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SUMMARY

Predicting where transcription factors bind in the genome from their in vitro DNA-binding affinity 

is confounded by the large number of possible interactions with nearby transcription factors. To 

characterize the in vivo binding logic for the Wnt effector Tcf7l2, we developed a high-throughput 

screening platform in which thousands of synthesized DNA phrases are inserted into a specific 

genomic locus, followed by measurement of Tcf7l2 binding by DamID. Using this platform at two 

genomic loci in mouse embryonic stem cells, we show that while the binding of Tcf7l2 closely 

follows the in vitro motif-binding strength and is influenced by local chromatin accessibility, it is 

also strongly affected by the surrounding 99 bp of sequence. Through controlled sequence 

perturbation, we show that Oct4 and Klf4 motifs promote Tcf7l2 binding, particularly in the 

adjacent ~50 bp and oscillating with a 10.8-bp phasing relative to these cofactor motifs, which 

matches the turn of a DNA helix.
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In Brief

Transcription factor binding in cells depends on interactions with other proteins. We have 

developed a high-throughput screening platform to study transcription factor binding strength at 

thousands of variable sequences in a fixed genomic locus. We find that binding of the Wnt effector 

Tcf7l2 in mouse embryonic stem cells depends on proximity and phasing that matches the turn of 

the DNA helix relative to its cofactors Oct4 and Klf4.

INTRODUCTION

Transcription factors recognize and bind to short DNA sequences, motifs, which can be 

measured directly through in vitro binding assays or discovered as enriched at sites bound 

across the genome. Such motifs, however, are insufficient to accurately predict where in the 

genome a transcription factor is bound, as most transcription factors bind to fewer than 10% 

of their strong motifs in any given cell type (ENCODE-DREAM Consortium 2017). 

Moreover, transcription factors exhibit cell-type-specific binding patterns, despite no change 

in the DNA-binding motif or genomic sequence. It is known that transcription factors 

influence each other’s binding, either through direct interactions, competition for binding 

sites, or indirectly by altering DNA organization and accessibility. In different cell types it is 

then the set of transcription factors expressed that shapes their individual binding profiles. 

These interactions should be reflected in a “grammar”: a logic in how the organization of 

individual transcription factor-binding motifs shapes the higher order interactions.
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The non-random distribution of sequences in the genome, however, makes it difficult to 

draw further inferences from features enriched at transcription factor-binding sites. Two 

transcription factors could bind together because they control a similar set of genes, rather 

than because they stabilize each other’s binding. On the other hand, particularly strong 

arrangements of transcription factors could cause ectopic activation and be selected against, 

resulting in native enhancers being comprised weaker than possible arrangements of motifs 

as they provide a sharper response to external signals (Farley et al., 2016). As such the most 

informative arrangements of motifs for detecting interaction effects are likely under-

represented in the genome. Furthermore, it is not clear how much of the binding of a 

transcription factor at a specific location is due to the sequence immediately surrounding it. 

Each site is a unique position in the genome and could be influenced by the chromatin 

organization in the region, looping and interactions with distal regions, and impact of 

transcription in the area. For example, chromatin immunoprecipitation sequencing (ChIP-

seq) experiments performed on livers of mouse F1 crosses have detected the impacts of 

genomic variants up to 10 kb away from binding sites (Wong et al., 2017)). Additionally, 

detecting binding sites is usually done through chromatin immunoprecipitation, which uses 

the same cross linking step as for detecting 3D interactions between distal genomic 

segments (looping). Without careful titration of this reaction one cannot be sure that it is 

only direct transcription factor with DNA interactions, and not some larger complex, that 

one extracts (Teytelman et al., 2013). This unavoidable combination of complex genomic 

features confounding measurement, removal of distal positional information, and biased 

sequence distribution means that one is limited in the ability to determine transcription 

factor-binding logic from computational analysis of genomic binding patterns.

The transcription factor Tcf7l2 provides a case study in inadequate prediction of cell-type-

specific binding patterns. Tcf7l2 is part of the Tcf/Lef transcription factor family (Tcf7, 

Tcf7l1, Tcf7l2, and Lef1) (Arce et al., 2006), which all bind DNA through a conserved high 

mobility group (HMG) domain that prefers the sequence SCTTTGWWS. This recognition 

occurs through the DNA minor groove (Wetering et al., 1991; Wetering and Clevers, 1992), 

opening it up and creating a bend of 90–127 degrees (Love et al., 1995; Giese et al., 1995). 

Tcfs act primarily as effectors of the Wnt signaling pathway, binding the transcriptional 

activator β-catenin, which upon Wnt signaling ceases to be constitutively degraded (Nelson 

and Nusse, 2004).

As part of a conserved developmental pathway, Tcfs regulate various functions throughout 

different cell types in response to Wnt signaling. In mouse embryonic stem cells (mESCs) 

Tcfs appear necessary to reduce expression of other transcription factors that maintain 

pluripotency (notably Nanog) in order to allow differentiation (Pereira et al., 2006). In the 

intestine, Tcf7l2 helps maintain a constant proliferation of adult stem cells that support 

tissue renewal; a lack of dominant-negative isoforms of Tcf7l2 and mutations in APC—part 

of the complex that enables GSK-3β to cause degradation of β-catenin—is linked to 

colorectal cancers (Korinek et al., 1997). Tcf7l2-knockout mice show problems with 

endoderm development and maintenance of intestinal stem cell populations (Korinek et al., 

1998). In liver and pancreatic tissues, Tcf7l2 underpins glucose homeostasis (Norton et al., 

2014), with intronic mutations that reduce expression of Tcf7l2 being associated with type 2 

diabetes (Grant et al., 2006). One mechanism by which Tcf7l2 achieves cell-type-specific 
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effects is by binding at different genomic locations, hence, regulating a different set of target 

genes. Across 6 human cell lines (5 endodermal and 1 epithelial) Tcf7l2 bound a largely 

disparate set of sites, with only 1,800 out of 116,000 total Tcf7l2-binding sites shared 

between the 6 (Frietze et al., 2012). Supporting the idea of a grammar, different cofactor 

motifs tend to be enriched at cell-type-specific binding sites. Similarly, in Frietze et al. 

(2012), the Foxa2 and Hnf4α motifs are enriched in a hepatocyte cell line (Hnf4α appears to 

function with Tcfs in hepatocytes; Norton et al., 2014), while in an adenocarcinoma cell line 

it appears that the Gata3 motif helps bind Tcf7l2 when its own motif is absent.

To assess Tcf7l2-binding logic while avoiding the complexity of inferring from sites bound 

across the genome, we have developed an approach to measure Tcf7l2 binding to thousands 

of phrases of 99-bp variable DNA sequence transplanted into fixed, defined genomic loci 

using a quantitative DamID assay (Vogel et al., 2007; Szczesnik et al., 2019). This strategy 

allows us to detect differences in binding induced by minimal, designed sequence alterations 

while controlling for effects of the surrounding DNA sequence, thus, enabling us to 

determine causal relationships between DNA sequence and Tcf7l2 binding. Importantly, our 

assay is performed in a native cellular chromatin context, allowing us to account for effects 

of chromatin organization and interactions with other proteins that are missing in in vitro 
binding assays.

Using our approach, we find that while in vivo Tcf7l2 binding is dependent on the presence 

and match of its in vitro motif at individual binding sites, Tcf7l2 binding also varies 

dramatically based on the sequence surrounding it, and cell-type-specific Tcf7l2 binding at 

genomic loci can be partially recapitulated by the local surrounding sequence. Particularly, 

the presence of Oct4 and Klf4 motifs favors Tcf7l2 binding in mouse embryonic stem cells 

(mESCs), and this effect is strongest when occurring within an adjacent ~20 to 50-bp region 

and oscillates approximately every 10.8-bp shift in distance between the Tcf motif and 

cofactors. This effect is strongest surrounding when the Oct4 motif occurs as a part of the 

joint Sox2-Oct4 motif (Chen et al., 2008) and particularly helps promote binding in 

inaccessible chromatin, which is otherwise refractory to Tcf7l2 binding. This high-

throughput DamID assay provides a powerful platform to determine local DNA-sequence 

grammars that causally influence transcription factor binding.

RESULTS

DamID for Locus Integrated Phrase Library

We developed an assay for measuring Tcf7l2 binding to thousands of pre-determined DNA 

“phrases” at a specific genomic locus (Figure 1). A library of synthetic oligos containing a 

99-bp variable region (phrase) flanked by short constant sequences used as primers is 

integrated into specific genomic locations in mESCs by CRISPR-Cas9-based homology-

directed repair. We find site-specific integration of one of the variable phrases in 20%–40% 

of alleles through quantitative PCR, confirming previous work (Hashimoto et al., 2016; 

Rajagopal et al., 2016).

Binding of Tcf7l2 to each integrated phrase is measured by DamID (Vogel et al., 2007). We 

use a mESC line that enables Cre-LoxP-mediated single genomic integration of a 

Szczesnik et al. Page 4

Cell Syst. Author manuscript; available in PMC 2021 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



doxycycline-inducible transgene at a fixed site (Iacovino et al., 2011). Prior to phrase library 

integration, we use Cre/LoxP to integrate a fusion protein of Tcf7l2 and the N126A mutant 

of Dam, which we have recently shown to allow accurate measurement of Tcf7l2 binding 

genome wide with reduced off-target methylation as compared with the wild-type Dam 

enzyme (Szczesnik et al., 2019). As a control, we use a cell line with identical single-copy 

integration of unfused Dam N126A, which removes variability stemming from random 

integration and copy numbers. Due to its smaller size, Dam N126A expresses and diffuses 

more efficiently, resulting in more total methylation than the Dam-Tcf7l2 fusion. A Dam 

methylation site (GATC) is located directly adjacent to the site of phrase library integration, 

Dam will methylate phrases in proportion to Tcf7l2-binding strength within the phrase. 

After this 24-h induction period, genomic DNA from >2 × 107 phrase library-integrated cells 

is separately digested with restriction enzymes specifically recognizing unmethylated GATC 

(DpnII) or methylated GATC (DpnI). Undigested phrases are then PCR amplified with 

primers designed to specifically amplify genomically integrated phrases to avoid 

contamination with unintegrated phrases. These two pools of methylated and unmethylated 

phrases are then sequenced by Illumina next-generation sequencing (NGS), and the relative 

abundance of a particular phrase between the two pools is used to estimate the level of Dam 

methylation, and hence of Tcf7l2 binding, to the integrated phrase. Following DpnII 

digestion of uninduced cells there was no methylation at the adjacent GATC detected by 

qPCR, while after 24 h of expression wild-type Dam (which methylates almost the entire 

genome) over 90% was methylated, indicating that digestion and PCR amplification at this 

GATC can detect a large range of methylation.

We initially designed and screened a library of 12,000 phrases using this Tcf7l2 DamID 

approach, split between phrases comprising native genomic sequences and designed 

sequences. Half of this library was comprised of 99-bp genomic phrases sampled from 

ChIP-seq peaks that show variable Tcf binding. Cohorts of phrases were sampled from 

ChIP-seq peaks bound in either Tcf7l1 ChIP-seq in mESCs or Tcf7l2 ChIP-seq in intestinal 

endoderm (IE) cells, or in both (1,200 phrases each; see STAR Methods and Figure S1). If 

present, any Tcf motif was included in the sampled 99-bp phrase, and we specifically 

included ChIP-seq peaks lacking any clear Tcf motif (half of each group). The final cohort 

of genomic phrases contained unbound Tcf motifs (>10 kb from any Tcf ChIP-seq peak) in 

regions of open chromatin near marks of active enhancers (H3K27ac ChIP-seq peaks) (2,400 

phrases). The other half of the library (6,000 phrases) was generated de novo from different 

arrangements of binding motifs for a set of transcription factors we deemed likely to 

influence the binding of Tcf7l2, based on published protein-protein interactions or motif 

enrichment adjacent to Tcf binding sites (see STAR Methods for details) (Frietze et al., 

2012; Norton et al., 2014; Cole et al., 2008). This library was first integrated in 2 biological 

replicates into the inert Rosa26 locus, which resides in natively accessible chromatin 

(Zambrowicz et al., 1997) (see Figure S9 for DNase-seq signal at this locus). DamID on 

each of the replicates was done with both Dam-Tcf7l2 and unfused Dam, which has been 

shown to vary with chromatin accessibility (Kladde and Simpson, 1992) and thus provides a 

control for differences in Dam methylation rates between phrases independent of Tcf7l2 

binding.
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Statistical Processing of Read Counts

In order to draw valid comparisons between phrases we need to account for differences in 

the integration efficiency and sequencing coverage across the phrase library and different 

conditions. In particular, we noticed that the read counts for a large number of phrases 

exhibited significant dropout in either the DpnI or DpnII digested samples (seen in the 

histogram for DpnII counts in Figure 2B), which would confound analysis based on the 

fraction of methylated counts for each phrase. These dropouts suggest a bottleneck in unique 

methylation events prior to PCR amplification and sequencing. To estimate the (unobserved) 

number of methylated or unmethylated alleles for each phrase from the observed sequencing 

read count, we developed a statistical modeling pipeline.

Briefly, methylated and unmethylated allele counts are modeled as a negative-binomial 

distribution to capture our assumption that a large variable phrase library should contain a 

smooth, unimodal distribution over the frequency of methylation. Observed sequencing 

reads are modeled as a Poisson distribution stemming from a linear amplification of these 

allele counts, which recreates the observed dropouts (0 genomic counts) and staggering at 

the lower end of the observed read counts (1, 2.… genomic counts) (see STAR Methods for 

details). The relation between unobserved allele counts (“normalized”) to the observed 

sequencing counts (“raw”) captured by the model is shown in Figure 2A.

To calculate allele counts for each experimental replicate, the negative binoimial distribution 

parameters and amplification rate are tuned to best match the distributions in the observed 

data (see Supplemental Information for parameter values). The amplification rate is then 

used to estimate the initial number of allele counts for each phrase in methylated and 

unmethylated samples (Figure 2B). Following normalization the observed difference 

between replicates (Figure 2C) follows the expected binomial sampling distribution (Figure 

2D), indicating that the majority of difference between replicates stems from sampling 

variability, and not from a technical or biological source of variability.

Having normalized the data to obtain allele counts, we observed that replicates show a high 

degree of heteroscedasticity: high abundance phrases have low variability between 

replicates, low abundance phrases have high variability (Figure 2C). While it is expected that 

phrases with fewer unique alleles will have more variable measurement, we must account for 

this issue to performed balanced statistical analysis of library data. Thus, in order to use 

information from the entire phrase library we need to quantify the uncertainty in our 

estimate of the Dam methylation fraction for each phrase.

For this task we use a beta-binomial empirical Bayes model, which models the distribution 

of methylation across the whole library with a beta distribution, which captures the unimodal 

spread between 0 and 1. This beta distribution is then used as the prior for the binomial 

methylation of each phrase, generating a posterior beta distribution that gives the credible 

interval for the frequency of each phrase’s methylation. In practice this adds a few 

pseudocounts (1 to 14, see Supplemental Information for values) to every sample, biasing 

low coverage phrases toward the overall population mean but not affecting the high coverage 

phrases (compare the maximum a posterior MAP estimate from the beta distribution, to the 

maximum likelihood estimate MLE of the initial binomial distribution in Figure 2E). 
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Overall, this computational pipeline allows us to estimate Tcf7l2 binding to each of a 

12,000-phrase library integrated into a fixed genomic context while accurately quantifying 

the uncertainty in the frequency of each phrase’s methylation for subsequent statistical 

analysis.

Phrase Library with Genomically Sampled and Synthetically Generated Phrases

We next proceeded to assess features governing Tcf7l2 binding, by comparing the amount of 

methylation seen with Dam-Tcf7l2 (Figure 3A) with that of unfused Dam (Figure 3B). To 

measure the effects of a set of features of each phrase (motif presence, Tcf binding, and 

histone methylation status of the genomic loci from which a phrase was derived) on its 

methylation frequency, we used logistic regression with lasso penalty and cross-validation 

(Friedman et al., 2010). Effect size is used to refer to how much the fraction of methylated 

shifts along a logistic function when a feature is present in a phrase; at 0.5 fraction 

methylated this is a linear effect and becomes asymptotic toward 0 and 1.

For the 6,000 phrases derived from native genomic sites, cell-type-specific binding of Tcf7l2 

tends to be retained when these phrases are transplanted to an open chromatin site in 

mESCs, with phrases derived from mESC ChIP-seq peaks bound more strongly than those 

derived from intestinal endoderm ChIP-seq peaks or those without ChIP-seq binding in 

either cell type (0.23 versus 0.046 effect sizes, unbound phrases are at 0; Figure 3C). 

Presence of a Tcf motif is a strong predictor of Tcf7l2 binding in our assay, as phrases 

originating from Tcf ChIP-seq peaks but lacking a Tcf motif tend to show weak or absent 

Tcf7l2 binding, as compared with Tcf motif containing sites within the same ChIP-seq 

binding profile (ESC 0.36, IE 0.27, both 0.27 effect sizes). While phrases with ChIP-seq 

binding only in intestinal endoderm in general tend not to acquire binding when transplanted 

into the Rosa26 locus, those with a Tcf motif are more likely to exhibit Tcf7l2 binding than 

those without one (0.046 versus 0.27 effect sizes). The positive effects of Tcf motif presence 

among phrases derived from intestinal endoderm ChIP-seq peaks are largely attenuated 

when the phrase originates from a site that contains enhancer marks in mESCs (IE with Tcf 

motif and enhancer marks = 0.046 + 0.27 − 0.24 = 0.076 effect size). This may indicate that 

the regulation of Tcf7l2 binding between mESCs and intestinal endoderm is in some case 

through broader changes in the chromatin organization and in others by local sequence 

features that are permissive in only one cell type. Overall, our analysis of 99-bp phrases 

transplanted to the Rosa26 locus from native genomic regions finds that Tcf7l2 binding is 

strongest when the native regions contain Tcf motifs and derive from regions with native 

mESC Tcf7l2 binding. We conclude that features present within the sequence immediately 

surrounding a Tcf motif are strongly responsible for regulating the cell-type-specific binding 

of Tcf7l2 in vivo.

For the 6,000 phrases containing different motif arrangements, we calculated the effect of 

the presence of each motif on Tcf7l2 binding. We found that the presence of the Tcf motif 

had the strongest effect on Tcf7l2 binding (0.49 effect size), and other putative cofactors had 

weaker but still positive effects on Tcf7l2 binding (~0.1 to 0.2 effect size; Figure 3D). To 

distinguish effects on Tcf7l2 binding driven by protein-protein interaction as compared with 

those driven indirectly by induction of chromatin accessibility adjacent to the Tcf motif, we 
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integrated this 12,000-phrase library into a genomic locus with minimal native chromatin 

accessibility in mESCs (upstream of the T-cell-specific CD8 gene: uCD8; see Figure S8 for 

DNase-seq signal at this locus). Consistent with chromatin accessibility affecting both Dam 

methylation and Tcf7l2 binding, the overall methylation was reduced in this inaccessible 

locus (library beta-binomial mean: Dam-Tcf7l2 from 0.17 accessible to 0.06 inaccessible 

locus, unfused Dam from 0.68 to 0.15). Due to the low signal detected with Dam-N126A for 

this library in this locus, we used the wild-type version of the Dam enzyme which gives 

stronger signal, however, at the cost of being strongly confounded by changes in chromatin 

accessibility. We found that, in this natively inaccessible locus, Tcf7l2 binding required the 

pairwise interaction of its motif with that of specific cofactors, particularly Oct4, Klf4, or 

Sox2 (0.25, 0.22, and 0.30 effect size; Figure 3E). These stronger pairwise effects between 

the Tcf and cofactor motifs suggest that this effect is driven more by cooperative interactions 

rather than independent changes in chromatin. Thus, in this controlled assay, Tcf7l2 binding 

is impacted by adjacent motifs, and these motifs become more important when phrases are 

integrated into a locus without surrounding chromatin accessibility.

Tiled Tcf Motif Phrase Library

A deeper analysis of interactions between Tcf7l2 and its cofactors would require single 

phrase-resolution data of this library, which we were unable to obtain due to insufficient data 

coverage. Out of the 12,000 phrases, we observed integration of only 3,000–4,000, and only 

a few hundred (9%) had sufficient coverage for accurate estimates of their true methylation 

frequency (Figure 4A), limiting analysis to population trends and preventing the detection of 

sparser levels of binding in the inaccessible locus. This limited integration is largely due to 

the incomplete efficiency of CRISPR-Cas9-based homology-directed repair and limitations 

on total cell number.

To investigate the adjacent motifs and spatial determinants governing Tcf7l2 binding at 

higher resolution, we designed a 2,000-phrase library that systematically varied the position 

of the Tcf motif across a set of 59 backbone phrases. By reducing the number of unique 

phrases from 12,000 to 2,000, we posited that we would increase coverage of each phrase 

and thus enable phrase-resolution analysis. Backbone phrases were chosen from both the 

native genomic and synthetically generated phrases in the initial library so as to span a range 

of Dam-Tcf7l2 methylation rates across both accessible and inaccessible chromatin loci (see 

STAR Methods for details). For each backbone phrase, phrases were designed with a 

scrambled version of the initial Tcf motif, and a set of phrases was designed in which the 

most informative, core part of the Tcf motif (CTTTGAT) was tiled across each backbone 

phrase in 3-bp increments, replacing the sequence that had been in that position. We also 

included phrases for each backbone phrase in which we scrambled motifs for Oct4, Klf4, 

and Sox2, which were identified from the initial library as likely influencing Tcf7l2 binding 

(see STAR Methods for scrambled sequences). We integrated this 2,000-phrase library into 

the Rosa26 (accessible chromatin) and uCD8 (inaccessible chromatin) genomic loci in two 

biological replicates in mESCs and performed DamID with Dam-Tcf7l2 and unfused Dam 

as for the previous library. In this experiment, a methylation site (GATC) was included on 

both sides of the integrated phrase in order to reduce possible confounding from the variable 

distance between Dam-Tcf7l2 and the GATC methylation site.
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Integrating this smaller phrase library vastly reduced the uncertainty in estimated 

methylation rate for individual phrases (Figure 4A), providing much higher-resolution data 

(9% to 65% increase in the number of phrases with a 95% credible interval of the spread in 

methylation less than 0.1; >99% phrases were recovered). This was due to sampling many 

more unique genomic instances of each phrase, and since the variability between replicates 

remained consistent with the beta-binomial model (at a 0.05 cutoff, 0.935 of the methylation 

rates of the second replicate fell within the posterior distribution of the first replicate) the 

concordance between replicates increased proportionally (Figure S7B). Thus, we were able 

to perform individual phrase-level analysis of Tcf7l2 binding for the majority of the 2,000 

phrases.

We first looked at Tcf7l2 binding in the accessible locus. Consistent with our findings in the 

initial library, scrambling the Tcf motif led to significantly decreased Tcf7l2 binding in most 

backbone phrases (46/59 at p < 0.05; Figure 4B). When comparing Tcf7l2 binding in 

phrases from the same backbone phrase, we found substantial variation as the Tcf motif is 

tiled across each backbone phrase (standard deviation range 0.029–0.16; mean of 0.084; 

Figure 4B). This intra-backbone variation is significantly larger than the standard deviation 

in the estimate of each phrase’s methylation rate for 98.5% of phrases, indicating that tiling 

the Tcf motif across a phrase leads to robust changes in Tcf7l2 binding. In fact, on an 

average, Tcf7l2 binding in the phrase with the most unfavorable Tcf motif position within a 

backbone phrase was equivalently low to the phrase with scrambled Tcf motif −0/59 had 

significantly higher methylation, while 4/59 backbone phrases had significantly lower 

methylation (p < 0.05, with adjustment for multiple hypothesis testing)—indicating that the 

sequence context is a strong determinant of binding (Figure 4B). The few backbone phrases 

that did not have a significant drop in methylation upon scrambling the Tcf motif also had a 

lower variability in Tcf7l2 binding as the Tcf motif was tiled (mean standard deviation of 

0.06 versus 0.09; t test p = 0.01), suggesting that other sequence features are required to 

promote Tcf7l2 binding. We conclude that the location of a core Tcf motif relative to 

surrounding local sequence plays an important role in determining Tcf7l2 binding strength. 

We thus turned to investigating patterns in these Tcf motif tiling experiments to determine 

the key local sequence features underlying Tcf7l2-binding logic.

We find that one major cause of the variability in Tcf7l2 binding as the motif is tiled across 

each backbone phrase is the change in nucleotides flanking the core Tcf motif. While we 

tiled the 7 nucleotide core Tcf motif, the position weight matrix that best explains Tcf7l2 in 

protein binding experiments (Badis et al., 2009) contains contributions from two nucleotides 

on either side of the core motif. By calculating the average Tcf7l2 binding across all possible 

base identities in the flanking positions, we find that Tcf7l2 binding strength in our assay 

correlates with the optimal nucleotide identities of the full Tcf7l2 position weight matrix—a 

3′ guanine followed by thymine, and a slight 5′ cytosine or thymine preference (Figure 4C). 

We note that 3′ cytosines are not present in our phrases as they were replaced with G to 

avoid the creation of an extra GATC methylation site. A logistic model of the contribution of 

flanking nucleotide position to Tcf7l2 binding found that including the effects of di- or tri- 

nucleotides reduces the model log-likelihood, indicating that independent contributions of 

single nucleotides are sufficient to explain variation in binding strength from flanking 

nucleotides. This finding rules out effects of new motifs being reproducibly formed from 
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tiling the Tcf motif, as they would result in a model that prefers base-pair dependencies and 

would likely differ from the in vitro binding preference. The changing affinity for the full 

Tcf motif as it is tiled along a backbone phrase, however, does not explain any differences in 

average binding affinity between different backbone phrases. This is because the nucleotides 

that happen to flank the Tcf motif at each tiled position are more-or-less random and are not 

correlated within a backbone phrase nor between them (this would not be the case if the 

backbone phrases were strongly enriched in a specific nucleotide or dinucleotide).

Much of the remaining variation in positional Tcf7l2 binding appears dependent on the 

presence of neighboring motifs, as backbone phrases with the highest binding rate contained 

either a Klf4 or Oct4 motif (Figure 4B), and shuffling these motifs also tended to reduce 

binding (Figure 4D). Plotting the Tcf7l2 binding strength as the Tcf motif is tiled along a 

backbone phrase, we identify striking patterns of reduced Tcf7l2 binding resembling 

“footprints” coinciding with phrases in which the Tcf motif disrupts an underlying Oct4 or 

Klf4 motif, with a similar decrease in Tcf7l2 binding as scrambling these motifs (Figure 

4E). Since the Tcf motif is tiled by 3 bp, any motif longer than 3 bp should be detected. 

Nonetheless, we observed no robust loss of Tcf7l2 binding for across adjacent tiles 

occurring for any other known motifs. We cannot rule out that other motifs would show this 

effect if we had tiled the Tcf motif across a larger cohort of backbone phrases. Even within 

the set of backbone phrases containing Oct4 or Klf4 motifs, we observed substantial 

backbone phrase-specific variation in the magnitude of Tcf7l2 binding and the loss of such 

binding upon disruption or scrambling of these cofactor motifs (Figure S2). The strongest 

effects were localized around backbone phrases containing an Oct4 motif as part of a joint 

Sox2-Oct4 motif, which hints that much of this variability stems from differences in binding 

affinities of these cofactors between backbone phrases. However, because of the low 

numbers of instances of either Oct4 or Klf4 motifs in the 59 backbone phrases and the fact 

that we did not vary the strengths of these motifs in a controlled way, we cannot make strong 

conclusions about the role of cofactor motif strength.

Gaussian Process Model for Spatial Effects on Tcf Binding

Having identified significant roles of the extended Tcf motif and the presence of adjacent 

Oct4 and Klf4 motifs in modulating Tcf7l2 binding, we examined whether there are spatial 

constraints on the positioning of the Tcf motif relative to the cofactor motifs. In order to 

measure such spatial effects, we use a Gaussian process model, a non-linear regression 

technique, to model how the position of the Tcf motif within the backbone phrase affects the 

binding of Tcf7l2. Importantly, within the Gaussian process framework we can define 

classes of non-linear functions that vary smoothly with the position of the Tcf motif within 

the backbone phrase, allowing the model to generalize across several Tcf motif positions. 

This is preferable to treating each spatial position as independent, which results in an overly 

flexible model lacking in statistical power, or pooling across several adjacent positions, 

which would blur the underlying spatial effect. As a result, Gaussian process modeling 

should allow us to more easily identify reproducible cofactor interactions that lack fixed 

spacing, such as those that slowly change in strength over a region or occur at repeating 

positions. Gaussian process models also allow us to account for the confounding effects of 
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Tcf motif strength and locus-specific effects to generalize spatial trends across multiple 

phrases.

We use two classes of non-linear functions to capture different ways in which the changing 

Tcf motif position could affect Tcf7l2 binding. The first class of functions are designed to 

identify contiguous stretches of higher or lower Tcf7l2 binding, for example due to a 

cofactor motif promoting binding nearby. These functions are modeled by a radial basis 

kernel, which fits smoothly varying functions and is parametrized by a length scale that 

controls how quickly the function varies. The second class of functions are similar in nature 

but oscillate periodically, for example due to effects caused by the regular turning of the 

DNA helix. These functions are also encoded by a periodically repeating radial basis kernel 

and thus are parametrized by both a length scale and periodicity. To separate out possible 

spatial effects in the locus, for example due to the position of a nearby nucleosome, each of 

these functions is present in 3 forms: as backbone phrase-invariant across all backbone 

phrases, as backbone phrase-invariant across backbone phrases sharing the same Tcf motif 

orientation, and as spatial effects unique to each backbone phrase. Finally, in order to 

reliably detect these spatial interactions, we also need to account for the confounding effects 

within the data. As such the effects of nucleotides flanking the Tcf motif, the average 

binding to each backbone phrase, and the uncertainty in estimating each phrase’s 

methylation are included as linear effects in the model.

Fitting this Gaussian process model to the observed Tcf7l2 DamID data is done in empirical 

Bayesian fashion: the internal parameters are integrated out and hence averaging over the 

various spatial functions consistent with the data, while the model hyperparameters—the 

length scale, periodicity, and linear weights—are tuned to optimize the model likelihood. 

Following this we find that the model that best fits the observed Tcf7l2 DamID data in both 

accessible and inaccessible chromatin loci contains inputs from multiple distinct 

components (Figure 5A). The most salient individual component influencing intra-backbone 

variation in Tcf7l2 binding is Tcf motif score as determined by the identity of the four 

nucleotides adjacent to the Tcf7l2 core motif, which was tiled, which explains 35% and 40% 

of Dam-Tcf7l2 methylation variability in accessible and inaccessible loci, respectively. The 

various spatial effects of Tcf motif position explain a further 45% of the variation in binding 

across both loci. Within these, the backbone phrase-invariant spatial effects—those caused 

by general features of the two genomic loci used for integration—explain 20% and 25% of 

variable methylation in accessible and inaccessible loci. Backbone-phrase-specific spatial 

effects—those dependent on cofactors or other sequence features—explain a further 25% 

and 20% of variable methylation in accessible and inaccessible loci.

Thus, a Gaussian process regression model with a minimal set of features is capable of 

explaining the majority of variation (80%–85%) in Tcf7l2 binding across the 2,000 phrases, 

suggesting that these features of Tcf motif strength and smoothly and periodically varying 

spatial constraints with cofactors explain much of Tcf7l2 binding strength. The residual 

variability of 20% and 15% in the accessible and inaccessible loci indicates that either there 

is little information left to extract from this dataset or that further inference would require 

improving the coverage of each phrase in order to extract out more subtle features. These 
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could, for example, be due to the effect of a rigid spacing requirement, formation of some 

unique sequence overlapping the Tcf motif, or confounders of the Dam methylation rate.

Since we are optimizing the hyperparameters of the Gaussian process model likelihood, it is 

important to ensure that the model is not so explicit as to overfit the data. However, we do 

not find no evidence of overfitting: the length and periodicity is estimated as almost the 

same between different loci, the component weights are similar between the two different 

loci, features with no explanatory power in the unfused Dam samples are automatically 

discarded, and the presence of residual variability indicates that the model is not fitting 

directly up to the limit imposed by sampling variability (Figure 5A). As such we think the 

model is accurately capturing general trends in the underlying dataset.

Unexpectedly, the overall position of the Tcf motif in the locus has an effect on Tcf7l2 

binding. The spatial effect of the Tcf motif position across all backbone phrases (irrespective 

of orientation) shows a similar pattern in both accessible and inaccessible loci: the length 

scale optimizes to ~8-bp, and extracting the estimated function (Figure 5B) shows that Dam-

Tcf7l2 methylation is highest when the motif is located within the middle of a backbone 

phrase or toward either end with dips in intervening regions. Since this effect is so similar 

for Dam-Tcf7l2 methylation across both loci, we posit that a likely cause is steric constraints 

on how well Dam-Tcf7l2 can methylate the GATC sites located adjacent to the ends of each 

integrated phrase, rather than changes in Tcf7l2 binding. Unfused Dam in the inaccessible 

locus also shows an effect of the overall Tcf motif position (Figure 5B); however, this 

mimics an overall downward trend of Dam-Tcf7l2 and not the middle and end peaks, 

presumably because unfused Dam is not binding to the Tcf7l2 motif. This also rules out a 

differential accessibility between the Tcf motif and the GATC—for example, if a 

nucleosome was laterally displaced from the Tcf motif and covered the GATC—as this 

would create a negative correlation in the backbone phrase-invariant effects between Dam-

Tcf7l2 and unfused Dam. Thus, we do identify one feature that is best explained as an 

artifact of the DamID method—Tcf7l2 is on an average more adept at methylating GATCs 

with particular distance constraints.

When backbone phrase-invariant effects are calculated only across backbone phrases that 

share the same Tcf motif orientation, the model identifies a periodic function only in the 

accessible locus (Figure 5B). The periodicity parameter optimizes to every 10.8 bases, 

which is close to the estimate of a DNA helix rotation (10.4–10.6) (Wang, 1979; Rhodes and 

Klug, 1980; Klug and Lutter, 1981). Interestingly, the periodic component for the two-Tcf 

motif orientations are completely out of phase. Since Tcf7l2 binding introduces a large bend 

in the DNA (90–127 degrees) (Love et al., 1995; Giese et al., 1995), a possible explanation 

is that DNA bending in the Rosa26 accessible locus is more energetically favorable in one 

direction. This would favor Tcf7l2-binding sites that are in-phase with one another with 

respect to the rotation of a DNA helix, since these would all bend in the same direction. 

Alternatively, it could indicate an interaction with a transcription factor or nucleosome at a 

specific position nearby the site of integration.

Lastly, we investigated the backbone phrase-specific spatial effects. The optimal model 

includes input from both smoothly varying and periodic backbone phrase-specific 

Szczesnik et al. Page 12

Cell Syst. Author manuscript; available in PMC 2021 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



components with similar hyperparameters as the global and orientation effects (~8 rbf length 

scale and 10.8 periodicity), in both the accessible and inaccessible loci. The smoothly 

varying, periodic, and constant backbone phrase-specific effects are extracted and summed 

up for a set of representative backbone phrases (Figure 5C).

The smooth component captures the footprints of reduced binding as an underlying cofactor 

motif (Oct4 or Klf4) is disrupted (compare backbone phrases e522 and s3035 in Figure 5C 

with Figure 4E). Additionally, the smooth component captures regions of higher Tcf7l2 

binding near the Oct4 and Klf4 cofactor motifs (2nd and 3rd row in Figure 5C), which tend 

to spread over an ~20- to 50-bp region adjacent to the cofactor motifs. It is possible that 

another motif is being disrupted after these stretches of higher binding; however, since we 

could not reliably identify any other motifs at these locations we believe that it represents the 

effect of Oct4 or Klf4 promoting adjacent Tcf7l2 binding within this optimal window of 

proximity.

The backbone phrase-specific periodicity captures a reproducible oscillation in binding 

strength estimated to occur every 10.8 bp. We hypothesize that backbone phrase-specific 

periodicity in Tcf7l2 binding arises from interaction between Tcf7l2 and cofactors such as 

Oct4 that is strengthened when both factors reside on the same side of the DNA helix. The 

estimated periodic effects are similar for Dam-Tcf7l2 across both loci (0.35 correlation, 

versus 0.075–0.14 to unfused Dam; Figure S3), indicating that it is detecting oscillating 

patterns specifically promoting adjacent Tcf7l2 binding within this window.

The backbone phrase-specific smooth and periodic effects across different backbone phrases 

tend to align when aggregated across different backbone phrases based on the relative 

position between the Tcf and the Oct4 or Klf4 cofactor motif (Figure 5D). There is a large 

variability in the strength of these backbone phrase-specific effects across different backbone 

phrases—the three backbone phrases that contain a joint Sox2-Oct4 motif possess the 

strongest such effects (first row of Figure 5C). Since there are only 3 such backbone phrases, 

they are excluded from the aggregate profiles in Figure 5D to avoid exaggerating them, but 

the estimated positional effects overlap for the shared part of the orientation and gap spacing 

(Figure S5) These three Sox2-Oct4 motif containing backbone phrases show strong dips 

when the Sox2-Oct4 motif is disrupted, longer than average stretches of improved Tcf7l2 

binding nearby, and strong backbone phrase-specific periodic effects, with maximal Tcf7l2 

binding when Tcf7l2 is separated from Oct4 by 27–29, 37–39, 48–50, and 61 bp (relative to 

the midpoint of the Tcf7l2 and Oct4 motifs and similar across all four orientations of 

motifs). Since we were unable to accurately model the strength of the cofactor binding from 

their sequence motifs, this periodic effect had to be estimated for each backbone phrase 

specifically. As such, information is pooled across all positions of the tiled Tcf motif, 

resulting in the periodic effect being estimated to also pass through the cofactor motif. Thus, 

aligning backbone phrases by the distance between the Tcf7l2 motif and Oct4/Klf4 cofactor 

motif reveals that the smooth and oscillating effects are consistent and are accentuated in the 

three Sox2-Oct4 motif containing backbone phrases where cofactor binding strength is 

likely to be strongest.
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The variability in Dam-Tcf7l2 methylation is considerably higher than that of unfused Dam 

seen when tiling the Tcf motif (4× higher in the accessible locus, 2× higher in the 

inaccessible locus, Figure 5A). Unfused Dam methylation has much higher proportion of 

unexplained residuals (accessible 75%, inaccessible 50%), suggesting that it is being 

influenced by some feature not utilized in the model—for example the specific sequence 

being overwritten by the tiled Tcf motif. The unfused Dam model identifies minor 

contributions from backbone phrase-specific effects (accessible 25%, inaccessible 20%) and 

an effect of overall position of the Tcf motif only in the inaccessible locus (15% of 

variability). The inaccessible locus also has ~10% of variance explained by contribution of 

flanking nucleotides; however, in this case it does not recapitulate the in vitro Tcf position 

weight matrix and instead appears to resemble a putative weak Sox2-Oct4 motif: 5′ Cs and 

3′ A-T-G bias (Figure 4C). These results suggest that the unfused Dam signal in inaccessible 

chromatin is capturing subtle changes in chromatin accessibility arising from the creation of 

weak alternative motifs while tiling the Tcf motif—the Tcf, Sox2, and Oct4 motifs all share 

a core TTTG stretch, making it difficult to definitively assign the most likely binding factors 

to sites with weak position matrix weight matches. The effect of cofactors influencing 

accessibility can also be seen in the smooth backbone phrase-specific effect with unfused 

Dam, which while weaker is correlated with Dam-Tcf7l2 (accessible: 0.35, inaccessible: 

0.18; Figure S3). In sum, the Gaussian process regression model is less effective at 

determining the causes of variation in unfused Dam methylation, likely because the input 

features have been tailored to predicting Tcf7l2 binding variation. This finding reinforces 

that the model is learning features specific to Tcf7l2 binding and not to confounders 

introduced by the DamID method.

In summary, in-depth analysis of this collection of 2,000 phrases that examine Tcf7l2-

binding logic at 59-Tcf motif containing backbone phrases reveals that Tcf7l2 binding is 

dependent on the binding of Oct4 and Klf4 motifs in a spatially dependent manner. Strongest 

Tcf7l2 binding occurs when the motifs are separated by 20–50 bp with ~10.8-bp oscillatory 

strength that matches the turn of a DNA helix. The strength of these effects appears 

dependent on the strength of the cofactor motif: it is strongest at joint Sox2-Oct4 sites, 

moderate at most other Oct4 and Klf4 sites, and weak at a few Oct4 and Klf4 motifs. Since 

Tcf7l2 binding is strongly dependent on sequence context, it is likely that similar effects 

exist that govern the binding strength of Oct4 and Klf4. Further deconvolution all of these 

variables will require a substantially larger set of backbone phrases that systematically vary 

in Oct4/Klf4 motif strength as well as relative Tcf7l2 position. The lack of other observed 

motifs in any observed footprints nor in the flanking nucleotides suggests that there are 

unlikely to be many other motifs that substantively influence mESC Tcf7l2 binding in the 

backbone phrases analyzed.

DISCUSSION

The binding motif for Tcf7l2 has been well characterized in vitro; however, it is a poor 

predictor of the in vivo binding of Tcf7l2 and lacks the ability to explain differences in cell-

type-specific binding (Frietze et al., 2012). Here, we use a combination of site-specific 

integration and in vivo transcription factor-binding measurement to show that a large 
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contribution to the specificity of Tcf7l2 binding in mESCs is contained within the 99 bp of 

sequence surrounding a genomic Tcf motif.

In particular, by systematically varying the position of a core Tcf7l2 motif relative to 

cofactor motifs, we find that the presence of Oct4 and Klf4 motifs in an adjacent window of 

~20–50 bp with spacing that places these motifs on the same side of the DNA helix as 

Tcf7l2 produces optimal mESC Tcf7l2 binding. We also show by inserting the same cohort 

of phrases into an intrinsically accessible and inaccessible genomic locus that Tcf7l2 

binding is strongly determined by the local chromatin accessibility, as Tcf7l2 gains the 

ability to bind in mESCs at some sites usually only bound by Tcf7l2 in intestinal endoderm 

when these sites are transplanted to accessible chromatin. Thus, our results provide strong 

supporting evidence with an earlier classification of Tcf7l2 as a “migrant” transcription 

factor that is dependent on both local chromatin accessibility and on interactions with 

cofactors for binding (Sherwood et al., 2014).

A similar helical-dependent enhancing of co-binding as shown here for Tcf7l2 with Oct4 

and Klf4 has been observed previously in the in vitro formation of a Lef1 (part of the Tcf 

family), Ets1, and CREB complex, which found that Lef1 promoted interactions between the 

flanking motifs in a way dependent on the phase of CREB in the DNA helix (Giese et al., 

1995). Our work extends this to show that DNA helix-influenced cofactor binding can occur 

across several helical turns and that such subtle effects of spatial positioning between 

transcription factor-binding motifs play important roles in determining binding in a genomic 

context.

While the DNA-binding domains of transcription factors are generally small and well 

folded, the remaining domains responsible for interactions with other proteins are often 

disordered or connected by flexible segments (Liu et al., 2006). This flexibility should allow 

interacting domains of two adjacently bound transcription factors to interact across a range 

of spacings. This predicted flexibility in interaction distance is consistent with results from 

small-scale enhancer reporter assays (Erceg et al., 2014), which found that varying the 

relative spacing between the pMAD and Tin motifs can affect expression of a reporter gene 

integrated in a developing fruit fly (Drosophila) embryo. In one tissue, shifting from a 2- to 

8-bp gap is enough to abrogate reporter expression, whereas in a different tissue it only 

halves expression. Importantly, in both cases this change is gradual: gaps of 4 and 6 bp 

exhibit intermediate function. Similarly, Farley et al. (2016) tested variants of an enhancer 

that is active during sea squirt development (Ciona intestinalis) in an oligonucleotide 

reporter assay and found that small shifts in the distance between Ets- and Zicl-binding sites 

within can change the strength of the enhancer. Our work extends upon these studies by 

showing that these spatially flexible cofactor effects span over a larger spatial region at least 

up to 50 bp and can influence binding of transcription factors.

Our finding that interactions between transcription factors can occur over a range of 

distances but also change in strength in oscillating fashion by shifting spacing by 3 bp has 

implications for current approaches that model and predict transcription factor binding. 

Typically, computational models of motif interactions are designed to allow for a constant 

effect irrespective of their relative positions, or to occur at an invariant spacing. For example, 
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position weight matrices, linear regression, and support vector machines (i.e., Ghandi et al., 

2014), all utilize sequence representations based on short subsequences or fixed gap lengths, 

that do not readily generalize across different gap lengths. Pooling across several different 

positions, for example, as is utilized in convolutional neural networks for protein-DNA 

binding (Alipanahi et al., 2015; Kelley et al., 2016), similarly blurs over the smooth and 

oscillating spatial effects observed here. There are certainly cases in which TFs may require 

fixed spacing as with Sox2-Oct4 binding to a directly adjacent dual motif (Chen et al., 2008; 

Jolma et al., 2015). It is likely, however, that cases like the Tcf7l2-Oct4 interaction we 

identify with oscillating and variable spacing are at least as typical. The covariance functions 

used here could be used directly as the kernel in a support vector machine to model such 

effects, while convolutional neural networks could utilize pooling layers across every Nth 

(e.g., every 10 or 11 bp) position rather than locally. Interestingly, a similar periodic effect 

has been inferred for Nanog relative to the Sox2 motif with a convolutional neural network 

from genomic ChIP-nexus data in mESCs (Avsec et al., 2019).

From a data standpoint, evaluating the effect of transcription factor interactions across 

spacings requires many more data points than treating the interactions as spacing-agnostic or 

spacing-invariant. It is highly unlikely that we could have identified the Tcf7l2-Oct4 

interaction patterns we found using genome-wide transcription factor binding data. The 

genome does not have enough examples of these two motifs at varying spacings, and each 

genomic site has many other adjacent binding sites that would complicate modeling. Thus, 

our approach of integrating a designed set of sequences into fixed genomic locations enables 

fine-grained dissection of transcription factor logic in a way that is not possible from 

observational genomic data types such as ChIP-seq, DNase-seq, or ATAC-seq. Even with 

our approach using thousands of designed phrases, we are limited in power for building up 

an accurate model of Tcf7l2 binding. In several cases the residual methylation signal often 

appears to line up with the periodic components over a few positions, indicating that a more 

complex cooperative interaction exists within the data than is captured by a linear 

combination of spatial effects on Tcf7l2 binding.

Similarly, we lack enough observations to account for changing strength of Oct4 and Klf4 

motifs (unlike for Tcf7l2 where we can accurately capture the strength of the motif through 

changes in flanking nucleotides). Particularly, the effect of Oct4 on Tcf7l2 binding in 

different backbone phrases shows a range of magnitudes, which prevents combining 

observations from several backbone phrases into accurate estimates of shape profile of 

Tcf7l2 cofactor interactions. This paucity of backbone phrase variation may explain why the 

Sox2 motif significantly modulates Tcf7l2 binding in the larger first screen but not in the 

second screen with limited examples. Klf4 motifs also showed variable strength in 

influencing Tcf7l2 binding across the second library. Additionally, some Sp1-like motifs—

similar to the Klf4 motif—appeared like they might influence binding, but these effects were 

neither strong enough to produce a reliable “footprint” for specific instances nor consistent 

enough to detect a consensus motif. A more complete and predictive understanding of 

Tcf7l2 binding logic will require tiling or varying the strength of Oct4 or Klf4 motifs across 

Tcf motif containing backbone phrases as well as directly measuring binding of both Oct4/

Klf4 and Tcf7l2 in the same set of backbone phrases.

Szczesnik et al. Page 16

Cell Syst. Author manuscript; available in PMC 2021 September 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Our experimental design is also confounded by using ectopic expression of Tcf7l2 that is 

fused to an enzyme, so the altered levels of Tcf7l2 expression or altered function of the 

fusion protein may not perfectly mimic native Tcf7l2 binding. Extrapolation to native Tcf 

regulatory circuitry would also need to account for the differential expression and large 

splicing heterogeneity of other Tcf/Lef family numbers (Weise et al., 2010), which would be 

expected to both accommodate for changes in function and compete for binding to the same 

motifs. Compared with alternatives, such as the lossy ChIP assay, the gain in resolution 

offered by DamID makes this trade-off worthwhile when looking at individual loci, which 

occur at most twice in each cell.

Overall, this study demonstrates the power of massively parallel integration of DNA-

sequence variants into a controlled locus to address aspects of transcription factor-binding 

logic that are difficult to address using observational genomic approaches such as ChIP-seq 

or in vitro approaches such as protein binding matrix arrays. In the future, this approach 

could be expanded to address co-binding logic by profiling binding of multiple transcription 

factors to the same collection of sequences, dynamic transcription factor binding by 

profiling binding in different cell types, or combined with gene expression readouts to link 

transcription factor-binding patterns to gene regulatory activity.

STAR★METHODS

RESOURCE AVAILABILITY

Lead Contact—Further information and requests for resources should be directed to the 

Lead Contact, Dr Rich Sherwood (rsherwood@rics.bwh.harvard.edu).

Materials Availability—This study did not generate new materials.

Data and Code Availability—The data and code are available online at https://

gitlab.com/tszczesnik/tcf-grammar-analysis.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All experiments were done in 129P2/OlaHsd mouse embryonic stem cells (mESC), which 

were cultured according to previously published protocols (ENCODE Project Consortium, 

2012). mESCs were maintained on gelatin-coated plates feeder-free in mESC media 

composed of Knockout DMEM (Life Technologies) supplemented with 15% defined fetal 

bovine serum (FBS) (HyClone), 0.1mM nonessential amino acids (NEAA) (Life 

Technologies), Glutamax (GM) (Life Technologies), 0.55mM 2 β-mercaptoethanol (Sigma), 

1X E SGRO LIF (Millipore), 5 nM GSK-3 inhibitor XV and 500 nM UO126. Cells were 

regularly tested for mycoplasma. The non-homologous end joining pathway was disabled by 

knocking out two necessary genes (Prkdc and Lig4), along with constitutive activation of 

Rbbp8, which together increase the rate of homologous recombination (Arbab et al., 2015).

METHOD DETAILS

Phrase Library Design—The first phrase library (12,000 170bp) was ordered from 

CustomArray. Two 20bp primer sites were located at each end. One end also included a 
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short (11bp) barcode followed by another primer site (20bp) for separately amplifying it. 

11bp is necessay to have enough unique barcodes for all 12,000 phrases such that they are 

separated by an edit (levenshtein) distance of at least 3, so that any single error to be 

automatically corrected. Due to the presence of truncated library phrases, however, this 

barcode couldn’t uniquely identify phrases and wasn’t used. The remaining 99-bp was used 

to test out possible Tcf7l2 binding sites.

A portion of phrases were generated from ChIP-seq peaks bound in either Tcf7l1 ChIP-seq 

in mESCs or Tcf7l2 ChIP-seq in intestinal endoderm cells, or in both (1200 phrases each, 

split into two groups of 600 with or without a clear Tcf motif), along with 2400 phrases with 

a clear Tcf motif, occuring near marks of H3K27ac, but distal to (>10kb) to any Tcf ChIP-

seq binding site. Due to the similarity between Tcf7l1 and Tcf7l2, Tcf7l1 ChIP-seq is a 

reliable measure of Tcf7l2 binding; genome-wide DamID for Tcf7l2 in mESCs correlates 

stronger with the Tcf7l1 mESC ChIP-seq than with Tcf7l2 intestinal endoderm ChIP-seq 

(Szczesnik et al., 2019).

Phrases made up of combinations of various binding motifs were generated as follows:

1. Sample 25 (out of 35 possible) combinations of the non-Tcf7l2 and non-pioneer 

motifs (Hnf4a, Gata3, Foxa1/o1, c-Myc, Oct4, Sox3, Smad3).

2. Each of these generates a combination of with and without a Tcf motif.

3. Each of these generates a combination of no pioneer, Ets, Klf, or both motifs.

4. Sample 3 permutations out of each of these.

5. Sample 3 different gap lengths for each phrase.

6. Sample 3 randomly generated sequences for the gap

The second oligo pool (2,000 149bp) was ordered from Twist Biosciences. Two 25bp primer 

sites are located at each end, each containing a GATC, flanking a 99-bp variable region. 

Backbone phrases were chosen from the first library based on the probability that the 

posterior distribution of each phrase’s methylation rate was either lower than, contained, or 

higher than the average methylation rate of the library (p < 0.05). A set of ~30 phrases per 

backbone phrase were generated by tiling the Tcf motif (ATCAAAG) every 3bp from the 

starting position. Motifs were scrambled to a specific sequence as follows:

• Tcf: ATCAAAG -> AACGTCG

• Oct: ATGCAAAT -> ATCGGCAT

• Klf: GCCACACCCA -> GCGAGACGCA

• Sox: CWTTGT -> CGTACT

• Gata: AGATA -> ACCCA

Phrase Library Integration—Oligo pools were amplified with primers at both ends (40ul 

NEBnext, 0.2-ul library, Ta=65, 30 cycles) and the 170bp band purified on a 4% agarose gel 

(Qiagen gel purification). Phrases were extended with homology arms (Table S1) (1000ul 
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NEBnext, Ta = 65, 30 cycles) and purified (Qiagen minelute) to prepare for electroporation. 

20 ug CBh Cas9-BlastR plasmid, 20 ug U6-gRNA-HygroR plasmid, and purified phrases 

were vacuum centrifuged to a final volume of <20 ul, added to 120 ml EmbryoMax 

Electroporation Buffer (ES-003-D, Millipore), and mixed with mESCs pelleted from a 15cm 

plate (~2e7 cells). This was transferred into a 0.4-cm electroporation cuvette and 

electroporated using a BioRad electroporator (230 V, 0.500 mF, and maximum resistance). 

Cells were passaged three times following integration.

DamID—Constructs were made by fusing Dam or Dam-N126A to the N-terminus of Tcf7l2 

with a short flexible linker (Szczesnik et al., 2019). Dam-Tcf7l2 fusion and Dam only 

constructs are expressed from a single-integration Dox-inducible transgene expression 

cassette (Iacovino et al., 2011). This puts the Dam constructs under control of a tet-

responsive promoter, along with integrating a neomycin resistance gene that is selected for 

by culturing the cells in G418 (300μg/mL) for one week. mESCs were cultured in 15cm 

plates and split at low ratios to ensure a high library diversity was maintained. Following 

expression of Dam fusion protein (8 hours for wild-type, 24 hours for N126A), genomic 

DNA is extracted and split into two pools that are digested by either DpnI, which cuts all 

methylated phrases, or DpnII, which cuts all unmethylated phrases (16ug DNA in 100ul and 

100U enzyme, for 16 hours at 37C). Integration of the phrase library and presence of 

methylation was measured by qPCR on the DpnI and DpnII digest for the integrated site and 

control genomic Tcf7l2 bound locations. Completion of the DpnII digests was tested by 

undetectable DNA in controls cells, and of DpnI by heavy methylation with long wild-type 

unfused Dam expression (>90% methylated). Since the same conditions remove all traces of 

methylated bacterial plasmids, we infer that the DpnI digest is also close to 100%.

Next Generation Sequencing—Phrases were PCR amplified following DpnI / DpnII 

digestion with primers outside the homology arms and spanning the GATC site (16 cycles). 

This makes integrated phrases at least 100 times more numerous than unintegrated phrases 

(measured by qPCR), so that they dominate the signal. Two further short PCRs extend each 

phrase with adapters for illumina sequencing and a unique barcode for each sample. The 

cycle number is determined for this PCR based on qPCR to obtain sufficient amplification 

for Tapestation-based sample pooling and NGS. The resulting phrases are directly sequenced 

on a next-seq with midoutput 300bp kit (150bp read one, 150bp read two).

QUANTIFICATION AND STATISTICAL ANALYSIS

Alignment—Reads from different samples were demultiplxed with fastq-multx (Aronesty, 

2011) based on short barcodes incorporated at the start and end of each sequence. Prior to 

alignment, overlapping paired end reads were assembled into a single read using PEAR 

(default parameters) (Zhang et al., 2014), in order to reduce the false positive rate stemming 

from truncated phrases. The assembled reads are aligned to the ordered library of sequences 

using BWA (mem algorithm with default parameters) (Li and Durbin, 2009). Counts are 

generated for each sequence by summing up all exact matches to it.

Deduplication—A negative-binomial dropout model is used to estimate the degree of PCR 

amplification and read depth present in the sequencing data, and hence to infer the number 
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of unique genomic phrases in the original pool of cells. In principle the genomic counts 

could be estimated from the numbers of cells and integration efficiency, but in practise the 

uncertainties in each measurement are high and do not account for the variable abundance of 

each phrase.

The initial distribution of counts before amplification (x) for each digest is modelled as a 

negative binomial with shape and rate parameters α and β. This is a natural choice for 

positive count data, and can fit the positive tail in the data and the underlying unimodal 

distribution (i.e. apart from the dropouts and staggering stemming from the amplification of 

low counts).

Observed read counts are modelled as coming from a Poisson distribution stemming from a 

linear amplification (rate γ) of these latent counts (Equation 1). A constant amplification 

rate across all phrases is assumed since they are of the same length and similar GC content. 

This leaves any phrases missing in the original distribution as 0, while 1 shifts to a peak 

centered on γ, 2 to 2γ, and so on, creating staggered peaks that eventually run into one 

another. β is constrained to be identical between the DpnI and DpnII digests, which prevents 

the model from assuming different methylation rates between digests, and is consistent with 

the total amount of methylation across the phrase library following a beta distribution.

p(y ∣ α, β, γ) = nbinom(y ∣ α, β)nbinom(0 ∣ α, β) + ∑
x = 1

∞
pois(y ∣ γx)nbinom

(x ∣ α, β)
(Equation 1)

In the first phrase library, we found that modelling the dropout reads as following the 

original unamplified background distribution works well, in comparison to low rate Poisson, 

since it captures the shape of the low level contamination from unintegrated background 

phrases better. In the second phrase library, due to the higher overall sequencing depth, we 

observed a clear background contaminating population that stems from unintegrated phrases 

persisting in the cells following electroporation and being amplified by the 2nd and 3rd 

library preparation PCR cycles. In this case we use a mixture model (R package mixtools) to 

fit two 2D log-normal distributions (equal variance, starting position means (DpnI count, 

DpnII count): (1000, 10) and (1000, 1000)), and zero-out the DpnII counts of the lower 

population prior to estimating the amplification rate (see Figure S6).

To avoid the expensive sum over all possible discrete counts (Equation 1), and since the 

important information comes from 0 and 1 counts, we approximate higher counts with a 

continuous distribution. We rewrite our original negative binomial as a Poisson-gamma 

mixture with an explicit latent count rate x, shift the amplification rate to it and simplify 

down (Equation 2).
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p(y) = ∫
0

∞

pois(y ∣ γx)gamma(x ∣ α, β)dx

= nbinom y ∣ α, β
γ

(Equation 2)

To avoid double counting the latent genomic counts between 0 and 1 we subtract away the 

portion of continous counts that would have given rise to 0 and 1 observed counts; 

p(x ∣ x = 0, 1) (Equation 3).

p(y ∣ x) = p(y ∣ x)p(x ∣ x)

= ∫
0

∞

pois(y ∣ γx)gamma(x ∣ α + x, β + 1)dx

= nbinom y ∣ α + x, β + 1
γ

(Equation 3)

Equation 4 shows the final likelihood which combines the discrete distribution 0 to k low 

counts with continous higher counts, with the structure:

1. Likelihood of unamplified distribution coming from zero counts.

2. Counts from amplified discrete distribution.

3. Counts from amplified continuous distribution.

4. Subtract component of the continuous distribution that is already modelled 

discretely.

p(y ∣ α, β, γ)     = nbinom(y ∣ α, β)nbinom(0 ∣ α, β)

+ ∑
x = 1

k
pois(y ∣ γx)nbinom(x ∣ α, β)

+ nbinom y ∣ α, β
γ

− ∑
x = 0

k
nbinom y ∣ α + x, β + 1

γ nbinom(x ∣ α, β)

(Equation 4)

α, β, and γ are estimated using Hamiltonian Monte Carlo sampling implemented in the 

statistical programming language Stan. Following normalisation the distribution appears to 

follow the expected independent and identically distributed binomial distribution between 

replicates, and so further inference the per phrase DpnI and DpnII counts are summed up 

across replicates.

Beta-Binomial Model—A beta binomial distribution was fit to the normalised DpnI / 

DpnII count data using the dbetabinom (VGAM package) and mle2 functions (bbmle 

package) in R. Starting parameters were α = β = 2 (mean of 0.5 with large spread). 
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Conjugacy between the binomial distribution (for read counts) and beta distribution (for 

methylation rates) results in a straightforward calculation for the posterior beta distribution 

of methylation rates for each phrases (Equation 5). Beta-binomial models are used to the 

same effect in reducing the fase positive rate of detecting methylated cytosines with few 

supporting reads in genome-wide bisulfite sequencing (Sun et al., 2014).

p ri ∣ ai, bi = beta ai + α, bi + β (Equation 5)

Generalised Linear Model—Effects of motifs or genomic context were calculated using 

a generalised linear model (R, glmnet package (Friedman et al., 2010)) with binomial output 

based on the methylated (DpnII) and unmethylated (DpnI) counts (i.e. logistic regression 

with multiple measures per point). Equation 6 shows the model log-likelihood: β are the 

linear weights, xi the features for the ith phrase, yi is an indicator for a methylated count. See 

(Friedman et al., 2010) for details on estimating β to maximise the log-likelihood. Lasso 

regularisation is used, with the penalty strength (λ) set by minimising the mean-squared 

error upon 10-fold cross-validation. This shrinks non-significant features to 0, and puts 

significant differences to be detected past ~0.02 effect size. By using the normalised DpnII 

and DpnI counts the variance in the estimate of each phrase’s methylation is retained, 

preventing the logistic regression from overfitting past it.

logp(y ∣ x, β) = 1
N ∑

i = 1

N
yi β0 + xiTβ − log 1 + exp β0 + xiTβ − λ β (Equation 6)

Gaussian Process Regression—Gaussian process regression is used to model the 

fraction methylated across the phrase library (for an overview of their use in machine 

learning see (Rasmussen and Williams, 2006)). For each (ith) phrase a logit-normal 

approximation that exactly matches the first two moments (μi, σi) to the posterior beta 

function (αi, βi) was used (Equation 7), where ψ and ψ1 are the digamma and trigamma 

functions. This approximation does not hold at the boundary values of 0 or 1, however since 

such methylation fractions only occur at low read counts, the beta-binomial model shifts 

posterior mean for each phrase away from the boundary and towards the mean library 

methylation rate. The Kullback-Liebler divergence ranges across 2×10−6 to 5×10−2 for read 

counts on the order of up to 100 that have values shifted away from the boundaries 

(Atchison and Shen, 1980).

μi = ψ αi − ψ βi
σi = ψ1 αi + ψ1 βi

(Equation 7)

The Gaussian process fits the posterior mean (μi) with a linear mixture of several functions 

(weights wa2 for the ath function) based on the phrase (xi). The posterior variance (σi) is 

included with a fixed weight (w0 = 1), which prevents the Gaussian process from fitting 

beyond the sampling resolution of the data.
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The Gaussian process models several effects which are listed in Table S2, these comprise of 

the individual phrase variance (posterior variance and residuals), constant linear effects 

(constant across all phrases, or constant across phrases from the same backbone phrase, and 

flanking nucleotide effects), and several non-linear position based functions designed to 

estimate how the position of Tcf motif affects the binding of Tcf7l2 to it. These non-linear 

position based functions are either shared across all phrases, phrases sharing the same Tcf 

motif orientation, or only those phrases generated from the same backbone phrase (b = 

{0,1,2} is used to refer to these cases respectively). The class of position based functions is 

determined by a covariance function based on the relative position of the Tcf motif between 

two different phrases (pi and pj). Two such position based covariance functions are used:

• Smoothly varying functions (krb) modelled with a radial basis covariance 

function, parametrised by a length scale λb (Equation 8). For examples of 

functions specified by this covariance function see Figure S10A.

krb pi, pj = e
− pi − pj

2

2λb
2

(Equation 8)

• Periodic functions (kpr) modelled with a periodic covariance function 

parametrised by inverse periodicity (τb) and length scale (ρb) (Equation 9) 

(Wilson and Adams, 2013). For examples of functions specified by this 

covariance function see Figure S10B.

kρr pi, pj = e−2 π pi − pi ρb
2cos 2π pi − pi τb (Equation 9)

Since covariance functions are closed under addition, a linear mixture of these positional 

effects along with the per phrase and other linear effects produces a valid (positive definite) 

covariance function. This is shown in Equation 10 using the Kronecker delta notation. i’ and 

j′ refer to the orientation of the Tcf motif, and i” and j” refer to the original backbone phrase 

(i.e. δi′j′ = 1 only if the phrases share the same Tcf motif orientation, and δi″j″ = 1 only if 

the phrases share the same original backbone phrase). fic is the position of the 5’ flanking 

nucleotide of phrase i at position c {1, 2}; tic for the 3’ flanking nucleotide.

ktotal xi, xj       = δijσiσj + δijw1
2 + w2

2 + δi′′j′′w3
2

+ w4
2 ∑

c = 1

2
δficfjc + δtictjc

+ w5
2krb pi, pj ∣ λ0 + w6

2kpr pi, pj ∣ τ0, ρ0
+ δi′j′ w7

2krb pi, pj ∣ λ1 + w8
2kpr pi, pj ∣ τ1, ρ1

+ δi′′j′′ w9
2krb pi, pj ∣ λ2 + w10

2 kpr pi, pj ∣ τ2, ρ2

(Equation 10)

The fit of the model is evaluated by the likelihood fit to the data (Equation 11). The 

covariance matrix K is constructed by evaluating the covariance function (ktotal) for all pairs 

of phrases.
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logp(μ ∣ x) = − 1
2 μTK−1μ + log K + nlog2π (Equation 11)

Different functions comprising the Gaussian process fit are extracted using Equation 12, 

where K is constructed only from the portion of the covariance function to be extracted. 

Cross validated fits are similarly calculated as in Equation 12 based on a formula for linear 

smoothers, with K excluding the posterior variance and residual components (Cook and 

Weisberg, 1982).

μ = KK−1μ

μ−i = μi − I − KK−1
ii
−1

μi − μi (Equation 12)

The weights (wa) and the hyperparameters (λb;τb;ρb) were found by gradient based 

optimisation of the likelihood using L-BFGS. The optimal periodicity 1
τb

 was found by grid 

search over all integer periodicities (up to 30bp) prior to gradient based optimisation. All 

algorithms in this section in Haskell through bindings to linear algebra (Blas and Lapack) 

and optimisation (libLBFGS) libraries. Cholesky decomposition is used for inverting the 

covariance matrix.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Interactions between transcription factors regulate their genomic binding

• A genomically integrated high-throughput screen for transcription factor 

binding

• Measures sequence determinants of Tcf7l2 binding

• Tcf7l2 binding depends on nearby and in-phase Oct4 and Klf4 motifs
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Figure 1. High-Throughput Locus-Specific DamID for Assaying Transcription Factor Binding to 
Variations in a Specific Genomic Locus
(A) The phrase library (12,000 or 2,000 oligos) is integrated using CRISPR-Cas9 and 

homologous recombination into a specific locus.

(B) Binding of Dam-Tcf7l2 to a phrase results in methylation of a GATC adjacent to the site 

of integration.

(C) Following genomic DNA extraction, two pools of completely methylated or 

unmethylated phrases are created by digestion with methylation specific restriction enzymes 

followed by PCR amplification with one locus-specific primer and one library-specific 

primer (black arrows).

(D) The amplified phrases are then deep sequenced and mapped back to the initial library. 

The relative enrichment of a phrase in the two pools indicates the level of Tcf7l2 binding. 

The sum of reads in both digests (abundance) and the fraction that is methylated (DpnII/

Abundance) are used in later plots.
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Figure 2. Statistical Modeling Reveals that the Expected Sampling Variability Explains the 
Majority of Differences between Replicates
(A) Example counts from the negative-binomial model to show the expected distribution of 

read counts (“raw” in blue) from over-sequencing fewer genomic counts (“normalized” in 

red). Vertical lines show the position of peaks corresponding to 1, 2, and 3 original genomic 

phrase counts (referred to as normalized).

(B) Estimated amplification rates (dashed line) for the phrase library in the accessible 

chromatin locus following Dam-Tcf7l2 expression are used to calculate the underlying 

genomic counts (“normalized”) from the observed sequencing counts (“raw”).

(C) Normalization reveals that high abundance phrases have high concordance between 

replicates, which decreases as the abundance decreases.

(D) Variability between replicates closely follows the expected binomial sampling 

distribution. Due to this, counts are pooled across replicates for further analysis.

(E) A beta-binomial empirical Bayes distribution is fit to each sample, which reduces the 

effect of heteroscedasticity by biasing low coverage samples toward the mean fraction 

methylated. MAP, maximum a posteriori estimate of beta distribution; MLE, maximum 

likelihood estimate or binomial distribution.
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Figure 3. 99 bp of Local Sequence Regulates Binding of Tcf7l2 to Its Motif across Different 
Genomic Sites
(A and B) (A) Dam-Tcf7l2 and (B) Dam methylation of phrases in the accessible locus 

Rosa26, split by the presence of a Tcf7l2 motif.

(C) Logistic regression effect size of genomic features on phrases transplanted to the 

accessible locus Rosa26. Note the base effect is additive: a phrase that was bound in 

intestinal endoderm, which a Tcf motif, and an mESC enhancer marks has methylation as 

the sum the red, green, and blue bars for intestinal endoderm.

(D) Logistic regression effect size for the presence of cofactor motifs after integration of the 

phrase library in the accessible locus.

(E) Logistic regression effect size for the presence of cofactor motifs, either individually or 

as pairwise interaction with the presence of the Tcf motif, after integration of the phrase 

library in the inaccessible locus uCD8. This specific sample was measured with wild-type 

Dam, instead of the N126A variant used elsewhere. Non-significant features are shrunk to 

zero (e.g., cMyc, Ets,…).
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Figure 4. Individual Phrase-Level Resolution of Dam-Tcf7l2 Binding Shows Influence of Motif 
Score and Cofactor Motif Presence
(A) Comparison of 95% posterior credible interval of fraction methylated for the 12,000 and 

2,000 phrase libraries with Dam-Tcf7l2 in the accessible locus.

(B) Spread of Tcf7l2 binding (Dam-Tcf7l2 relative to unfused Dam) as the Tcf motif is tiled 

across each backbone phrase. Scrambling the Tcf motif (blue dot) substantially decreases 

binding relative to original Tcf motif (red dot) (*p < 0.05). Gray dots are outliers from the 

box plot.

(C) The two 5′ and 3′ nucleotides flanking the Tcf motif consistently explain some of a 

variability in binding and are consistent with lower informative bases in the estimated motif 

for Tcf7l2 from protein binding microarrays.

(D) Logistic regression effect of scrambling each motif across the whole library. For raw 

values see Figure S2.

(E) Example of footprint for the tiled Tcf motif disrupting the Oct4 (e522) or Klf4 motif 

(s3035) to the same level as scrambling the motif. Shaded region/error bars show 95% 

posterior credible interval.
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Figure 5. Tcf7l2 Binding Depends on Locus and Cofactor-Dependent Spatial Interactions
(A) Backbone phrase-specific variance in methylation rate explained by Gaussian process 

components across both accessible and inaccessible loci, and Dam-Tcf7l2 and unfused Dam.

(B) Estimated effect of the backbone phrase-invariant smooth and orientation specific 

periodic effects.

(C) Observed methylation components extracted from the Gaussian process for a 

representative set of backbone phrases. Shown is the sum of the backbone-phrase-specific 

components: constant, smooth, and periodic.

(D) Aggregate profiles of the backbone phrase-specific smooth and periodic components for 

Dam-Tcf7l2 or unfused Dam methylation, grouped by cofactors present. Phrases are 

centered at midpoint of the respective cofactor motif and calculated to the midpoint of the 

Tcf motif for each of the possible orientations. Sox2-Oct4 joint motifs are excluded as they 

would exaggerate the average signal compared with other Oct4 sites.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Tcf7l2 DamID on 12,000 oligo library This paper data/1st-library-raw-values.txt at https://gitlab.com/tszczesnik/tcf-
grammar-analysis

Tcf7l2 DamID on 2,000 oligo library This paper data/2nd-library-raw-values.txt at https://gitlab.com/tszczesnik/tcf-
grammar-analysis

Experimental Models: Cell Lines

129P2/OlaHsd mouse embryonic stem cells (Iacovino et al. 2011) N/A

Oligonucleotides

12,000 170-bp oligo pool CustomArray data/1st-library-sequences.fa at https://gitlab.com/tszczesnik/tcf-
grammar-analysis

2,000 150-bp oligo pool Twist Biosciences data/2nd-library-sequences.fa at https://gitlab.com/tszczesnik/tcf-
grammar-analysis

Recombinant DNA

plasmid: DamN126A and Tcf7l2-DamN126A (Szczesnik et al.,2019) N/A

Software and Algorithms

fastq-multx (Aronesty 2011) N/A

PEAR (Zhang et al. 2014) N/A

Bwa (Li and Durbin 2009) N/A

Glmnet (Friedman et al., 2010) N/A

negative-binomial normalisation This paper statistical-analysis/negative-binomial-dropout.stan at https://
gitlab.com/tszczesnik/tcf-grammar-analysis

Gaussian process regression This paper gp-damid/ at https://gitlab.com/tszczesnik/tcf-grammar-analysis
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