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Simple Summary: Genomic instability is recognized as a driving force in most cancers as well
as in the haematological cancer multiple myeloma and remains among the leading cause of drug
resistance. Several evidences suggest that replicative stress exerts a fundamental role in fuelling
genomic instability. Notably, cancer cells rely on a single protein, ATR, to cope with the ensuing DNA
damage. In this perspective, we provide an overview depicting how replicative stress represents
an Achilles heel for multiple myeloma, which could be therapeutically exploited either alone or in
combinatorial regimens to preferentially ablate tumor cells.

Abstract: Multiple Myeloma (MM) is a genetically complex and heterogeneous hematological cancer
that remains incurable despite the introduction of novel therapies in the clinic. Sadly, despite efforts
spanning several decades, genomic analysis has failed to identify shared genetic aberrations that could
be targeted in this disease. Seeking alternative strategies, various efforts have attempted to target and
exploit non-oncogene addictions of MM cells, including, for example, proteasome inhibitors. The
surprising finding that MM cells present rampant genomic instability has ignited concerted efforts
to understand its origin and exploit it for therapeutic purposes. A credible hypothesis, supported
by several lines of evidence, suggests that at the root of this phenotype there is intense replicative
stress. Here, we review the current understanding of the role of replicative stress in eliciting genomic
instability in MM and how MM cells rely on a single protein, Ataxia Telangiectasia-mutated and
Rad3-related protein, ATR, to control and survive the ensuing, potentially fatal DNA damage. From
this perspective, replicative stress per se represents not only an opportunity for MM cells to increase
their evolutionary pool by increasing their genomic heterogeneity, but also a vulnerability that could
be leveraged for therapeutic purposes to selectively target MM tumor cells.
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1. Introduction

Multiple Myeloma (MM) is a hematological malignancy characterized by the accumu-
lation of malignant plasma cells in the bone marrow and, during the progression of the
disease, in the peripheral blood and other extramedullary sites. MM is associated with
the production of immunoglobulin monoclonal proteins (M-protein), which are used as a
reliable biomarker for the number of tumor cells in the body and are measured for clinical
purposes in the serum and/or urine [1]. The accumulation of cancer cells is responsible
for some of the clinical manifestations of the disease, including anemia, bone marrow
failure, and bone destruction, which often results in hypercalcemia, that aggravates renal
insufficiency, almost always occurring with the increase in the serum monoclonal (M)
protein [2]. MM presents a median age at diagnosis of 69 years. In the USA, MM is the
second most frequent hematological cancer after lymphomas, accounting for 18% of hema-
tological malignancies, 1.8% of all new cancer cases, and 2% of all cancer deaths (Stat Fact
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Sheets SEER. Myeloma. http://seer.cancer.gov/statfacts/html/mulmy.html. accessed on
12 November 2021; [3]). MM is always preceded by a premalignant state, monoclonal
gammopathy of undetermined significance (MGUS), which, in a small subset of patients,
evolves towards an indolent form, smoldering myeloma (SMM), and finally to MM [4].

Molecular profiling technologies, including fluorescence in situ hybridization (FISH),
microarray gene expression profiling (GEP), array comparative genomic hybridization
(CGH), single-nucleotide polymorphism (SNP) arrays, and, recently, next generation se-
quencing (NGS), have brought a fairly comprehensive view on the genomic landscape of
MM [5]. This knowledge has led to the identification of several molecular drivers trig-
gering MM initiation and progression but has, disappointingly, failed to provide effective
therapeutic targets or even biomarkers that could be used to dictate treatment strategies [5].
Conversely, other approaches have proven quite effective in delaying the progression
of the disease, including treatments addressing MM non-oncogenic addictions [6], the
interactions of MM cells with the microenvironment, and the presence of surface mark-
ers on MM plasma cells. Accordingly, the introduction of proteasome inhibitors, which
hamper protein clearance inside plasma cells already overwhelmed by the production of
immunoglobulins [7,8]; of lenalidomide-based treatments, which target for degradation
essential factors for MM cell survival, including the Ikaros family zinc finger proteins 1 and
3 (IKZF1 and IKZF3), but also interfere with angiogenesis [9,10]; and most recently, of
anti-CD-38 monoclonal antibodies [11–14], which have led to an important improvement
in the survival of MM patients. However, despite this impressive evolution of treatment
regimens, MM remains an incurable disease [15], warranting new therapeutic strategies.
Notably, patients presenting with the unfavorable disease have benefited the least from the
introduction of new drugs, thus representing still a highly vulnerable population [15].

Genomic instability has been recognized as a driving force in epithelial cancers [16],
which, on one side, is an asset for cancer cells, broadening their evolutionary pool, but on
the other is a liability. Conversely, blood cancers present a much more stable genome when
compared with epithelial cancers [17], suggesting that genomic instability, and the ability
to exploit it, may not represent a feature of hematological tumors. Yet, recent evidence
accrued, especially in MM, would suggest otherwise. In this review, we will attempt to
provide the groundwork for supporting the notion that blood cancers, in particular, MM,
are endowed with rampant genomic instability rooted in replicative stress, which could be
exploited for therapeutic reasons.

2. Genomic Instability in Cancer: We Know What It Is, We Do Not Know Where It Is
Coming from

The existence of genomic instability in cancer has been debated for decades. It was
unclear whether the multitude of genomic lesions present in cancer genomes resulted from
a sudden, short-lived “big bang” [18–21], disrupting genome integrity, or was instead the
result of a steadier, incremental accumulation of genetic lesions, reflecting an inherent,
and cancer-specific, enhanced tendency to acquire genomic alterations over time [16].
It is increasingly apparent that both mechanisms could occur in cancer cells, with the
latter labeled as genomic instability [16], which is now included among the enabling
characteristics of cancer [22].

Why did it take so long to solve this debate? One possible explanation lies with the
assay, as even measuring genomic instability is challenging. A common misconception
equates genomic instability with the number of genetic lesions present at a defined point
and time in a cell, hence, a state and not a rate (as aptly noted by Bert Vogelstein and
collaborators several years ago [23]). As such, the assays currently used to define genomic
alterations are descriptive of the cell (and the genome) status at a certain time and do not
register ongoing changes. One potential assay, which may more precisely register instability,
albeit not perfectly, is the measure of phosphorylated H2AX (γH2AX), which may quantify
at least a specific subtype of instability. When γH2AX foci are more intense and numerous
in cancer cells when compared with the corresponding normal tissues [24–26], this phe-
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nomenon may record an ongoing disruption of DNA. It should be noted, however, that
this assay measures just a subset of all the potential phenotypes associated with genomic
instability. For example, it does not measure the increased mutational load emerging from
mismatch repair or chromosomal instability elicited by mitotic disruption.

As for the causes of genomic instability, in hereditary tumors, germline mutations in
the so-called caretaker genes, such as BRCA1 and BRCA2, have been reported and linked
to genomic instability [22].

However, most cancers are sporadic. In this setting, what is the cause of genomic
instability? Based on observations gathered at the transition between benign and malignant
cancers [27–29], a hypothesis has been put forward which blames the very genes engaged
early in cancer development as the major culprits of genomic instability in sporadic cancers.
The theory goes that oncogenes activation (or inactivation of tumor suppressors which
control the cell cycle progression) deregulates DNA replication [29], eliciting replicative
stress, which, in turn, causes genomic instability.

3. Replicative Stress as a Key Driver of Genomic Instability in Cancer

DNA replication is a tightly regulated process, as even a modest disruption may lead to
fatal consequences. As such, cells devote a considerable amount of energy and an exquisitely
fine-tuned molecular machine and several checkpoints to ensure its accuracy [30].

What, then, is replicative stress? The term broadly defines impediments to DNA
replication, which result in the stalling and eventual collapse of the replication forks,
causing DNA damage [31]. The causes of replication fork stalling are several, ranging from
inappropriate origin firing to the presence of unresolved DNA secondary structures, even
exhaustion of the nucleotide pools available for DNA synthesis or the presence of DNA–
RNA hybrid intermediates [32] (Figure 1). An intriguing mechanism leading to fork stalling
relates to the presence of highly expressed genes, which challenge replisome progression,
triggering replication–transcription machinery collisions [32–34]. More specifically, DNA
replication and transcription machinery during the S phase share the same DNA template,
and defects in their coordination generate transcription–replication conflicts (TRCs). These
conflicts occur when the replication forks encounter the RNA polymerase, thus stalling.
This favors the transient formation of R-loops, nucleic acid structures composed of a DNA–
RNA hybrid and the displaced non-template single-stranded DNA (ssDNA) [35,36], which
is particularly prone to breaks due to the high accessibility of the ssDNA to metabolites,
reactive oxygen species (ROS), and nucleases.
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The induction of DNA double-strand breaks (DSBs) following activation of many
oncogenes is the result of their ability to lead to the pervasive formation of stalled forks
which eventually collapse [31]. Several mechanisms can contribute to oncogene-induced
DNA replicative stress. For example, activation of oncogenic RAS driving proliferation
and cell growth increases the number of active replicons and leads to asymmetric fork
progression [28]. It should be noted that RAS, like other oncogenes, might elicit the fork
stalling through additional mechanisms. RAS, for example, also suppresses nucleotide
metabolism by downregulating the ribonucleotide reductase subunit M2 (RRM2), a rate-
limiting protein in dNTP synthesis, and causing dNTP pool depletion and premature
termination of replication forks [37]. Moreover, RAS overexpression leads to increased
global transcription activity to face the additional demands stemming from the increased
proliferation [38], which is then linked to replicative stress due to R-loop accumulation and
increased expression of the general transcription factor TBP [38].

The oncogene MYC, as well, induces replicative stress through various mechanisms.
MYC overexpression causes the direct deregulation of DNA replication dynamics due to
interaction with members of the DNA replication machinery [39–42]. Additionally, MYC
is a transcription factor that controls the expression of a large fraction of cellular genes
linked to cell cycle control. MYC may promote cell cycle progression and replicative stress
through indirect mechanisms, by regulating the expression of genes involved in cellular
proliferation [43] and DNA replication, including the majority of genes involved in the
nucleotide biosynthesis pathway [44]. Finally, MYC also induces replicative stress through
the generation of TRCs [44].

There are also additional mechanisms by which oncogenes may induce replicative
stress. Aberrant oncogene expression results in the loss of redox homeostasis with the unbri-
dled generation of ROS [45]. Accumulation of ROS leads to the formation of 8-oxoguanine,
and the resulting oxidative DNA damage causes the replication fork to stall at lesions,
ultimately promoting replicative stress in cancer cells [42,46,47].

Finally, the induction of DNA DSBs can also be observed when tumor suppressors are
lost. The deregulated activity of pRB, p53, p16, and p14ARF have been linked to replicative
stress through various mechanisms that result in the promotion of G1-S transition [48].

4. Genomic Instability and Replicative Stress in Multiple Myeloma

So, how does this model also fit a slow-growing hematological cancer like multiple myeloma?
Very surprisingly, a few years ago, we and others discovered that MM cell lines, as

well as patient cells, display exceedingly high levels of rampant DNA damage and DSBs,
as assessed by the presence of γH2AX foci in the absence of exogenous stressors [49–54].
DNA damage is absent in normal plasma cells or B-cells but appears in MGUS samples
and increases in MM patient samples and almost all reported MM cell lines [49,50,54]. This
genomic instability was linked to replicative stress since MM cells with ongoing DNA
damage demonstrated positivity to a panel of replicative stress markers, including the
phosphorylated form of RPA32, a subunit of replication protein A (RPA) [50]. Accordingly,
cell cycle regulatory genes and genes related to DNA replication were significantly altered
in MM cells. Importantly, the cells of a subset of MM patients presented with a signature
of chromosomal instability and increased expression of replicative genes; these patients
presented a poor prognosis [50].

What could be the cause of this replicative stress? MYC has been long known as a
crucial gene in MM progression [55–57]. Surprising recent observations [58–61], however,
point to a role for MYC in the early phases of MM. Indeed, patients whose cancer cells
presented with increased replicative stress showed enhanced expression of the oncogene
MYC. The silencing of MYC in MM cells presenting DNA damage reduced the number of
γH2AX foci, whereas MYC overexpression in the U266 MM cell line, endowed with low
levels of DNA damage and no c-MYC genomic rearrangements nor MYC overexpression,
triggered DSBs [50]. In all, these results suggest that MYC, a crucial gene in MM, fosters
replicative stress in these cells.
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It remains mysterious how a slow-growing, tumor-like MM could present such a high
degree of replicative stress, despite the overexpression of the MYC oncogene. Likely, some
of the mechanisms included in Figure 1 are not per se linked to enhanced proliferation and
may elicit replicative stress, and thus genomic instability, in the absence of an apparent
increased proliferation.

While a large array of oncogenes is genetically altered and/or overexpressed in MM,
it is tempting to speculate that at least a few of them may be causative of replicative stress
in this disease, including cyclins, present at early-occurring chromosomal translocations or
overexpressed in the absence of clear genetic lesions, or the oncogenes MAF and MAFB [62].
Notwithstanding, the significant association between MYC expression and replicative stress,
and the absence of replicative stress in a few MM cell lines without c-MYC overexpression,
all point to a crucial role for this gene in triggering replicative stress in this disease.

5. ATR, the Last Hope

What is the physiological response to replicative stress? Several lines of evidence point
to a single protein as the central node that coordinates the cellular response to replicative
stress. This is ataxia telangiectasia-mutated and Rad3-related protein, ATR.

ATR belongs to the family of phosphoinositide 3-kinase (PI3K)-related kinases (PIKKs),
which also includes ATM (ataxia telangiectasia mutated) and DNA-PK (DNA-dependent
protein kinase) [63]. These proteins control the DNA damage response, eliciting and
regulating DNA repair and the associated events [63]. In particular, DNA-PK and ATM are
crucial for DSBs repair by two different pathways, non-homologous end joining (NHEJ)
and homologous recombination (HR), respectively. ATR is instead recruited to an extended
tract of ssDNA coated with RPA [64] and is specialized in addressing replicative stress.

ATM and DNA-PK genes are mutated [65,66] in various Mendelian genetic diseases,
while germline mutations affecting ATR have been linked to only one hereditary disorder,
Seckel syndrome [67,68]. The fact that mutations causing Seckel syndrome are hypo-
morphic, with only a partial loss of gene function [67], and that ATR knockout mice are
embryonic lethal further implies that ATR is an essential gene [69,70].

ATM germline mutations increase cancer susceptibility, and ATM is frequently mu-
tated in a broad range of sporadic cancers [71]. Genetic alterations of PRKDC, the gene
encoding the catalytic subunit of DNA-PK, are common in several cancer types [72]. Again,
somatic mutations in the ATR gene are exceedingly rare [73] and no cancer predisposition
has been reported for patients with Seckel syndrome or in Seckel mice, even in a p53 mu-
tant background [74]. In fact, several lines of evidence suggest that cancer cells require
a functional ATR to withstand the intense replicative stress elicited by the cancer genes
deregulation [75].

How does ATR work? ssDNA stretches are promptly coated by RPA, which prevents
ssDNA breakage and provides a platform for the recruitment of accessory factors that,
in turn, activates ATR through phosphorylation and its downstream effectors, such as
Checkpoint kinase 1 (CHK1) [75]. Activated ATR coordinates the signaling cascade that
triggers S and G2/M cell cycle checkpoints, stabilizes the replicative forks promoting forks
repair through the engagement of the Fanconi anemia pathway, and reduces replicative
stress [76]. Accordingly, tumors with high levels of replicative stress have been shown
to be particularly vulnerable to the loss of ATR [77]. In mice, where ATR expression has
been reduced by 90% (“hypomorphic”), the tumor growth elicited by the expression of
oncogenes was reduced, with minimal impact on normal tissue homeostasis [78,79].

6. Harnessing Replicative Stress as a Cancer Vulnerability in MM

Given the widespread presence of replicative stress in cancer, several attempts have
been made to therapeutically target it.

Adding up the replicative stress already elicited by activated oncogenes, exogenous
genotoxic agents, including chemotherapeutic drugs, often trigger additional stress, intro-
ducing lesions in the template DNA, by several means (Figure 1). Nucleoside analogues
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exert their cytotoxic effects, competing with natural nucleotides for incorporation into DNA
during replication. These fraudulent nucleotides, once incorporated into replicating DNA,
give rise to a steric impediment for the extending replication forks, which results in the
termination of DNA replication, fork stall, and accumulation of ssDNA. In addition, some
nucleoside analogues, such as gemcitabine or 5-fluorouracil, that inhibit, respectively, the
enzymes ribonucleotide reductase and thymidylate synthetase, key regulators of dNTP
biosynthesis in mammals, reduce the nucleotide pools available for DNA synthesis [80,81].
Topoisomerase inhibitors also induce replicative stress [48]. Topoisomerases enzymes alter
the topological state of DNA by catalyzing the relaxation of supercoiled DNA during
cellular processes, such as replication and transcription, through the cleavage and then
religation of one (type I) or both (type II) of the DNA strands [82]. Topoisomerase inhibitors
typically associate with their target enzymes as they bind to DNA, which creates a barrier to
ongoing replication forks [48]. Finally, alkylating agents and platinum-based drugs directly
modify the DNA through the formation of intra- and inter-strand crosslinks between bases
(ICLs), thus generating a physical barrier for the progression of the replication fork [83,84].

Despite their effectiveness, one major limitation of traditional anticancer drugs is
represented by their poor specificity that is commonly associated with unbearable toxicity.
For this reason, given the central role of ATR in mending the damages generated by
replicative stress, considerable efforts have been devoted to the identification of specific ATR
inhibitors. The development of small molecules targeting ATR faced technical hurdles, as
the generation of appropriate biochemical kinase assays and cell-based screenings proved to
be challenging [77]. Caffeine and Schisandrin B were the first compounds reported to inhibit
ATR activity, albeit at very high doses and with limited selectivity [85,86]. The development
of a cell-based platform for microscopically assessing and quantifying pan-nuclear γH2AX
as a readout of ATR activity [87] allowed the identification of ETP-46464, the first potent ATR
inhibitor with no action against the other PIKKs [88]. The development of a high throughput
screening, based on a recombinant ATR kinase allowing the combination of a structure–
activity relationship and homology modeling studies, led to the discovery of the first series
of potent and selective ATR inhibitors [89], with one of them, VE-821, further progressing
preclinical evaluation as a sensitizer of radiotherapy and chemotherapy treatments in
several tumor models. The improvement of the pharmacological properties of VE-821 led
to the development of the optimized analogue VE-822/VX-970/M6620/berzosertib with
increased potency and selectivity against ATR and better pharmacokinetic profile and
bioavailability, which has allowed the in vivo evaluation of ATR inhibition [77,90].

Following these initial studies, several structurally unrelated ATR inhibitors have been
described and widely assayed in multiple preclinical models of cancers [91–96]. Recently,
phase I/II cancer clinical trials have been launched to assess the role of ATR inhibitors, either
as single agents or in combinations with chemotherapy, radiotherapy, and immunotherapy
in patients with advanced and refractory solid tumors (clinicaltrials.gov and [97]), with the
first results reported [98–101].

ATR activity was also found to be central for hematological cancers [78]. In this setting,
it was reported that ATR activity is required to compensate for MYC-induced replicative
stress. ATR downregulation or pharmacological inhibition prevented the repair of stalled
replication forks, increasing DNA damage and triggering apoptosis [50,53]. Moreover,
inhibition of ATR selectively targets the subset of MM tumors endowed with increased
replicative stress and ongoing DNA damage [50]. The MYC oncogene again seems to
exert a central role in replicative stress in MM. Notably, by combining ATR inhibition
with ROS induction, using piperlongumine, apoptosis was greatly increased [50]. Along
similar lines, in a more clinically relevant setting, the combination of ATR inhibition with
VX-670/M6620 and the alkylating agent melphalan, one of the key drugs used in MM
chemotherapy, was strongly synergistic, both in vitro and in vivo [53]. This synergy was
evident even in cases resistant to the treatment with melphalan alone, suggesting a potential
role for ATR inhibition in patients resistant to ICLs-inducing drugs, such as melphalan [53].
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A handful of genes confer a predisposition towards the development of MM, including,
for example, germline mutations in ARID1A [102], whose aberrant activity has been shown
to lead to DNA replication stress associated with augmented R-loops formation and TRCs in
human cells [103]. It remains to be tested whether tumors arising in this genetic background
may benefit from ATR inhibition as well.

CHK1 is the main downstream target of ATR, thus providing an alternative option for
targeting the ATR pathway [104]. CHK1 is crucial for a proficient replicative stress response.
Activated CHK1 inhibits CDC25, which positively regulates cyclin-dependent-kinases
(CDKs), the major drivers of cell cycle progression. The CHK1 inhibitor AZD7762 induces
replicative stress and increases ATR activity [105]. In line with the results obtained in
MM with ATR inhibitors in combination with melphalan, AZD7762 has also been shown
to potentiate the antiproliferative effects of bendamustine, melphalan, and doxorubicin
in p53-deficient MM cell lines [106]. CHK1 also activates the Wee1-like protein kinase
(WEE1) [107], which restricts mitotic entry by reducing the activation of CDKs [108]. So, an
alternative or additional approach to target CHK1 is to inhibit WEE1, forcing cancer cells
with high replicative stress to enter prematurely into mitosis and undergo apoptosis [48].
Moreover, activation of CDKs activity following WEE1 kinase inhibition has been shown to
stimulate DNA replication, leading to nucleotide shortage, a reduction in replication fork
speed, fork stalling, and, finally, DNA DSBs [109]. The reduced cellular nucleotide levels
upon WEE1 inhibition resulted from RRM2 degradation through CDK activation [110].
These observations have supported the rationale for targeting WEE1 in combination with
replicative stress-inducing agents in preclinical models that have shown encouraging
efficacy [97]. Preclinical studies suggest, indeed, that WEE inhibitors have single agent and
chemo-sensitizer effects also in MM [111–114].

7. Unexpected Travel Companions

Additional potential approaches to modulate DNA replicative stress for MM treatment
rely on the inhibition of the enzymes belonging to the poly ADP-ribose polymerase (PARP)
family, in particular PARP1. Besides its role in activating DNA repair programs and
modulating cell death, PARP1 regulates the rate of replication fork progression, favoring
the fork slowdown upon treatments hampering DNA replication [115], and enhancing
CHK1 binding and activation at stalled forks, thus aiding forks to restart after release from
the block [115,116]. In the absence of PARP1, ssDNA breaks require BRCA-mediated HR
repair to prevent their degeneration into DSBs. This explains, in part, the cellular lethality
observed when PARP1 inhibition is combined with the inactivation in genes involved in
the HR repair pathway, as in the case of the BRCA deficient tumors [117,118]. In these
cancers, the use of PARP inhibitors has become the mainstay treatment, as the inhibition of
PARP1 is not compensated by a functional HR response.

The introduction of PARP inhibitors in the clinic provides a glimpse of a broader
concept, that is, the relevance of synthetic lethality in cancer treatment [119]. This concept,
derived from the genetic field, posits that two genes are synthetic lethal when inactivating
mutations affecting each of them alone is compatible with viability, but mutations affecting
both are incompatible with life, be it cellular or organismal. Thus, targeting a gene that
presents synthetic lethality with a cancer-relevant mutation would lead to the demise only
of cancer cells, sparing normal cells.

The synthetic lethal interaction between PARP inhibition and BRCA mutations has
provided a strong impetus to test several combinations of PARP inhibitors in clinical trials.
Of the six small-molecule PARP inhibitors available in the clinic, four (olaparib, rucaparib,
niraparib, and talazoparib) were granted FDA and/or EMA approval for the use in patients
with gynecological and breast cancers harboring BRCA1/2 mutations [120].

As for the BRCA1/2 status, additional mechanisms related to “BRCAness” have been
explored, besides germline BRCA1/2 mutations [121]. In fact, it has been noted that spo-
radic tumors not harboring loss-of-function mutations in the BRCA1/2 genes nonetheless
phenocopy a deficiency in HR repair, as seen in these hereditary cancers, indeed a “BR-
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CAness” status [122]. A subset of MM patients presents similar features. Due to the high
levels of replicative stress-associated DNA damage and the resulting genomic instability,
MM cells are highly dependent on the HR machinery. Even a moderate reduction in HR
gene levels has a negative impact on MM cells, whereas high expression has been associated
with chemotherapy resistance [123]. Accordingly, bortezomib induces a “BRCAness” state
in MM cells, since it gives raises to the accumulation of polyubiquitylated proteins in the
cytoplasm, depletion of nuclear-free ubiquitin, and, as a consequence, the abrogation of
H2AX polyubiquitylation, an essential step for the recruitment of BRCA1 and RAD51 to
the sites of DNA DSBs and the initiation of HR-mediated DNA repair. Thereby, treatment
with bortezomib in MM cells results is synthetic lethal when combined with PARP in-
hibitors [124]. Along the same lines, Dinaciclib, a potent small-molecule inhibitor of CDKs,
has been shown to impair HR repair efficiency in MM cells and sensitizes them to PARP
inhibition [125].

Recently, a correlation between high MYC expression and sensitivity to PARP in-
hibitors has been reported in MM [126]. Mechanistically, MYC overexpression in MM cells
hampered the NHEJ, exposing MM cells to a new liability towards PARP inhibition.

These findings have prompted the translation of these novel therapeutic approaches
also in MM, leading to preclinical investigations of the potential role of PARP inhibitors
in MM, for example, veliparib in combination with bortezomib as mentioned above [124],
and olaparib as monotherapy [126].

It is now accepted that some PARP inhibitors in addition to being DNA repair in-
hibitors by simply inhibiting the catalytic activity of PARP1, work as DNA damaging
agents thanks to their ability to stabilize PARP–DNA complexes at the site of DNA dam-
age [127,128]. The “trapping” of PARP1 on DNA results in a highly cytotoxic protein–DNA
complex, which induces replicative stress and may prevent access of DNA repair proteins
to the site of the damage. Consistently, combinations of ATR and CHK1 inhibitors with
PARP inhibitors show synergistic cell killing effects in several tumors [129]. Further studies
are warranted to demonstrate that the combinations are synergistic in preclinical models
of MM.

Other genes altered in MM have been implicated in the control and modulation of
replicative stress. For example, the RECQ-like family helicases present some functional
overlap with PARP1, including roles in stabilization and repair of damaged DNA replication
forks, HR, and DNA damage checkpoint signaling [130,131]. In particular, RECQ1 helicase
is overexpressed in MM and favors the recovery of MM cells from replicative stress, which
finally confers higher resilience against chemotherapy [132]. RECQ1 depletion increases
spontaneous DNA damage, either ssDNA breaks or DSBs accompanied by an impaired
progression of replication forks, leading to MM cell apoptosis. Moreover, RECQ1 depletion
significantly sensitized MM cells to PARP inhibitors-induced apoptosis [132].

The HECT-type ubiquitin ligase HUWE1 alleviates replicative stress through its in-
teraction with the replication factor PCNA and the mono-ubiquitination of H2AX [133].
A more recent paper has highlighted the direct role of HUWE1 in regulating the pro-
tein levels of CHK1, independently from ATR, through polyubiquitination [134]. In MM,
HUWE1 presents somatic mutations [135] and has been implicated in the DNA repair
response [136].

RAD51 recombinase, a central protein in HR, highly expressed in MM cell lines and
bone marrow aspirates, was suggested to mediate disease progression and chemotoler-
ance [137]. Besides its role in repair, RAD51 has been implicated in several steps in response
to replicative stress, including replication fork protection, remodeling, and restart [138],
which implies it is a promising target for manipulating replicative stress levels in cancer
cells. Chemical inhibition of RAD51 by the small-molecule inhibitor B02 or modulation
of RAD51 expression both led to marked inhibition of MM cell survival in the absence
of exogenous DNA damage and sensitized tumor cells to the topoisomerase II inhibitor
doxorubicin and the alkylating agent melphalan through DSB induction and the subsequent
blocking of HR repair [51,139,140].
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Finally, inhibition of the exonuclease activity of MRE11 by mirin showed promising
results in killing only myeloma cells displaying a high level of replicative stress and
endogenous DNA damage, evidenced by the high amount of γH2AX and RAD51 foci [51].

8. Perspectives and Conclusions

The high levels of genetic and clonal heterogeneity and the lack of a unifying driver
event represent essential challenges in the management of MM and potential explanations
for the failure of the therapies directed to a specific set of mutations or more genetic
lesions [141]. A more effective strategy could be to target a pathway to which MM shows
addiction, irrespective of the mutations present in every single clone, somehow in line with
the non-oncogene addiction paradigm [6]. The surprising finding that MM cells present a
vigorous ongoing DNA damage, fueled by intense replicative stress, on one side explains
the remarkable adaptability of MM cells to pharmacological and environmental hostile
agents, and on the other exposes these cells to liabilities. In particular, to repair DNA,
MM cells end up relying on a single protein, ATR, which is rarely, if ever, inactivated in
cancer. Interfering with ATR has become one of the most enticing avenues to hamper the
ability of MM cells to overcome the entrenched replicative stress and precipitate ruinous,
irreversible DNA damage. Importantly for the practitioner, compounds targeting ATR
present limited toxicity, since healthy tissues do not require as badly the activity of ATR
for their survival. As such, replicative stress may become a fundamental vulnerability that
could be therapeutically exploited either alone or in combinatorial regimens, thus hopefully
bringing us a step closer to the final curtain for this deadly disease.
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