with an
increase in all-cause mortality in adults with chronic diseases, and
with prostate cancer in otherwise healthy men (5).

Amino Acids
Renoprotection has been shown with the exogenous
administration of antioxidant amino acids. L-taurine in
combination with other antioxidants can circumvent
the development of hypertension, proteinuria, and
glomerulosclerosis in genetic hypertensive rat models (126). In
addressing NO deficiency, L-arginine (the substrate for NO) and
its precursor L-citrulline have shown beneficial effects in animal
models of renal programming but remain inconclusive in clinical
trials in adults (5).

N-Acetylcysteine
N-acetylcysteine (NAC) is a well-known scavenger of free
radicals that also increases antioxidant capacity as a precursor
to glutathione (127). While evidence in the clinical studies
of adults has been inconclusive, its potential role in neonatal
kidney disease is strengthened by multiple experimental models.
Beneficial effects against postnatal oxidative stress have been seen
in a rat model of sepsis (128), in a porcine model of neonatal
asphyxia (129), and in a clinical trial in neonates undergoing
cardiac surgery for congenital heart disease (130). Of specific
interest for practical application, it is noteworthy that therapeutic
administration was post-injury in the above-mentioned rat
and porcine studies. This is compared to the pre/peri-
injury administration in many other experimental models.
Furthermore, the addition of Vitamin D to NAC is proposed to
have a synergistic increase in glutathione concentrations and is
currently under study (NCT04643801) (131).

Coenzyme Q10
Given its high reliance on aerobic metabolism and thereby on
mitochondrial function, the kidney is dependent on Coenzyme
Q10 (CoQ10) in its electron-shuttling action (132). CoQ10
can further reverse mitochondrial dysfunction by preventing
phospholipid peroxidation and free radical oxidation, as it
has been shown to do in an intermittent hypoxia rat model
designed to replicate the variable oxygen tension exposure of
preterm infants (132). In a maternal smoking mouse model, it
protected adult offspring from hypertension, kidney injury, and
oligonephronia (56).

Melatonin
Melatonin is an endogenous indolamine neurotransmitter that
has multiple neurohormonal functions including serving as a
scavenger of ROS and an upregulator of antioxidant enzymes
(133). As such it has been given exogenously as an antioxidant
therapy in a variety of conditions including during the perinatal
period for both mother and infant (133, 134). Reduced levels
of melatonin are found in women with preeclampsia (135).
Melatonin has been shown to regulate blood pressure and
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mitigate the development of hypertension in numerous animal
models of renal programming (3). Recently, an increased
urinary angiotensinogen/melatonin ratio was suggested to be
an early biomarker for identification of gestational diabetes
or pregnancy induced hypertension (136). In neonates, there
is placental transfer of melatonin as endogenous melatonin
production does not occur until 2–4 months of age and is
known to be further delayed in preterm and FGR infants
(134). Studies in animals have demonstrated the usefulness of
melatonin in preventing and reducing cerebral inflammation in
cases of perinatal hypoxic damage and during fetal ischemia
and reperfusion (135). Several clinical studies using melatonin
showed that it ameliorates oxidative stress in newborns
with sepsis, asphyxia, or other conditions where there is
excessive ROS production (133). Additionally, the urinary
excretion of a melatonin metabolite has been reported to be
impaired in adults who were growth restricted prenatally or
were born after 40 weeks of gestation, suggesting potential
fetal programming of melatonin production that may impair
melatonin related pathways in adulthood such as antioxidant
defenses (135). Finally, direct nephrotoxicity from compounds
such as cisplatin have been shown to be mitigated by melatonin
given its antioxidant properties (137). The role of melatonin
in neonatal oxidative stress related kidney injury has not
been fully explored.

OTHER OXIDATIVE STRESS LOWERING
THERAPIES TO AVERT CHRONIC
KIDNEY DISEASE PROGRESSION

The kidney is among the fastest aging organs and expression
of the senescence marker p16 has been shown to correlate best
with renal aging, though it has not been studied in association
with birth weight (138). Several studies have been conducted to
understand the mechanisms behind oxidative stress, renal aging
and the progression of CKD (139). Investigations into therapeutic
discoveries that can slow the progression of CKD in adult and
animal studies can potentially play a role in prolonging kidney
function in prematurity-related kidney disease as well.

Blockade of the renin-angiotensin system (RAS) is now
standard of care to slow the progression of proteinuric CKD
(140). Angiotensin receptor blockers (ARB) have been shown
to have anti-inflammatory and anti-oxidative properties in
both cardiac hypertrophy and various kidney injury models
including obesity and diabetes (141). For example, in obese
rats, ARB treatment showed anti-inflammatory and anti-
oxidative properties with reduction in heme oxygenase-1 (141,
142). Another experimental model of diabetic kidney injury,
showed that ARB reduced albuminuria and was associated with
increased NO production (143). However, during fetal and
early renal development, the RAS system is instrumental in
driving normal kidney development (44). In fact, exposure in
utero to RAS inhibitors such as angiotensin receptor blockers
or angiotensin converting enzyme inhibitors from mothers
who are hypertensive or have CKD, leads to RAS fetopathy
heralded by renal dysplasia and severe renal insufficiency,

along with extra-renal abnormalities (144). As such, use of
RAS inhibition is generally avoided during the first 2 years
of life, until the kidney is fully matured (145). Hence,
utilizing RAS inhibition in prematurity-related kidney disease
before 2 years of life is limited. Nonetheless, RAS activation
is known to drive oxidative stress and fibrosis in kidney
disease (146).

Experimental studies have shown that sodium-glucose
cotransporter 2 (SGLT2) inhibitors have diverse effects
including modulation of the RAS as well as attenuating
systemic inflammation and oxidative stress, which has been
previously associated with cardiorenal protection in patients
with type 2 diabetes mellitus (147). Given the significant
improvement seen in CKD progression, SGLT2 inhibitors are
now recommended for CKD with albuminuria regardless of the
presence of diabetes, as it has been shown to slow estimated
glomerular filtration rate (eGFR) decline, delay the onset of end
stage kidney disease (ESKD), and decrease all-cause mortality
(148). SGLT2 inhibitors are thought to reduce oxidative stress
in the kidney by decreasing intracellular glucose in proximal
tubular cells (147). How SGLT2 inhibitors improve renal
outcomes outside of diabetes is incompletely understood. In
addition, lipid dysmetabolism is implicated in oxidative kidney
damage in diabetic and non-diabetic forms of CKD. Currently,
the literature suggests that both quality and quantity of lipids
contribute to increased ROS production, oxidative stress,
inflammation, cell death (149). Unraveling the complex nature of
lipid dysmetabolism and which lipid species are most important
in progression of kidney disease will help with targeted drug
therapy development. Translation of findings in drivers of CKD
progression in animal and adult models to experimental models
and clinical studies of prematurity-related kidney disease will
help fast track therapeutic discovery.

SUPPORTING INFANT GROWTH AND
NEPHRON HEALTH IN EARLY
CHILDHOOD, MINIMIZING ACCRUAL OF
OXIDATIVE INSULTS

The perinatal programming of kidney health is largely
determined by genetic and maternal risk factors with induction
of oxidative stress through pathogenic pathways that lead to
reduced nephron endowment associated with FGR, PE, maternal
nutritional deficiencies and preterm birth (150–152). After birth,
there is a critical window in which the nutritional and postnatal
environmental exposures can influence nephrogenesis. Growth
trajectories and neonatal nutrition are known to contribute
to the developmental programming of nephron endowment,
insulin resistance and cardiovascular and renal disease in later
life (153–155).

Accelerated postnatal growth in preterm infants, whether
small or appropriate for gestational age, contributes to the
precocious development of the metabolic syndrome with insulin
resistance in early childhood, which is further confounded by
excessive adiposity (155, 156). This, in turn, contributes to the
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early progression of CKD, especially in those born preterm with
low nephron endowment (157–159).

The early neonatal nutritional prescription is of paramount
influence on kidney development and will be a major determinant
of cardiovascular and renal health for the entire life course.
The macronutrient and micronutrient (vitamin and mineral
supplements) distributions require close review and planning
(155, 157). The adverse long-term effects of perinatal exposure
to excessive carbohydrate energy, low protein diet, high fat
diet, high fructose diet, high and low salt diets, as well as
micronutrient deficiencies have been documented in human
and laboratory studies (155, 157). These effects are established
during “developmental time slots” when the system is primed for
staged development during gestation and the perinatal period.
As such, specific alterations in the nutritional environment may
program for nephron endowment, blood pressure dysregulation,
endothelial and mitochondrial dysfunction. Much of these
programmed effects are mediated by oxidative stress and
metabolic pathways which are perpetuated throughout the
lifetime of the individual. The classic example is that of
the epidemiologic observations of individuals exposed during
gestation to maternal protein-calorie malnutrition during the
Dutch (1944/1945) and Chinese (1959–1961) famines resulting in
adult hypertension, proteinuria and metabolic syndrome/obesity
(160, 161). Isolated protein malnutrition in animal and human
models is well-recognized to result in smaller kidneys and
lower nephron numbers (162–164). Subsequent accelerated
growth, in response to hypercaloric intake, results in obesity,
proteinuria, hypertension and accelerated senescence and
progression of CKD (162–164). Carbohydrates are the major
macronutrients and provide the bulk of the calories at 45–
50% in most diets including infant formulas and parenteral
nutrition. The other 2 macronutrients are protein at 10–
20% and fat at 20–30%. The issue is complex, but the
basic tenet is to examine the distribution of each of the
macronutrients followed by the best fit of formula for the
infant’s phenotype.

Micronutrients include vitamins and minerals that are
essential to growth and health maintenance. In a well-balanced
diet, supplementation is rarely required. However, in the setting
of preterm birth, FGR, PE and other disorders of oxidative
stress, modulation, restriction and/or supplementation may be
beneficial. Excessive salt intake in mothers and infants may
result in elevated blood pressures and dysregulation of the
RAS system. Low levels of the antioxidant vitamins including
vitamins A, C, E, and folate have been associated with low
nephron endowment, hypertension and decreased longevity
(157, 163).

The follow-up of infants with predisposition to CKD
including those with extreme preterm birth, neonatal AKI,
FGR, gestational hypertensive exposure, twin gestation and
congenital anomalies of the kidney and urinary tract (CAKUT)
should include monitoring of the diet, avoidance of excess
salt, hypercaloric formulas and overweight/obesity. Adequate
micronutrient supplementations are indicated, in addition
to supplemental antioxidants, in conditions of suspected
mitochondrial dysfunction and periods of oxidative stress.

THE IMPORTANCE OF TEAM SCIENCE
AND TRANSLATIONAL STUDY DESIGN
IN THE DEVELOPMENTAL ORIGINS OF
CARDIO-RENAL DISEASE FRAMEWORK

The concept of team science has evolved over the last two
decades. Team science is a collaborative and cross-disciplinary
approach to scientific inquiry that draws researchers, who
otherwise would work independently or as co-investigators
on small scale projects, into collaborative centers and
groups (165). The developmental programming of health
and disease model lends itself to formulating collaborative
team research since many of the overriding insults, such as
oxidative stress, have global implications for the maternal-
infant dyad. As such, translational research projects could be
more effective in targeting mechanisms and drug discovery
for this vulnerable population. This model has been embraced
for example in Portugal based off the European Respiratory
Society Research Seminar “Early origins of lung disease:
toward an interdisciplinary approach” where they describe
that future research into early origins of lung disease
should be centered around four major focus areas: (1)
policy and education, (2) clinical assessment, (3) basic and
translational research, and (4) infrastructure and tools.
The authors acknowledge that interdisciplinary funding
opportunities are scarce but an important opportunity to
move the field forward dependent on the development of
biospecimen repositories (166). The International Society for
Developmental Origins of Health and Disease Society (DOHaD)
is an organization that fosters multidisciplinary exchange
of ideas centered around this developmental model while
promoting team science.

SUMMATION

In conclusion, oxidative stress plays a role in the physiologic
transition from intrauterine to extrauterine life and can
contribute to significant pathology in the maternal-infant dyad
when it goes unbalanced. The downstream inflammation and
cellular damage that results from oxidative stress has implications
on the developing kidneys, lungs, and cardiovascular systems.
Use of antioxidant therapies to mitigate impaired nephrogenesis
as well as development of other key organ systems have shown
promising results largely in animal models and future studies call
for the translation of this work into clinical investigations. The
use of a team science approach and building of biorepositories
for study of the maternal-infant dyad can help to organize the
discovery and antioxidant therapies with potential global benefit
for mother and baby.

The implication of ROS in multiple neonatal morbidities,
referred to as “oxygen radical disease of neonatology” (167), has
more recently extended to include the kidney, both postnatal
and developmental origins of adult CKD. The transition to the
extrauterine environment is one marked by oxidative aggression,
particularly for the preterm infant with impaired antioxidant
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capacity (168). Because oxidative stress is implicated in the
pathophysiology across multiple organ systems, it is of vital
importance to build upon the current evidence to develop clinical
practice guidelines for antioxidant therapy in this vulnerable and
expanding population.
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