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Mechanisms underlying the Effects of Heat Stress on Intestinal 
Integrity, Inflammation, and Microbiota in Chickens

Motoi Kikusato and Masaaki Toyomizu

Animal Nutrition, Life Sciences, Graduate School of Agricultural Science, Tohoku University, Sendai, Japan

Poultry meat and egg production benefits from a smaller carbon footprint, as well as feed and water consumption, per 
unit of product, than other protein sources. Therefore, maintaining a sustainable production of poultry meat is important to 
meet the increasing global demand for this staple. Heat stress experienced during the summer season or in tropical/subtropical 
areas negatively affects the productivity and health of chickens. Crucially, its impact is predicted to grow with the accelera-
tion of global warming. Heat stress affects the physiology, metabolism, and immune response of chickens, causing electrolyte 
imbalance, oxidative stress, endocrine disorders, inflammation, and immunosuppression. These changes do not occur inde-
pendently, pointing to a systemic mechanism. Recently, intestinal homeostasis has been identified as an important contributor 
to nutrient absorption and the progression of systemic inflammation. Its mechanism of action is thought to involve neuroen-
docrine signaling, antioxidant response, the presence of oxidants in the diet, and microbiota composition. The present review 
focuses on the effect of heat stress on intestinal dysfunction in chickens and the underlying causative factors. Understanding 
these mechanisms will direct the design of strategies to mitigate the negative effect of heat stress, while benefiting both animal 
health and sustainable poultry production.
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Introduction

The rapid increase in the world population has raised concerns 
about global food shortages, calling for the development of more 
efficient food production systems. The poultry sector contributes 
substantially to human nutrition and food security because of its 
short production cycle. Moreover, the use of agricultural/com-
mercial food waste and byproducts in meat and egg production 
has transformed the poultry industry into a sustainable source of 
animal proteins. According to the United Nations Food and Ag-
riculture Organization, global poultry meat production increased 
from approximately 68.6 to 133 million tons between 2000 and 
2020, with output estimated to reach 181 million tons by 2050. 
Excluding fish, these values account for 32.5% of global meat 

production (Alexandratos and Bruinsma, 2012). Poultry meat 
and egg production systems are more efficient and sustainable 
than those developed for pork, beef, and milk, as they have a 
smaller carbon footprint, as well as feed and water consump-
tion per unit of generated product (Gerbens-Leenes et al., 2013; 
Pawar et al., 2016).

To meet the increased consumption and widespread produc-
tion of poultry meet and eggs, productivity must be maintained 
high. However, heat stress (HS) can have a negative impact on 
the productivity and health of chickens. HS affects the physiol-
ogy of homeothermic animals, resulting in decreased livestock 
performance. HS occurs mainly in the summer season or in tropi-
cal/subtropical areas, as well as during transportation from farms 
to processing facilities (Mitchell and Kettlewell, 1998, Kpomasse 
et al., 2021). The negative consequences of HS include reduced 
body weight gain, feed intake, and use of nutrients, thereby con-
tributing to increased mortality, and ultimately decreasing meat 
and egg yields. Moreover, HS negatively influences meat qual-
ity (pH, drip loss, and water-holding capacity), eggshell strength/
thickness, and reproductive performance (fertility and semen 
characteristics) (Lara and Rostagno, 2013; Nawab et al., 2018; 
Zaboli et al., 2019; Kim et al., 2020). Overall, HS results in an 
estimated annual economic loss of $128 to $165 million for the 
poultry industry in the United States, a major producer of chicken 
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meat (St-Pierre et al., 2003; Lara and Rostagno, 2013). However, 
this loss is likely underestimated as it does not take into account 
loss of product quality and any compensatory veterinary/nutri-
tional costs. Moreover, the estimate was made two decades ago, 
prior to the recent uptick in global warming (Tollefson, 2022). 
Consequently, the economic impact of HS on livestock produc-
tion will be more harmful than initially estimated.

HS negatively affects the physiology, metabolism, immune 
response, and behavior of chickens, causing electrolyte imbal-
ance, endocrine disorders, oxidative stress, inflammation, and 
immunosuppression (Renaudeau et al., 2012; Nawab et al., 
2018; Rostagno, 2020). Recently, intestinal homeostasis has 
been identified as an important factor in nutrient absorption, 
with its disruption accelerating systemic inflammation via the 
neuroendocrine system, antioxidant response, dietary oxidants, 
and microbiota. However, the specific effects of HS on intestinal 
homeostasis and inflammation, as well as the underlying mecha-
nisms are only beginning to be elucidated. Therefore, this review 
summarizes recent progress on the effects of HS on intestinal 
dysfunction in chickens and their causative factors. Moreover, 
this overview highlights future research directions for develop-
ing sustainable poultry production systems that can mitigate the 
expected increase in HS.

HS and Intestinal Physiology

Animals have a specific thermoneutral zone, defined as the 
temperature range in which the activation of thermogenesis or 
heat dissipation mechanisms is not required to maintain body 
temperature. The normal body temperature of chickens is ap-
proximately 41–42 °C, and the thermoneutral zone is thought 
to be 18–25 °C. Ambient temperature above this zone causes an 
imbalance in thermoregulatory control due to excess metabolic 
heat generation compared to the body’s heat dissipation capac-
ity, leading to HS (Donkoh, 1989). Humidity functions as a co-
factor, which can exacerbate the effects of HS owing to reduced 
surface water evaporation (Lin et al., 2005; Esnaola-Gonzalez 
et al., 2020; Kim et al., 2022). Chickens are more susceptible 
to high temperatures than other livestock animals because they 
lack sweat glands, and heat dissipation is limited to the face, 
legs, and combs, which are not covered with feathers. In addi-
tion, the relatively low ratio of body surface area to body weight 
in chickens is negatively associated with body temperature con-
trol under HS conditions, especially in broilers. Modern broiler 
genotypes have been developed to exhibit elevated metabolic 
activity, which favors rapid growth but also greater heat produc-
tion, resulting in lower heat tolerance (Deeb and Cahaner, 2002; 
Pawar et al., 2016). In poultry, heat dissipation depends mainly 
on panting (short and quick breathing), wing spreading, and in-
creased blood flow to the skin, which serves as a sink for heat 
from the body core. However, excessive panting induces respira-
tory alkalosis (Teeter et al., 1985), and increased skin blood flow 
induces hypoxia, energy deficiency, oxidative damage, and intes-
tinal inflammation (Hall et al., 2001; Lambert, 2009; Varasteh et 
al., 2015).

Management of intestinal function has emerged as a research 
hotspot in poultry science. Globally accepted norms now regu-
late the use of antimicrobial growth promoters in feed to sup-
press the emergence and development of drug-resistant patho-
gens. The small intestine plays an important role in digestion and 
subsequent absorption of nutrients from ingested feed, as well 
as in local defense against pathogenic bacteria and their harm-
ful constituents such as lipopolysaccharide (LPS). However, HS 
disrupts intestinal function through pathogenic, metabolic, and 
endocrine stimuli, along with excessive production of oxidants. 
This results in increased permeability to potentially toxic luminal 
substances. The intestine consists of a single layer of epithelial 
cells connected by tight junctions made of occludins, claudins, 
junctional adhesion molecule-A, and zonula occludens, as well 
as outer and inner mucus layers covering the cellular partition 
(Suzuki, 2020). These mechanical structures are responsible for 
defending against pathogen invasion through paracellular pores 
and leakage pathways (Usuda et al., 2021). HS has been reported 
to downregulate the expression of tight junction proteins (Song 
et al., 2014; Wu et al., 2018), leading to the entry of LPS into the 
blood stream (Abdelqader et al., 2017; Alhenaky et al., 2017; 
Nanto-Hara et al., 2020). HS-induced intestinal hyperpermeabil-
ity and consequent loss of barrier function has been demonstrated 
also by an increased plasma concentration of orally administered 
fluorescein-4-isothiocyanate dextran (Song et al., 2014; Ruff et 
al., 2020; Kikusato et al., 2021a; Sarsour and Persia, 2022).

LPS transferred from the intestinal lumen into circulation 
stimulates innate immunity, leading to inflammation in several 
organs and tissues. Inflammation triggers metabolic alterations 
that support the immune system and promote degradation of skel-
etal muscle proteins (Frost and Lang, 2008). Endocrine changes, 
particularly in glucocorticoid secretion and inflammatory cyto-
kines, are involved in muscle proteolysis (Klasing and Johnstone, 
1991; Zhou et al., 2016; Qaid and Al-Garadi, 2021). Amino acids 
derived from muscle protein degradation and blocked muscle 
protein synthesis are thought to be used for acute-phase protein 
synthesis and gluconeogenesis, thereby providing energy to the 
liver to counteract inflammation (Gessner et al., 2017). The gen-
eration of these metabolites represents not only a metabolic cost 
(Niewold, 2007; Broom and Kogut, 2018a), but leads also to loss 
of skeletal muscle mass. Strategies that effectively suppress HS-
induced intestinal hyperpermeability could reduce costs and im-
prove meat production.

Reduced Feed Intake and Intestinal Integrity

Several factors are associated with formation of a “leaky” gut 
in chickens under HS. Intestinal epithelial cells exhibit rapid cell 
turnover depending on nutritional intake (Yamauchi et al., 1996). 
A reduction in feed intake is an adaptive response to decreased 
diet-induced thermogenesis under HS conditions; whereas feed 
restriction (fasting) favors intestinal permeability (Vicuña et al., 
2015; Gilani et al., 2017). Therefore, poor appetite caused by 
HS may contribute to intestinal hyperpermeability. However, 
pair-fed treatment, whereby chickens under thermoneutral con-
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ditions were fed an equal amount of feed as HS-treated birds, 
demonstrated little effect on intestinal permeability (Nanto-Hara 
et al., 2020; Emami et al., 2021). This suggests that other in-
ternal factors, such as hormonal changes or inflammation, are 
likely responsible for intestinal permeability in chickens under 
HS conditions.

Glucocorticoid Secretion and Intestinal Integrity

Activation of the hypothalamus-pituitary-adrenal axis is 
a neural response to stressors that affect intestinal integrity. In 
this axis, corticosterone is the main glucocorticoid secreted by 
avian species and plays a role in modulating peripheral oxidative 
homeostasis, metabolism, and immunity to combat stress. How-
ever, large, acute, and prolonged secretion of corticosteroids may 
have harmful effects on the host. Treatment with corticosteroids 
or synthetic glucocorticoids (such as dexamethasone) induces 
oxidative stress, proteolysis, gluconeogenesis (Lin et al., 2004a; 
Gao et al., 2008), and intestinal permeability (Vicuña et al., 2015; 
Barekatain et al., 2020). Corticosteroid treatment has also been 
reported to promote the expression of inflammatory cytokines 
in isolated peripheral blood lymphocytes of chickens (Shini and 
Kaiser, 2009). Increased intestinal permeability in HS-exposed 
chickens is accompanied by higher plasma corticosteroid con-
centrations (Alhenaky et al., 2017; Alhotan et al., 2021; Kikusato 
et al., 2021a); whereas dietary treatment with plant extracts or 
betaine ameliorates corticosteroid secretion, intestinal barrier 
function, and cytokine levels in HS-exposed chickens (Alhotan et 
al., 2021; Kikusato et al., 2021a; Wang et al., 2022b). It has also 
been proposed that inflammatory cytokines disturb the intestinal 
tight junction barrier, leading to increased tissue penetration by 
luminal antigens (Al-Sadi et al., 2009). These lines of evidence 
suggest that corticosteroids and inflammatory cytokines induce 
intestinal hyperpermeability in chickens under HS. However, it 
remains unclear whether this phenomenon is caused primarily by 
corticosteroids or circulating cytokines, and whether LPS plays 
a role in it.

Chickens inoculated with LPS exhibit a rapid (within 1 h) in-
crease in serum corticosteroids, followed by a rise in cytokine lev-
els (3 h after LPS injection) (Nakamura et al., 1998). Moreover, 
mice subjected to HS exhibited concomitantly elevated plasma 
corticosteroids, intestinal lesions, and exfoliated enterocytes at 
peak body temperature during HS, followed by hypersecretion of 
cytokines 2 h post-HS (Leon et al., 2006). These findings suggest 
that corticosteroids are the initial trigger of HS-induced intestinal 
inflammation and hyperpermeability, with cytokines potentially 
playing an exacerbating role. However, the role of LPS in this 
scenario remains unclear, as there is no information on time-
course changes in circulating LPS levels during HS. In one study, 
plasma LPS increased 1 h after corticosteroid injection in chick-
ens, although there were no data on the time course of cytokines 
(Shini et al., 2008). Other studies have reported that the stimu-
latory effect of LPS on inflammatory responses is enhanced in 
the presence of corticosteroids (Kelly et al., 2018, Chae, 2021). 
These findings suggest that LPS transferred through the leaky 

intestine may reinforce the effect of cytokines during HS. How-
ever, further investigation is required to verify the complex roles 
of various inflammatory stimulants in chickens subjected to HS.

Oxidative Stress, Exogenous Oxidants, and Intestinal 
Integrity

Oxidative stress has been suggested to trigger intestinal per-
meability dysfunction under HS conditions (Lara and Rostagno, 
2013). Reactive oxygen species (ROS), reactive nitrogen spe-
cies, and their oxidative products stimulate nuclear factor-kappa 
B (NF-κB) and mitogen-activated protein kinases (MAPKs) 
(Moldogazieva et al., 2018; Calibasi-Kocal et al., 2021), each of 
which initiates an inflammatory process in the epithelial and im-
mune cells present in the lamina propria (Huang and Lee, 2018; 
Lauridsen, 2019). NF-κB regulates the inflammatory response 
by stimulating the production of cytokines and other bioactive 
substances, thereby reinforcing and restoring intestinal barrier 
function. MAPKs activate another transcription factor, activator 
protein-1, which also induces the transcription of inflammatory 
genes (Wang et al., 2013). Activated immune cells located near 
epithelial cells secrete inflammatory cytokines, such as inter-
leukin-6, interferon-γ, and tumor necrosis factor-α, along with 
inflammatory enzymes, such as inducible nitric oxide and cyclo-
oxygenase, to protect epithelial cells from invading pathogens. 
However, an excessive protective response may cause local in-
flammation and disrupt the intestinal barrier (Awad et al., 2017). 
Overproduction of mitochondrial ROS is associated with HS-in-
duced oxidative damage in the liver, spleen, and skeletal muscles 
(Kikusato and Toyomizu, 2013; Zhang et al., 2018; Kikusato and 
Toyomizu, 2019; Wang et al., 2019). HS stimulates mitochon-
drial ROS production and lowers total antioxidant capacity of 
intestinal tissues (He et al., 2019; Wang et al., 2019; Lan et al., 
2020; Liu et al., 2022b). NF-κB and MAPK signaling have been 
associated with HS-induced intestinal injury in chickens (Liu et 
al., 2022c; Wang et al., 2022b) and mice (He et al., 2015). More-
over, a study using heat-incubated cultured cells showed that HS 
induced mitochondrial ROS generation (Yi et al., 2017), as well 
as expression of NF-κB and tight junction proteins (Huang et al., 
2020). Hence, HS-induced oxidative damage might occur inde-
pendently of any circulating stimulants.

The ingestion of dietary oxidants can also initiate an exog-
enous inflammatory response. Lipids obtained from the diet are 
susceptible to peroxidation during feed processing and storage 
under hot conditions. Soybean and corn oils, which contain high 
levels of unsaturated fatty acids that are easily oxidized to hy-
droperoxide products, are widely used lipid sources. Fish meal 
also contains large amounts of polyunsaturated fatty acids in its 
oil residue. Synthetic antioxidants, such as ethoxyquin, dibutyl 
hydroxytoluene, and butyl hydroxyanisole, are supplemented to 
a lipid source or diet to suppress oxidation. However, the supple-
mented amount is restricted to prevent health problems in hu-
mans, resulting in incomplete suppression of the oxidation re-
action. Broilers fed a diet with oxidized oil exhibited impaired 
intestinal morphology, inflammatory cytokine induction (Zhang 
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et al., 2022b), reduced total antioxidant capacity, increased NF-
κB expression (Liang et al., 2015), and greater lipid peroxidation 
(Tan et al., 2018; Sun et al., 2020) in the intestine. Administration 
of 4-hydroxy-2-hexenal, an end-product of n-3 polyunsaturated 
fatty acids, augments the levels of plasma inflammatory cyto-
kines and NF-κB activation in the small intestine (Awada et al., 
2012). Based on this evidence, a diet rich in oxidants is likely to 
induce an intestinal inflammatory response and oxidative dam-
age, possibly owing to NF-κB activation and downregulation of 
nuclear factor-erythroid 2-related factor (Ringseis et al., 2016; 
Dong et al., 2020), an emerging regulator of cellular resistance 
to oxidants. A recent investigation demonstrated that lipid hydro-
peroxide was not absorbed but rather gave rise to other lipid hy-
droperoxides in the gastrointestinal tract (Takahashi et al., 2022). 
Moreover, lipid oxidation levels in chickens fed oxidized oil cor-
related negatively with α-tocopherol (Sheehy et al., 1994), lutein, 
β-carotene, and retinol levels (Engberg et al., 1996). These find-
ings suggest that the ingestion of oxidants could stimulate sev-
eral signaling cascades, as well as divert antioxidants from other 
important cell processes, thereby increasing the susceptibility to 
additional HS-induced oxidative damage. Therefore, the quality 
of feeds, especially their oxidative load, should be considered 
to prevent synergistic damage caused by the negative effects of 
environmental stressors and oxidized feed.

Lipid Fortification: Can Ketone Bodies Mitigate 
HS-induced Intestinal Dysfunction?

Although fasting or feed withdrawal potentiate intestinal 
barrier dysfunction, these nutritional treatments are effective in 
improving short-term survival during acute HS exposure (Mc-
Cormick et al., 1979; Garlich and McCormick, 1981). Lipid 
fortification is a conventional method of alleviating acute HS-
induced ‘thermal death’ (McCormick et al., 1979; Garlich and 
McCormick, 1981), possibly via a reduction in diet-induced 
thermogenesis. Feeding an isocaloric diet with fortified lipids 
suppressed HS-induced body weight loss in laying hens (Kim et 
al., 2019) and broilers (Ghazalah et al., 2008; Attia et al., 2021). 
Moreover, addition of 6.7% lipids to the diet suppressed acute 
HS-induced body weight loss, mitochondrial ROS generation, 
and oxidative damage in broiler chickens (Mujahid et al., 2009). 
Lipid fortification has been reported to lower feed retention in 
the gastrointestinal tract, contributing to fecal heat loss (Saeed 
et al., 2019) and preventing bacterial overgrowth (Pan and Yu, 
2014). Meanwhile, greater lipid retention in peripheral tissues 
has been suggested to hinder the dissipation of cutaneous heat 
loss (Renaudeau et al., 2012, Brugaletta et al., 2022) and heavier 
broilers fed a high-fat diet exhibited increased mortality during 
HS (Zulkifli et al., 2007). To improve immunological parame-
ters, supplemented lipid levels must be higher than those required 
for optimal performance in HS-exposed chickens (Attia et al., 
2021), suggesting that lipid fortification can partially overcome 
the negative effects of HS.

Liver ketogenesis is a metabolic event induced by both fast-
ing and lipid fortification. It yields acetone, acetoacetate, and 

β-hydroxybutyrate (BHB). Future studies on the physiological 
effects of ketone bodies on HS may clarify the mechanisms by 
which nutritional treatments counteract the effects of HS. Recent 
studies have demonstrated that BHB exhibits anti-inflammatory 
activity and suppresses inflammasome formation (Youm et al., 
2015), as well as ameliorates intestinal inflammation in patients 
with colitis, in a dextran sodium sulfate-induced mouse model 
(Huang et al., 2022a) and in Caco2/HT29 cells treated with in-
flammatory cytokines (Kim et al., 2021). Given that plasma BHB 
concentrations are reduced in HS chickens (Han et al., 2018; Lu 
et al., 2018), the above findings suggest that HS-induced BHB 
hyposecretion is associated with intestinal dysfunction. In con-
trast, BHB hypersecretion may suppress HS-induced brain in-
flammation, which may alleviate poor appetite. BHB crosses 
the blood–brain barrier, thereby suppressing HS-induced neural 
inflammation in the mouse hippocampus (Huang et al., 2022b). 
However, the mechanisms underlying HS-induced anorexia and 
the related brain dysfunction in chickens remain unclear. Thus, 
further investigation is required to determine the role of BHB in 
HS, as well as to elucidate the drop in plasma BHB levels in HS 
chickens.

HS and Intestinal Microbiota

HS results in atrophy of lymphoid organs, such as the thymus, 
spleen, and bursa of Fabricius, while also increasing the ratio of 
heterophils to lymphocytes and, thus, indicating a state of im-
mune suppression (Nawab et al., 2018). In chickens, chronic HS 
decreases plasma immunoglobulin (Ig) levels to a varying extent 
(Quinteiro-Filho et al., 2017; Awad et al., 2020; Hirakawa et al., 
2020; Li et al., 2020), as well as secretory IgA (Chen et al., 2014; 
Hu et al., 2017; Wang et al., 2020; Alhotan et al., 2021; Wu et al., 
2021). The latter is the predominant IgA on the mucosal surface, 
where it inhibits the adhesion of pathogenic bacteria and viruses 
(Kogut et al., 2020). Accordingly, HS may reduce the immuno-
logical robustness of chickens.

The role of intestinal microbiota in modulating both the enter-
ic and systemic immune systems of chickens has been reviewed 
previously (Brisbin et al., 2008; Awad et al., 2017; Broom and 
Kogut, 2018b; Sun and Jia, 2018). HS increases the numbers of 
Escherichia coli, Clostridium perfringens, and Coliforms; while 
reducing the loads of Lactobacillus and Bifidobacterium (Song et 
al., 2014; Awad et al., 2018; Liu et al., 2018,). These results indi-
cate that HS induces dysbiosis (or dysbacteriosis) in the intestine, 
whereby harmful bacteria proliferate at the expense of beneficial 
ones. Such imbalance leads to the malabsorption of nutrients, 
barrier dysfunction, and local inflammation (Awad et al., 2017). 
Gram-positive bacteria dominate in chickens with low body 
weight compared to those with high body weight, with the for-
mer exhibiting also higher serum LPS levels (Zhang et al., 2022). 
The immune and inflammatory responses evoked by LPS origi-
nate mainly from its recognition by Toll-like receptor-4, which 
activates a series of downstream cascades that upregulate NF-κB 
and trigger cytokine production. HS is also a predisposing factor 
for necrotic enteritis in broiler chickens, and C. perfringens has 
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been suggested to play a significant role in this process (Tsiouris 
et al., 2018).

The gastrointestinal microbiota has emerged as a promising 
target for preventing inflammatory and metabolic disorders, es-
pecially obesity (Cheng et al., 2022). However, the identification 
of certain pathogenic bacteria alone cannot fully explain disease 
pathogenesis. Recently, the roles and behaviors of opportunis-
tic pathogens have been investigated in detail. Normally, these 
commensal bacteria are harmless; however, they can cause in-
fectious diseases under certain circumstances, such as in a state 
of reduced immunological robustness. Therefore, it is important 
to evaluate global shifts in microbial composition in response to 
pathophysiological stress. Metagenomic analysis of 16S rRNA-
based microbiome data has been used to identify microbial sig-
natures associated with disorders and to precisely evaluate intes-
tinal microbial compositions at the phylum, class, order, family, 
genus, and species levels, including several bacteria that cannot 
be cultured in vitro. Microbial metagenomic data can also be 
used to evaluate correlations between the abundance of certain 
microbes and host parameters such as immune receptors (Li et 
al., 2022), thereby identifying the immune-stimulating or im-
mune-suppressing mechanisms of each microbe.

Firmicutes and Bacteroidetes are the two dominant bacte-
rial phyla in the intestines of mammals and chickens. The Fir-
micutes/Bacteroidetes ratio (F/B ratio) has emerged as a useful 
microbial indicator of a host’s intestinal and nutritional/energetic 
status (Stojanov et al., 2020). The phylum Firmicutes includes 
gram-positive bacteria that belong predominantly to the genera 
Bacillus, Clostridium, Enterococcus, Lactobacillus, and Rumini-
coccus. Compared to other bacteria, members of Firmicutes have 
a superior capacity to ferment and metabolize carbohydrates 
and lipids. The phylum Bacteroidetes includes approximately 
7,000 different species of gram-negative bacteria that belong 
mainly to the genera Bacteroides, Alistipes, Parabacteroides, 
and Prevotella. Bacteroides species produce succinate, acetate, 
and propionate. Moreover, several members of this phylum ap-
pear to be opportunistic pathogens. An increased F/B ratio has 
been observed in the intestinal tract of obese patients, whereas 
a decreased ratio has been found in patients with inflammatory 
bowel disease (Stojanov et al., 2020). In chickens, an increased 
F/B ratio has been reported in broilers fed Saccharomyces cere-
visiae hydrolysate (Lin et al., 2023), fermented grape seed meal 
(Nan et al., 2022), sodium butyrate (Zhang et al., 2022a), or 
xylo-oligosaccharides and Astragalus polysaccharides (Wang et 
al., 2022a). In addition, it has been found in native chickens fed 
Bacillus amyloliquefaciens and S. cerevisiae (Lee et al., 2022), 
and in laying hens fed 25-hydroxyvitamin D under high stocking 
density (Wang et al., 2021) or receiving fecal microbial trans-
plants from highly efficient broiler chickens (Elokil et al., 2022). 
In some cases, these treatments have resulted in improved growth 
performance, immunity, and intestinal health. Although the F/B 
ratio is a possible signature of metabolic disorders in humans, it 
may also reflect better growth or intestinal parameters in chick-
ens. There is limited information on the F/B ratio in HS chickens 

and the results are conflicting, with some studies showing an in-
creased ratio in broilers (Wang et al., 2018; Shi et al., 2019; Liu 
et al., 2020; Yang et al., 2021), and others reporting a decreased 
ratio in laying hens (Zhu et al., 2019), pullets (Wang et al., 2020), 
and native chickens (Liu et al., 2022c) under HS conditions. At 
present, the reason for these conflicting results remains unclear. 
One possibility is that the duration and intensity of HS, as well 
as the chicken type (egg or meat production) influence the F/B 
ratio (He et al., 2021). Nutritional status may also affect the F/B 
ratio, given that reduced feed intake is associated with altered gut 
microbiota (Xing et al., 2019; Xiong et al., 2020). F/B, gram-
positive/gram-negative bacteria, Prevotella/Bacteroides, and Fu-
sobacterium nucleatum/Faecalibacterium prausnitzii ratios have 
been associated with intestinal and metabolic diseases (Di Pierro, 
2021). The changes in intestinal microbial composition observed 
in the current study are summarized in Table 1. Further inves-
tigation is required to identify a suitable microbial indicator of 
intestinal health status and the machinery that induces deleterious 
effects in HS chickens, from which a potential therapeutic target 
could be identified.

Microorganisms in chicken litter influence the intestinal 
microbiota because chickens may incorporate litter via ground 
pecking and severe footpad dermatitis (Thøfner et al., 2019). HS 
affects nutrient digestion and promotes water consumption (Re-
naudeau et al., 2012; Brugaletta et al., 2022,), which alters the 
characteristics of excreta. Enhanced fecal excretion contributes 
to transient heat loss (Saeed et al., 2019); however, excreta also 
reduce litter quality, result in a high-moisture environment, and 
compromise microbial composition. HS was found to reduce ni-
trogen efficiency and excretion, while increasing moisture, pH, 
and uric acid in excreta (Liu et al., 2022a). Higher litter moisture 
favors the proliferation of bacteria (Dumas et al., 2011) and in-
duces footpad dermatitis in floor-reared chickens (Taira et al., 
2014). Litter pH, moisture content, and water activity may affect 
the presence and multiplication of Salmonella (Carr et al., 1995; 
Payne et al., 2007). Litter conditions have a more profound effect 
on the ileal than the cecal microbiota (Cressman et al., 2010). 
However, there is no information on the influence of HS on litter 
microbiota. Thus, understanding HS-induced alterations to these 
microorganisms and the interplay between the environment and 
the host could provide useful information for improving intesti-
nal conditions.

Conclusion and Perspective

HS causes complex intestinal disorders with systemic effects. 
Given current limitations on the installation and running costs 
of ventilation and air-conditioning systems in poultry houses, 
HS is unavoidable. However, growing evidence highlights HS 
as a relevant environmental factor that can substantially de-
crease profitability and compromise animal welfare. The main 
nutritional strategies aimed at mitigating the effects of HS in-
vestigated to date include fortification with dietary antioxidants 
(Azad et al., 2013; Kikusato et al., 2016; Sumanu et al., 2022), 
amino acids (see reviews by Alagawany et al., 2022; Teyssier et 
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al., 2022), phytochemicals (Madkour et al., 2022), or changing 
dietary protein levels (Awad et al., 2019; Teyssier et al., 2022). 
Probiotic/prebiotic treatment and thermal manipulation of em-
bryos, chicks, and lighting have also been investigated as pos-
sible strategies (Loyau et al., 2015; Abd El-Hack et al., 2020; 
Jiang et al., 2021; Madkour et al., 2022; Yalcin et al., 2022). 
Several manipulations have yielded successful results, with im-
proved physiological parameters and performance of chickens 
subjected to HS. However, this may reflect a publication bias to 
some extent, as numerous other trials may have failed to produce 
positive outcomes. Phytochemicals have been widely used to 
ameliorate the negative effects of HS because of their strong an-
tioxidant activity; however, their bioavailability is low owing to 
poor absorption (Martel et al., 2020; Kikusato, 2021). Therefore, 
these effects may be exerted mainly in the intestinal epithelium or 
by compounds produced via bacterial fermentation or catabolism 

(Marhuenda-Muñoz et al., 2019; Man et al., 2020). Thus, intes-
tinal conditions may influence the efficacy of phytochemicals in 
chickens grown under HS.

Thermal treatment of in vitro cultured cells often results in 
symptoms similar to those observed in vivo (Furukawa et al., 
2015; Kikusato et al., 2015b; Yang et al., 2019; Mackei et al., 
2020; Furukawa et al., 2021; Lian et al., 2021; Siddiqui et al., 
2021), offering a useful experimental tool for understanding the 
effect of HS on certain organs and tissues. However, the ma-
chinery governing enteric and systemic dysfunction caused by 
HS could not be determined from these investigations. Further 
investigations evaluating time-dependent changes, multi-organ/
tissues, and cause-and-effect links in several types of HS are re-
quired to elucidate the crucial mechanisms underlying the ob-
served effects of HS. They will then offer effective solutions for 
mitigation via appropriate manipulation.
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Table 1.  Heat stress (HS)-induced changes in intestinal microbial composition identified by 16S rRNA-based metagenomic analysis.

Strain; sample; sex;  
HS protocols; age

Taxonomic 
category

Increase vs. thermoneutral  
condition

Decrease vs. thermoneutral  
condition

References

Broiler; cecum; female; 
chronic, 34–38 °C, 28 days

Phylum
Firmicutes, Tenericutes,  

Anaeroplasma, 
Proteobacteria, Lactobacillus,

Bacteroidetes, Cyanobacteria
Shi et al., 2019

Genus (-) Bacteroides, Oscillospira, Dorea, 
Faecalibacterium

Broiler; cecum; (-); 
acute, 31 °C for 6 h, 37 d Genus Parabacteroides, Shigella 

Anaerobutyricum Bacteroides Goel et al., 2022

Broiler; cecum; (-); 
chronic, 33–35 °C

Phylum (-) (-)
Wang et al., 

2022bFamily (-) Ruminococcaceae,  
Lachnospiraceae

Genus (-) Faecalibacterium, Marvinbryantia

Broiler; cecum; female; 
32.5 °C, cyclic 8 h/day, 56 d

Phylum (-) (-)
Liu et al., 2022c

Genus Anaerovorax (-)

Broiler; ileum; male; 
chronic, 35 °C, 35 d

Family; 
Genera

Clostridiales vadinBB60 
Erysipelatoclostridium

Porphyromonadaceae,  
Enterococcus 

Alcaligenaceae, Enterococcaceae, 
Parabacteroides, Parasutterella

Calik et al., 
2022

Broiler; ileum; male; 
36 °C, cyclic, 8 h/day, 
29–42 d

Phylum Proteobacteria (-) Emami et al., 
2022Genus Blautia (-)

Broiler; cecum; male; 
28–35 °C, cyclic, 12 h/day 
22–42 d

Phylum Actinobacteria, Proteobacteria Bacteroidetes
Li et al., 2022

Genus Prevotella, Clostridium (mucosa) Megamonas, Lactococcus

Broiler; ileum; female; 
32.5 °C, cyclic, 8 h/day, 
8–12 wk

Phylum Firmicutes, Thermi Proteobacteria, Actinobacteria, 
Bacteroidetes

Jin et al., 2022
Class Bacilli, Alphaproteobacter Gammaproteobacteria, Clostridia, 

Alphaproteobacteria
Broiler; cecum; male; 
chronic, 32 °C, 21–42 d Phylum Firmicutes Bacteroidota Yin et al., 2021

Pullets; cecum; female; 
acute, 38 °C, 4 h, 100 d Genus (-) Mucispirillum Chen et al., 

2021

Pullets; cecum; female; 
cyclic, 30 °C, 8 h/day, 11 wk

Phylum Bacteroidetes (-) Wang et al., 
2020Order Bacteroidales Campylobacterales

(−) indicates that the corresponding parameter was not reported in this study.
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