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Abstract

Hydrogen sulfide (H2S) has been proposed as a novel neuromodulator and neuroprotective agent. Cobalt chloride (CoCl2) is
a well-known hypoxia mimetic agent. We have demonstrated that H2S protects against CoCl2-induced injuries in PC12 cells.
However, whether the members of mitogen-activated protein kinases (MAPK), in particular, extracellular signal-regulated
kinase1/2(ERK1/2) and p38MAPK are involved in the neuroprotection of H2S against chemical hypoxia-induced injuries of
PC12 cells is not understood. We observed that CoCl2 induced expression of transcriptional factor hypoxia-inducible factor-1
alpha (HIF-1a), decreased cystathionine-b synthase (CBS, a synthase of H2S) expression, and increased generation of reactive
oxygen species (ROS), leading to injuries of the cells, evidenced by decrease in cell viability, dissipation of mitochondrial
membrane potential (MMP) , caspase-3 activation and apoptosis, which were attenuated by pretreatment with NaHS (a
donor of H2S) or N-acetyl-L cystein (NAC), a ROS scavenger. CoCl2 rapidly activated ERK1/2, p38MAPK and C-Jun N-terminal
kinase (JNK). Inhibition of ERK1/2 or p38MAPK or JNK with kinase inhibitors (U0126 or SB203580 or SP600125, respectively)
or genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-p38MAPK) significantly prevented CoCl2-induced
injuries. Pretreatment with NaHS or NAC inhibited not only CoCl2-induced ROS production, but also phosphorylation of
ERK1/2 and p38MAPK. Thus, we demonstrated that a concurrent activation of ERK1/2, p38MAPK and JNK participates in
CoCl2-induced injuries and that H2S protects PC12 cells against chemical hypoxia-induced injuries by inhibition of ROS-
activated ERK1/2 and p38MAPK pathways. Our results suggest that inhibitors of ERK1/2, p38MAPK and JNK or antioxidants
may be useful for preventing and treating hypoxia-induced neuronal injury.
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Introduction

Hydrogen sulfide (H2S) is a well- known cytotoxic gas. There is now

increasing evidence that it is an endogenously produced gaseous

messenger and, in particular, serves as a novel neuromodulator in the

central nervous system (CNS) [1,2]. H2S is usually stored as bound

sulfane sulfur in neurons and astrocytes [3]. Upon neuron excitation

or other stimuli, the bound sulfane sulfur then releases free H2S. A

more recent study indicated that the estimated physiological

concentration (free concentration) of H2S in the mice brain was

around 1463.0 nM [4] which is consistent with values reported by

another group that tested H2S concentration using a novel method

[3]. Physiological concentrations of H2S can potentiate the activity of

the N-methyl-D-aspartate (NMDA) receptor and increase the

induction of hippocampal long-term potentiation (LTP) [5,6], which

is associated with learning and memory. H2S can also induce calcium

waves / elevation in both astrocytes and microglia [7,8].

Importantly, accumulating evidence revealed that H2S may

serve as an important neuroprotective agent. Kimura et al. firstly

demonstrated that H2S protects primary rat cortical neurons from

oxidative stress-induced injury [9]. H2S also protects cells against

cytotoxicity caused by peroxynitrite, b-amyloid, hypochlorous acid

and H2O2 [10,11,12,13,14]. Additionally, H2S attenuates lipopoly

saccharide (LPS)-induced inflammation in microglia [15] and

inhibits rotenone-induced apoptosis in human-derived dopami-

nergic neuroblastoma cell line (SH-SY5Y) [16]. We found recently

that H2S protects PC12 cells against cobalt chloride (CoCl2, a

chemical hypoxia mimetic agent)-induced injuries by enhancing

heat shock protein 90 (HSP90) [17]. One of the key mechanisms

underlying H2S neuroprotection is its antioxidation. H2S exerts its

protective effect not only by enhancing reduced glutathione (GSH,

a major cellular antioxidant) [9,18], but also by scavenging

reactive oxygen species (ROS) [11,14,17] and peroxynitrite [12] to

suppress oxidative stress. In addition, H2S increases the redistri-
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bution of GSH into mitochondria, which also contribute to the

neuroprotection from oxidative stress [18]. Another important

H2S-triggered neuroprotective mechanism may be associated with

its anti-inflammatory effect [15].

Recently, the roles of members of the mitogen-activated

protein kinase (MAPK) family in H2S neuroprotection have

attracted extensive attention. Mammals express at least three

distinct groups of MAPKs, including extracellular signal-

regulated protein kinase1/2 (ERK1/2), C-Jun N-terminal kinase

(JNK) and p38MAPK. In neuronal cells, ERK1/2 is mainly

activated by growth factor and is associated with cell prolifer-

ation, differentiation and development, whereas JNK and

p38MAPK are preferentially activated by environmental stress

and inflammatory cytokines, and have been shown to promote

neuronal cell death [19,20]. Hu et al. reported that H2S inhibits

LPS-induced NO production in microglia via inhibition of

p38MAPK [15] and that H2S protects SH-SY5Y cells against

rotenone-induced apoptosis by inhibiting the p38/JNK signaling

pathways [16]. In addition, H2S protects astrocytes against

H2O2-induced neural injury via suppressing ERK1/2 activation

[14]. These findings mentioned above suggest that the inhibition

of ERK1/2 pathway or p38/JNK pathways may be involved in

H2S neuroprotective effect in different cell models. However,

whether both ERK1/2 and p38MAPK pathways participate in

neuroprotection of H2S against chemical hypoxia-induced injury

in PC12 cells is unclear.

Cobalt chloride (CoCl2) is a well-known hypoxia mimetic agent

and can mimic the hypoxic response in many aspects [21]. CoCl2-

mimicked hypoxia increases the level of HIF-1a protein [22,23].

CoCl2 also functions as an oxidative stress-inducing factor since

Co (II) can react with H2O2 by a Fenton-type reaction to produce

ROS [24]. A recent study showed that H2O2 rapidly activates

MAPKs, including ERK1/2, JNK and p38MAPK and that N-

acetyl-L-cysteine (NAC), a free radical scavenger, dramatically

inhibits H2O2-induced phosphorylation of ERK1/2, JNK and

p38MAPK [25]. Furthermore, CoCl2 has been shown to activate

p38MAPK in the perfused amphibian heart [26] and PC12 cells

[27]. Since we have demonstrated that H2S protects PC12 cells

against CoCl2-induced injury by inhibiting ROS overproduction,

so, we speculated that H2S could prevent from CoCl2-induced

injury via inhibition of ROS-activated ERK1/2 and p38MAPK

pathways. This hypothesis is supported by the findings of present

study that (1) CoCl2 elicited overproduction of ROS, and

downregulated expression of CBS in PC12 cells; (2) CoCl2
upregulated expressions of both phosphorylated (p) ERK1/2 and

p38MAPK; (3) NAC, an antioxidant and ROS scavenger,

significantly depressed CoCl2-induced activation of both ERK1/

2 and p38MAPK, and prevented CoCl2-induced injuries,

including cytotoxicity, caspase-3 activation, apoptosis and loss of

mitochondrial membrane potential(MMP); (4) U0126 (ERK1/2

inhibitor) or SB203580 (p38MAPK inhibitor) obviously attenuated

CoCl2-induced injuries; (5) Si-ERK1/2 or Si-p38MAPK obviously

attenuated CoCl2 induced cytotoxicity; (6) Similar to the effects of

NAC, H2S protected PC12 cells against CoCl2-induced injuries,

along with inhibition of CoCl2-induced ROS overproduction as

well as activation of ERK1/2/p38MAPK. These findings provide

a new insight into the mechanisms of H2S neuroprotection against

chemical hypoxia-induced injury.

Materials and Methods

Materials
Sodium hydrosulfide, CoCl2, N-acetyl-L-cysteine (NAC),

Hoechst33258, PI, RNase, dichlorofluorescein diacetate (DCFH-DA)

and JC-1 were purchased from Sigma-Aldrich (St Louis, MO, USA).

The Cell Counter Kit-8 (CCK-8)) was purchased from Dojindo Lab

(Kumamoto, Japan). The DMEM medium and fetal bovine serum

FBS) were supplied by Gibco BRL (Grand Island, NY, USA).

Monoclonal anti-CBS antibody, anti-Cleaved-caspase-3 antibody,

anti-p38 antibody, anti-p-p38 antibody, SP600125 and SB203580

were purchased from Cell Signaling Technology (Boston, MA, USA).

anti-HIF1a,anti-p-ERK1/2 and anti-ERK1/2 antibody, anti-JNK

antibody, anti-p-JNK antibody, were purchased from Bioworld

company (Louis Park, MN, USA). U0126 (the inhibition of MEK1/

2), anti-b-actin antibody, HRP-conjugated secondary antibody and

BCA protein assay kit were purchased from Kangchen Bio-tech

(Shanghai, China). Western Blot Detection Kit (ECL solution) was

purchased from KeyGen Biotech (Nanjing, China).

Cell culture and treatments
The rat pheochromocytoma cell line PC12 cells were purchased

from Sun Yat-sen University Experimental Animal Center, and

were grown in DMEM medium supplemented with 10% fetal

bovine serum (FBS) at 37uC under an atmosphere of 5% CO2 and

95% air. According to our previous study [17], chemical hypoxia

was achieved by adding CoCl2 at 600 mmol/L into the medium

and cells were incubated in the presence of CoCl2 for the indicated

times. The cytoprotective effects of H2S were observed by

administering 400 mmol/L NaHS (a donor of H2S) for 30 min

prior to exposure to CoCl2 for 24 h. In order to clarify the role of

ERK1/2 or p38MAPK or JNK in CoCl2-induced injuries, cell

were pretreated with U0126 (ERK1/2 inhibitor) for 120 min or

SB203580 (p38MAPK inhibitor) for 60 min or SP600125 (JNK

inhibitor) for 60min before exposure to CoCl2. NAC was

administered 60 min prior to administration of 600 mmol/L

CoCl2 for 24 h.

Cell viability assay
PC12 cells were suspended in medium and plated at a density of

16104 cells/well in 96 well plates, and the cells viability was

assessed by the Cell Counter Kit-8(CCK-8) assay. Cells were

treated with 400 mmol/L NaHS for 30 min prior to administra-

tion of 600 mmol/L CoCl2 for 24 h. After the indicated

treatments, 10 ml CCK-8 solution was added to each well of the

plat and the cells in the plat were incubated for 4 h in the

incubator. The absorbance at 450 nm was measured with a

microplate reader(Molecular Devices , Sunnyvale, CA, USA).

Means of 4 wells optical density (OD) in the indicated groups were

used to calculated percentage of cells viability according to

calculate percentage of cells viability according to the formula

below:

Percentage of cells viability(%) = (OD treatment group / OD

control group) 6100

Assuming that the absorbance of the control cells was

100%.The experiment was repeated 3 times.

Nuclear Staining for assessment of apoptosis with
Hoechst 33258

Apoptotic cell death was determined by using the Hoechst

33258 staining method. Cells were plated at a density of 16106

cells/well in 35 mm dishes. At the end of the indicated treatments,

cells were harvested and fixed with 4% paraformaldehyde in

0.1 mol/L phosphate-buffered saline (PBS, pH 7.4) for 10 min.

After rinsing with PBS, the nuclear DNA was stained with 5 mg/

ml Hoechst 33258 dye for 10 min before being rinsed briefly with

PBS and then visualized under a fluorescence microscope (Bx50-

FLA; Olympus, Tokyo, Japan). Viable cells displayed a uniform

Roles of ERK1/2 and p38 in Neuroprotection of H2S
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blue fluorescence throughout the nucleus, whereas apoptotic cells

showed condensed and fragmented nuclei.

Flow cytometry (FCM) analysis of apoptosis
Treated PC12 cells were digested with trypsin (2.5 mg/ml),

centrifuged at 350 g for 10 min and the supernatant was removed.

Cells were washed twice with PBS and fixed with 70% ice-cold

ethanol. Cells were then centrifuged at 350 g for 10 min, washed

twice with PBS and adjusted to a concentration of 16106 cells/ml.

Then, 0.5 ml RNase (1 mg/ml in PBS) was added to a 0.5 ml cell

sample. After gentle mixing with PI (at a terminal concentration of

50 mg/L), mixed cells were filtered and incubated in the dark

at 4uC for 30 min before flow cytometric analysis. The PI

fluorescence of individual nuclei was measured by a flow

cytometer (Beckman-Coulter, Los Angeles, CA, USA). (excitation:

488nm, emission: 615 nm). The research software matched with

FCM was used to analyze all the data of DNA labeling. In the

DNA histogram, the amplitude of the sub-G1 DNA peak, which is

lower than the G1 DNA peak, represents the number of apoptotic

cells. The experiment was repeated 3 times.

Measurement of intracellular ROS generation
Intracellular ROS levels were determined by oxidative conver-

sion of cell-Permeable DCFH-DA to fluorescent DCF. PC12 cells

were cultured in 24 well plates. After the indicated treatments, cells

were washed twice with PBS and 10 mmol/L DCFH-DA solution

in serum-free medium was added and co-incubated for 30 min at

37uC. Cells were washed three times with PBS and DCF

fluorescence was measured over the entire field of vision by using

a fluorescent microscope connected to an imaging system (BX50-

FLA; Olympus, Tokyo, Japan). Mean fluorescence intensity (MFI)

from four random fields was analyzed by using IMAGEJ 1.41o

software (National Institutes of Health (NIH), Bethesda, MD,

USA). The MFI is used as an index of the amount of ROS. The

experiment was repeated 3 times.

Measurement of MMP
To determined the mitochondrial membrane potential the

lipophilic cationic probe 5,59,6,69-tetrachloro-1,19,3,39-tetraethyl-

benzimidazol-carbocyanine iodide (JC-1) was used. In living cells,

JC-1 exists either as a green fluorescent monomer at low

membrane potential or as an orange-red fluorescent J-aggregate

at high membrane potentials. The ratio of red/green JC-1

fluorescence is dependent on the mitochondrial membrane

potential. In the present study, PC12 cells were cultured in 24

well plates and treated with 400 mmol/L NaHS for 30 min prior

to administration of 600 mmol/L CoCl2 for 24 h. NAC was

administered 60 min prior to administration of 600 mmol/L

CoCl2 for 24 h. To evaluate MMP, JC-1 (5 mg/L) was added to

cell cultures for 30 min at 37uC and fluorescence was measured

over the entire field of vision using a fluorescent microscope

connected to an imaging system (BX50-FLA; Olympus, Tokyo,

Japan). The Ratios of red/green fluorescent densities from four

random fields was analyzed by using IMAGEJ 1.41o software.

The experiment was repeated 3 times.

Western blot assay for expression of protein
After subjected to the indicated treatments, cells were harvested

and lysed with cell lysis solution. Total protein in the cell lysate was

quantified using the BCA protein assay kit. Sample buffer was

added to cytosolic extracts, and after boiling for 5 min, equal

amounts of supernatant from each sample were fractionated by

10% sodium dodecyl sulphate-polyacrylamide gel electrophoresis

(SDS-PAGE). Total protein in the gel was transferred into

polyvinylidene difluoride (PVDF) membranes. Membranes were

blocked for 1.5 h at room temperature in fresh blocking buffer

(0.1% Tween20 in Tris-buffered saline (TBS-T) containing 5% fat-

free milk) and then incubated with either anti-CBS (1:1000

dilution), anti-cleaved-caspase-3 (1:1000), anti-p38 (1:1000 dilu-

tion), anti-p-p38 (1:1000 dilution), anti-HIF1a(1:1000 dilution),

anti-p-ERK1/2 (1:1000 dilution), anti-ERK1/2 (1:1000 dilution),

anti-p-JNK, anti-JNK (1:1000 dilution) or anti-b-actin antibodies

(1:5000 dilution) in freshly prepared TBS-T with 3% free-fat milk

overnight with gentle agitation at 4uC. Following three washes

with TBS-T, membranes were incubated with horseradish

peroxidase-conjugated goat anti-rabbit secondary antibodies

(1:3000 dilution; Kangchen Biotech, shanghai, china) in TBS-T

with 3% fat-free milk for 1.5 h at room temperature. Membranes

were washed three times with TBS-T, developed in ECL solution

(keygen Biotech, Nanjing, china) and visualized with X-ray film.

Each experiment was repeated at least three times. For

quantification, the film were scanned and analyzed by using

IMAGEJ 1.41o software. And the density of specific bands was

measured and normalized with the control band. The experiment

was repeated 3 times.

Gene knockdown
Small interfering RNA (Si-RNA) against rat p38MAPK and

ERK1/2 subunit mRNA (NM-031020, NM-017347, NM-

053842) was synthesized by GenePharma Co., Ltd (People’s

Republic of China). The Si-RNA of p38 and ERK1/2 (Si-p38 and

Si-ERK1/2) and random non-coding RNA (Si-NC) were

transfected into PC12 cells using Lipofectamine 2000, according

to the manufacturer’s instruction (Invitrogen, USA). Si-

p38MAPK, Si-ERK1/2 and Si-NC (50 nmol/L) were incubated

with the cells for 6 h in order to transfect into the cells. Efficiency

of genetic silencing by Si-RNA was evaluated by western blot

assay.

Statistical analysis
All data are representative of experiments done in triplicate and

are expressed as the mean 6 SE. Differences between groups were

analyzed by one-way analysis of variance(ANOVA) using SPSS

13.0 software, and followed by LSD post hoc comparison test.

Statistical significance was defined as P,0.05.

Results

CoCl2 enhances expression of HIF-1a in PC12 cells
It is well known that CoCl2 is able to mimic transcriptional

factor hypoxia-inducible factor-1 (HIF-1) activation by hypoxia

which consists of two subunits: HIF-1a and HIF-1b. As shown in

Figure 1, HIF-1a expression was lower in untreated PC12 cells

(lane 1). However, its expression was significantly increased after

3 h exposure to 600 mmol/L CoCl2 and sustained up to 6 9 and

12 h, respectively. These results suggest that CoCl2 can mimic

hypoxia in PC12 cells.

CoCl2 inhibits expression of CBS in PC12 cells
Cystathionine-b-synthase. (CBS) is the major synthetic

enzyme responsible for endogenous H2S generation in PC12

cells [28]. Western blot analysis was performed to evaluate

whether CoCl2 decreases expression of CBS. As shown in

Figure 2A and B, treatment with 600 mmol/L CoCl2 caused a

significant down-regulation of CBS expression in PC12 cells at the

indicated times (i.e. 9, 12 and 24 h after exposure to CoCl2). These

data suggest that CoCl2 may decrease endogenous H2S production.

Roles of ERK1/2 and p38 in Neuroprotection of H2S
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H2S attenuates CoCl2-induced overproduction of ROS
As shown in Figure 3A-d and B, exposure of PC12 cells to

600 mmol/L CoCl2 for 6 h, significantly increased intracellular

ROS levels. Pretreatment of PC12 cells with 400 mmol/L NaHS (a

donor of H2S) for 30 min prior to exposure of cells to 600 mmol/L

CoCl2 markedly reduced intracellular ROS levels (Figure 3A-e

and B). To further demonstrate whether inhibition of H2S on

CoCl2-induced ROS overproduction is associated with its

antioxidation, NAC (a common ROS scavenger) was used.

Similarly, pretreatment of PC12 cells with 500 mmol/L NAC for

60 min before exposure of cells to CoCl2 also obviously decreased

intracellular ROS levels (Figure 3A-f and B). The results suggest

that antioxidation of H2S may contribute to its inhibitory effect on

CoCl2-induced generation of ROS.

H2S inhibits CoCl2-induced phosphorylation of ERK1/2
and p38MAPK activated by ROS

Findings of western blot analysis revealed that treatment of

PC12 cells with 600 mmol/L CoCl2 induced expression of

phosphorylated(p) ERK1/2 at specific times (i.e. 5, 15, 30, 60,

120, 180 min after exposure to CoCl2) , compare with control

(Figure 4A and B). Within 15,120 min after exposure to CoCl2,

there was a sustained increase in expression of p-ERK1/2, which

peaked at 30 min and 60 min (Figure 4A and B). However, CoCl2
treatment did not induce significant changes in expression of total

ERK1/2 in the indicated times (Figure 4A and B). Similarly, as

shown in Figure 4C and D, exposure of PC12 cells to CoCl2 also

induced sustained expression of p-p38MAPK in the indicated

times. The maximal expression of p-p38MAPK induced by CoCl2

appeared at 120 min. The expression of total p38MAPK was

unchanged during exposure of cells to 600 mmol/L CoCl2
(Figure 4C). In addition, CoCl2 treatment also time-dependently

increased expression of p-JNK in the indicated times (Figure 4E

and F), but did not change expression of total JNK (Figure 4E).

We also explored roles of ROS in CoCl2-induced expressions of

p-ERK1/2 and p-p38MAPK. As shown in Figure 5A and B,

pretreatment of PC12 cells with 500 mmol/L NAC for 60 min

prior to exposure of cells to CoCl2 at 600 mmol/L markedly

suppressed overexpression of p-ERK1/2 induced by CoCl2
treatment for 30 min. NAC alone did not change expression of

p-ERK1/2. In addition, NAC pretreatment also exerted similar

inhibitory effect on CoCl2-induced overexpression of p-p38MAPK

(Figure 5C and D). The above findings suggest that CoCl2-induced

phosphorylation of ERK1/2 and p38MAPK is triggered by ROS.

Importantly, we observed that H2S can depress ROS-activated

ERK1/2 and p38MAPK induced by CoCl2. As shown in

Figure 6A and B, exposure of PC12 cells to 600 mmol/L CoCl2
for 30 min obviously upregulated expression of p-ERK1/2, this

effect was markedly suppressed by pretreatment of cells with

400 mmol/L NaHS for 30 min before exposure to CoCl2
(Figure 6A and B). Additionally, treatment of PC12 cells with

600 mmol/L CoCl2 for 120 min also enhanced expression of p-

p38MAPK, which was attenuated by pretreatment of cells with

400 mmol/L NaHS for 30 min prior to CoCl2 treatment

(Figure 6C and D). However, pretreatment with NaHS did not

alter the increased expression of JNK induced by CoCl2 exposure

(data not shown). NaHS at 400 mmol/L alone did not affect the

basal expression of p-ERK1/2 and p-p38MAPK (Figure 6).

Figure 1. CoCl2-induced expression of HIF-1a in PC12 cells. (A)
time course for the effects of CoCl2 on expression of HIF-1a detected by
western blot analysis; (B) Denstiometric analysis for the results in (A)
with the Image J 1.41o software. Data were shown as the mean 6 SE
(n = 3). ##P,0.01 compared with control group (0h).
doi:10.1371/journal.pone.0025921.g001

Figure 2. Effects of CoCl2 on the expression of CBS in PC12
cells. PC12 cells were treated with 600 mmol/L CoCl2 for different times.
(A) The expression levels of CBS in PC12 cells were examined by
western blot and b-actin was used as internal control. (B) Denstiometric
analysis for the data from (A) with the Image J 1.41o software. Values
are the mean 6 SE (n = 3). ##P,0.01 compared with control group (0h).
doi:10.1371/journal.pone.0025921.g002

Roles of ERK1/2 and p38 in Neuroprotection of H2S
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MAPK pathway mediates CoCl2-induced injuries in PC12
cells

To dissect the roles of ERK1/2, p38MAPK and JNK in CoCl2-

induced injuries, we firstly tested effects the kinases inhibitor on

CoCl2-induced exoressions of p-ERK1/2 and p-p38MAPK. PC12

cells were pretreated with MEK1/2(upstream of ERK1/2)

inhibitor U0126 or SB203580 (p38MAPK inhibitor), respectively,

then followed by exposure of cells to 600 mmol/L CoCl2. As

shown in Figure 7A and C, pretreatment of with ERK1/2

inhibitor U0126 (10 mmol/L) for 120 min or p38MAPK inhi-

bitor SB203580 (20 mmol/L) for 60 min, blocked CoCl2-induced

phosphorylation of ERK1/2 or p38MAPK, respectively. Addi-

tionally, gene silencing experiments (Figure 7E and G) showed that

genetic silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2

or Si-p38MAPK) attenuated expression of ERK1/2 or

p38MAPK, respectively.

Next, we examined the roles of ERK1/2, p38MAPK and JNK

pathways in CoCl2-induced cell injuries. As shown in Figure 8A

and B, after PC12 cells were treated with CoCl2 at 600 mmol/L

for 24 h, the cell viability was dramatically reduced to

(41.2864.44)% (P,0.01) compared with control group. However,

when cells were preconditioned with 20 mmol/L SB203580 for

60 min or 10 mmol/L U0126 for 120 min or 10 mmol/L

SP600125 (inhibitor of JNK) for 60 min, followed by exposure

to 600 mmol/L CoCl2 for 24 h, the cell viability was considerably

enhanced, respectively (Figure 8A). In addition, co-incubation of

cells with Si-p38 or Si-ERK1/2 for 6 h also blocked CoCl2-

induced inhibitory effect on cell viability (Figure 8B). These data

indicate that ERK1/2, p38MAPK and JNK pathways are

involved in CoCl2-induced cytotoxicity.

We further examined whether ERK1/2 and p38MAPK

pathways participate in CoCl2-induced apoptosis. Our findings

showed that the cells, treated with 600 mmol/L CoCl2 for 48 h

appeared typical characteristics of apoptosis, including the

condensation of chromatin, the shrinkage of nuclear and a few

of apoptotic bodies (Figure 8C). However, preconditioning of cells

with 10 mmol/L U0126 for 120 min prior to CoCl2 treatment

obviously reduced the number of cells with nuclear condensation

and fragmentation (Figure 8C). Pretreatment of cells with

20 mmol/L SB203580 for 60 min before exposure to CoCl2, also

inhibited CoCl2-induced apoptosis (Figure 8C). Alone, U0126

(10 mmol/L) or SB203580 (20 mmol/L) did not significantly alter

morphology or apoptotic percentage of PC12 cells compared with

the control (Figure 8C). In addition, the data from FCM analysis

further demonstrated that exposure of cells to 600 mmol/L CoCl2
for 48 h increased the percentage of apoptotic PC12 cells

(Figure 8D). However, the apoptotic effect of CoCl2 treatment

was reversed by pretreatment of cells with U0126 or SB203580,

respectively (Figure 8D).

Furthermore, we examined the roles of ERK1/2 and

p38MAPK pathways in CoCl2-induced caspase-3 (apoptotic

effector). The results of western blot analysis showed that exposure

of cells to 600 mmol/L CoCl2 enhanced the expression of cleaved

caspase-3 within 6 to 24 h(Figure 9A-a,b). Pretreatment of cells

with 10 mmol/L U0126 or 20 mmol/L SB203580 prior to CoCl2
treatment inhibited CoCl2-induced expression of cleaved-caspase-

3, respectively (Figure 9B-a, b and C-a, b). These results further

indicated that both ERK1/2 and p38 MAPK pathways play

important roles in CoCl2-induced apoptosis of PC12 cells.

H2S and NAC protect PC12 cells against CoCl2-induced
injuries

Protective effects of H2S and NAC were examined on CoCl2-

induced cytotoxicity and apoptosis in PC12 cells. As shown in

Figure 10A, when PC12 cells were exposed to 600 mmol/L CoCl2 for

24 h, the cell viability was reduced to (41.2864.14)% compared with

control group (P,0.01). Pretreatment of cells with 400 mmol/L NaHS

for 30 min prior to exposure to CoCl2 significantly increased cell

viability to (59.8365.0)% (P,0.01) compared to the CoCl2-treated

group, indicating that H2S suppresses CoCl2-induced cytotoxicity.

Pretreatment with 500 mmol/L NAC for 60 min had similar

cytoprotective effect against CoCl2-induced cytotoxicity (Figure 10A).

We also observed cytoprotection of H2S and NAC against

CoCl2-induced apoptosis in PC12 cells. As shown in Figure 10B

and C, Pretreatment of PC12 cells with 400 mmol/L NaHS for

30 min or 500 mmol/L NAC for 60 min before exposure to

600 mmol/L CoCl2 for 48 h significantly attenuated CoCl2-

induced apoptosis, respectively. In addition, we examined the

Figure 3. Effects of NaHS and NAC on CoCl2-induced overpro-
duction of reactive oxygen species (ROS) in PC12 cells. (A)
Random micrographs of dichlorofluorescein (DCF)-derived fluorescence
in PC12 cells. A-a: Control, untreated cells; A-b: NaHS group, cells were
treated with 400 mmol/L NaHS for 30 min alone; A-c: NAC group, cells
were treated with 500 mmol/L NAC for 60 min alone; A-d: CoCl2-treated
group, CoCl2 cells treated with 600 mmol/L CoCl2 for 6 h; A-e:
NaHS+CoCl2 group, cells were preconditioned with 400 mmol/L NaHS
for 30min prior to treatment with 600 mmol/L CoCl2 for 6 h; A-f:
NAC+CoCl2 group, cells were preconditioned with 500 mmol/L NAC for
60 min prior to treatment with 600 mmol/L CoCl2 for 6 h; (B)
Quantitative analysis of the mean fluorescence intensity in the indicated
groups. Data are the mean 6 SE (n = 3). ##P,0.01 compared with
control, **P,0.01 compared with CoCl2-treated group.
doi:10.1371/journal.pone.0025921.g003
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effects of NaHS and NAC on the expression of cleaved-caspase-3

induced by CoCl2 treatment in PC12 cells, our findings

demonstrated that, pretreatment with NaHS (Figure 11A and B)

and NAC (Figure 11C and D) blocked CoCl2-induced the

expression of cleaved-caspase-3 in PC12 cells .

Furthermore, our findings showed that both H2S and NAC can

protect PC12 cells against CoCl2-induced mitochondrial insult. As

shown in Figure 12A and B, when PC12 cells were treated with

600 mmol/L CoCl2 for 24 h, the MMP was dramatically reduced

0.3 fold, as shown by a decrease in MFI, compared with control

cells (P,0.01). However, preconditioning with 400 mmol/L NaHS for

30 min or 500 mmol/L NAC for 60 min prior to CoCl2 treatment for

24 h obviously attenuated CoCl2-induced dissipation of MMP,

increasing 2.8 fold or 2.7 fold of MMP compared with the one in

CoCl2-treated group (P,0.01), respectively. NaHS (400 mmol/L) or

NAC (500 mmol/L) alone did not measurably affect MMP.

Discussion

It is well documented that hypoxia/ischemia is one of the main

causes of secondary neuronal injury because this condition results

in the production of ROS which can attack nucleic acids, proteins

Figure 4. CoCl2-induced activation of ERK1/2, p38MAPK and JNK in PC12 cells. (A), (C) and (E) time course for the effects of CoCl2 on
phosphorylation of ERK1/2, p38MAPK and JNK, respectively. (B), (D) and (F) Denstiometric analysis for the results in (A), (C) and (E), respectively. Data
are presented as the mean 6 SE (n = 3). #P,0.05, ##P,0.01 compared to the control group (0min), respectively.
doi:10.1371/journal.pone.0025921.g004
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Figure 5. NAC attenuated CoCl2-induced ERK1/2 and p38MAPK phosphorylation in PC12 cells. PC12 cells were pretreated with
500 mmol/L NAC for 60 min prior to exposure of cells to 600 mmol/L CoCl2 for 30 min (A) and (B) or 120 min (C) and (D). Cell lysates were subjected to
western blot analysis using anti-p-ERK1/2 and anti-ERK1/2 antibody (A) and (B) or anti-p-p38 and anti-p38 antibody (C) and (D). (B) and (D) show
denstiometric analysis for the data from (A) or (C), respectively. Data are presented as mean 6 SE from independent experiments preformed in
triplicate. ##P,0.01 compared to the control group, **P,0.01 compared to the CoCl2 group.
doi:10.1371/journal.pone.0025921.g005

Figure 6. NaHS attenuated CoCl2-induced ERK1/2 and p38 MAPK phosphorylation in PC12 cells. PC12 cells were preconditioned with
400 mmol/L NaHS for 30min before exposure of cells to 600 mmol/L CoCl2 for 30 min (A) and (B) or for 120min (C) and (D). Cell lysates were subjected
to western blot analysis using anti-p-ERK1/2 and anti-ERK antibody (A and B) or anti-p-p38 and anti-p38 antibody (C) and (D). Panels (B) and (D) show
denstiometric analysis for the data from (A) or (C), respectively. Data are presented as mean 6 SE from independent experiments preformed in
triplicate. ##P,0.01 compared to the control group, **P,0.01 compared to the CoCl2 group.
doi:10.1371/journal.pone.0025921.g006
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Figure 7. Effects of kinase inhibitors on CoCl2-induced phosphorylation of p38MAPK and ERK1/2 as well as the gene silencing
effect on their expressions. PC12 cells were preconditioned with 10 mmol/L MEK1/2 (upstream of ERK1/2) inhibitor U0126 for 120 min and
20 mmol/L p38MAPK inhibitor SB203580 for 60 min before exposure of cells to 600 mmol/L CoCl2 for 30 min (A, B) and 120 min (C, D), respectively.
Panels (B) and (D) show denstiometric analysis for the data from (A) or (C), respectively. (E) and (G) PC12 cells were co-cultured with small interfering
RNA (Si-ERK1/2 and Si-p38MAPK) or random non-coding RNA (Si-NC) at 50 nmol/L for 6 h. Expressions of ERK1/2 and p38MAPK were detected by
Western blot assay. Panels (F) and (H) show denstiometric analysis for the data from (E) and (G), respectively. Data are presented as mean 6 SE from
independent experiments preformed in triplicate. ##P,0.01 compared to the control group, **P,0.01 compared to the CoCl2 group.
doi:10.1371/journal.pone.0025921.g007
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and membrane phospholipids [29,30]. Thus, it is very important

to explore the mechanisms underlying hypoxia/ischemia-induced

neuronal injury or neuroprotective effects in various cell types or

cell models. CoCl2-induced cell death in PC12 cells may serve as a

simple and convenient in vitro model of hypoxia-induced neuronal

injury to elucidate the mechanisms responsible for hypoxia-linked

cell death and search its treatment methods because CoCl2 can

mimic hypoxic/ischemic condition including ROS production,

loss of MMP, etc. in neuronal cells [17,21,24,27,29]. In this study,

we observed that CoCl2 treatment induced expression of HIF-1a,

which is enhanced under hypoxic conditions, confirming that

CoCl2 can mimic hypoxia in PC12 cells. Our results are consistent

with the ones reported by Wang, et al. [29]. Recently, we have

investigated the cytoprotection of H2S against chemical hypoxia-

induced injury in this experimental model. We found that HSP90

mediates neuroprotection of H2S against CoCl2-induced insult

[17]. Based on our previous study, this study was designed to

further explore the molecular mechanisms of H2S neuroprotective

effect, in particular, focusing on that (1) whether CoCl2-induced

ROS activates ERK1/2, p38MAPK and JNK pathway? If so, (2)

whether ROS-activated ERK1/2 and p38MAPK pathways

participate in neuroprotection of H2S against CoCl2-induced

injury in PC12 cells?

To investigate whether ROS is involved in CoCl2-induced

injury, PC12 cells were pretreated with NAC (a ROS scavenger)

prior to exposure of cells to CoCl2. We found that CoCl2 induced

not only ROS production, but also initiated injuries of PC12 cells,

including decrease in cell viability, loss of MMP and caspase-3

activation, as well as an increase in the number of apoptotic

cells. These cell injuries were significantly prevented by NAC

pretreatment, indicating that CoCl2-induced neuronal injuries are

due to its induction of ROS. Our findings are comparable with the

recent evidence that NAC scavenges H2O2-induced ROS

production and inhibits apoptosis of PC12 cells induced by

H2O2 [25]. Interestingly, we observed that NaHS (a donor of H2S)

shared similar neuroprotective properties with NAC with a

comparable potency in this experimental model. This may be

supported by the ability of H2S in (1) inhibiting hypochlorous acid-

mediated oxidative damage [13]; and (2) inhibiting peroxynitrite-

mediated protein nitration and cytotoxicity [12]; (3) inhibiting

generation of ROS induced by CoCl2[17]. Additionally, H2S

readily scavenges H2O2, an important source of oxidative stress in

Figure 8. ERK1/2, p38MAPK and JNK pathways mediated CoCl2-induced injuries in PC12 cells. (A) and (B) The cell viability was assessed
by the CCK-8 reduction method described in ‘Materials and methods’. The cells were treated with the indicated treatments. (C) Morphological
changes in apoptotic cells assessed by Hoechst 33258 staining. Arrow indicates cells with apoptotic nuclear condensation and fragmentation.
Control: untreated cells; SB203580: cells were treated with 20 mmol/L SB203580 for 60 min alone; UO126: cells were treated with 10 mmol/L UO126
for 120min alone; CoCl2: cells were treated with 600 mmol/L CoCl2 for 48 h; SB203580+ CoCl2: cells were pretreated with p38 inhibitor SB203580
(20 mmol/L) for 60 min followed by exposure of cells to 600 mmol/L CoCl2 for 48 h; UO126+ CoCl2: cells were pretreated with ERK1/2 inhibitor UO126
(10 mmol/L) for 120 min followed by exposure of cells to 600 mmol/L CoCl2 for 48 h. (D) Results from FCM analysis. Data are the mean 6 SE (n = 3).
##P,0.01 compared with control; **P,0.01 compared with CoCl2-treated group.
doi:10.1371/journal.pone.0025921.g008
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most cells in vitro [31] and increases the production of reduced

GSH [9].

Accumulating evidence indicated that members of MAPK

family may play a critical role in neuronal apoptosis

[25,32,33,34,35]. Liu et al. reported that hypoxia and reoxygena-

tion-induced apoptosis is associated with p38MAPK activity in

culture rat cerebellar granule neurons [34]. On the other hand,

members of MAPK are activated by ROS generated intracellu-

larly, as well as by H2O2 administered [25,36,37]. Hypoxia also

leads to p38MAPK activation [27,34,38]. Based on the above

previous studies, we explore influence of CoCl2 on phosphorylation

of ERK1/2, p38MAPK and JNK in PC12 cells. The results of

present study showed that exposure of PC12 cells to CoCl2
significantly upregulated expressions of p-ERK1/2, p-p38MAPK

and p-JNK. Zou et al. also observed that p38MAPK is markedly

activated in CoCl2-treated PC12 cells, but did not test the changes

in both ERK1/2 and JNK activation [27]. Our findings extend

understanding of effect of CoCl2 on MAPK pathways in PC12 cells.

Notably, our study further demonstrated that MEK1/2

(upstream of ERK1/2) inhibitor U0126 or p38MAPK inhibitor

SB203580 or JNK inhibitor SP600125 dramatically abolished

CoCl2-induced injuries, evidenced by an increase in cell viability

and decreases in caspase-3 activation, apoptotic cells, ROS

production and MMP loss (data not shown). Similarly, genetic

silencing of ERK1/2 or p38MAPK by RNAi (Si-ERK1/2 or Si-

p38MAPK) also inhibited CoCl2-induced cell injury. These data

suggest that ERK1/2, p38MAPK and JNK pathways mediate

CoCl2-induced injuries. Our findings are consistent with those of

Figure 9. Kinase inhibitors suppressed CoCl2-induced expression of cleaved-caspase-3. (A) time course for the effects of CoCl2 on
expression of cleaved-casepase-3. (A-b) Denstiometric analysis for the results in (A-a). Data are presented as the mean 6 SD from independent
experiments performed in triplicate. #P,0.05,##P,0.01 compared to the control group. (B) and (C) PC12 cells were preconditioned with 10 mmol/L
MEK1/2 (upstream of ERK1/2) inhibitor U0126 for 120 min (B) and 20 mmol/L p38MAPK inhibitor SB203580 for 60 min (C) before exposure of cells to
600 mmol/L CoCl2 for 9 h. Panels B-b and C-b show denstiometric analysis for the data from B-a or C-a, respectively. Data are presented as mean 6 SE
from independent experiments preformed in triplicate. ##P,0.01 compared to the control group, **P,0.01 compared to the CoCl2 group.
doi:10.1371/journal.pone.0025921.g009

Roles of ERK1/2 and p38 in Neuroprotection of H2S

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e25921



Figure 10. H2S and NAC protected PC12 cells against CoCl2-induced injuries. (A) The cell viability was assessed by the cell counter kit (CCK-
8) described in ‘Materials and methods’. PC12 cells were treated with the indicated treatments. (B) Morphological changes in apoptotic cells assessed
by Hochest 33258 staining. Arrow indicated cells with apoptotic nuclear condensation and fragmentation. Control: untreated cells; NaHS: cells were
treated with 400 mmol/L NaHS for 30 min alone; NAC: cells were treated with 500 mmol/L NAC for 60 min alone; CoCl2: cells were treated with
600 mmol/L CoCl2 for 48 h; NaHS+CoCl2: cells were preconditioned with 400 mmol/L NaHS for 30 min prior to treatment with 600 mmol/L CoCl2 for
48 h; NAC+CoCl2: cells were preconditioned with 500 mmol/L NAC for 60 min prior to treatment with 600 mmol/L CoCl2 for 48 h; (C) The apoptotic
rate was analysed with a cell counter of Image J 1.41o software. Data are the mean 6 SE (n = 3). ##P,0.01 compared to the control group, **P,0.01
compared to the CoCl2 group.
doi:10.1371/journal.pone.0025921.g010

Figure 11. H2S and NAC suppressed CoCl2-induced expression of cleaved-caspase-3. (A) PC12 cells were preconditioned with 400 mmol/L
NaHS for 30 min before exposure of cells to 600 mmol/L CoCl2 for 9 h; (B) Denstiometric analysis for the results in (A). (C) PC12 cells were
preconditioned with 500 mmol/L NAC for 60 min before exposure of cells to 600 mmol/L CoCl2 for 9 h. (D) Denstiometric analysis for the results in (C).
Data are presented as the mean 6 SE from independent experiments performed in triplicate. ##P,0.01 compared to the control group, **P,0.01
compared to the CoCl2 group.
doi:10.1371/journal.pone.0025921.g011
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the previous studies [27,34] and comparable with the recent

evidence that the members of MAPKs, including ERK1/2, JNK

and p38MAPK mediate H2O2-induced neuronal apoptosis [25].

In addition, our results are supported by other previous studies

[39,40]. A MEK inhibitor has been shown to protect against

damage resulting from focal cerebral ischemia [39], and H2O2-

induced apoptosis is mediated by ERK1/2 phosphorylation in

mouse fibroblast cells [40]. However, the findings of this study

Figure 12. H2S and NAC protected PC12 cells against CoCl2-induced mitochondrial insult. MMP was assessed by JC-1 staining. Dual
emission images (527 and 590nm) represent the signals from monomeric (green) and J-aggregate (red) JC-1 fluorescence in PC12 cells. (A) Control,
untreated cells; NaHS, cells were treated with 400 mmol/L NaHS for 30 min alone; NAC, cells were treated with 500 mmol/L NAC for 60 min alone;
CoCl2, cells were treated with 600 mmol/L CoCl2 for 24 h; NaHS+ CoCl2, cells were preconditioned with 400 mmol/L NaHS for 30 min prior to
treatment with 600 mmol/L CoCl2 for 24 h; NAC+CoCl2, cells were preconditioned with 500 mmol/L NAC for 60 min prior to treatment with 600 mmol/
L CoCl2 for 24 h; (B) Quantitative analysis of the ratio of Red/Green fluorescence in each group, by using Image 1.41o software. Data are the mean 6
SE (n = 3). ##P,0.01 compared to the control group; **P,0.01 compared to the CoCl2 group.
doi:10.1371/journal.pone.0025921.g012

Roles of ERK1/2 and p38 in Neuroprotection of H2S

PLoS ONE | www.plosone.org 12 October 2011 | Volume 6 | Issue 10 | e25921



contradict the assertion by Xia et al. [41] and counter the idea that

MEK/ERK signaling plays a critical role in cell survival [42].

Taken together, ERK1/2 being a protective signal and JNK/

p38MAPKs being a proapoptotic signal do not always hold true

and may depend on the nature of the death stimulus, the cell type,

the duration of activation, and probably, most importantly, the

activities of other signaling pathways [42,43].

Since we found that ROS was involved in CoCl2-induced cell

injuries, we further dissect whether CoCl2 activation of ERK1/2

and p38MAPK is due to its induction of ROS. It was shown that

pretreatment of PC12 cells with NAC (a ROS scavenger)

significantly attenuated CoCl2-induced phosphorylation of ERK1/2

and p38MAPK. Collectively, the above results of present study

support the notion that CoCl2 induction of ROS activates ERK1/2

and p38MAPK pathways which mediates CoCl2-induced injuries in

PC12 cells. Our findings are supported by the previous studies

[25,33,34].

Importantly, we found that pretreatment of PC12 cells with

NaHS inhibited not only CoCl2-induced ROS production, but

also expressions of both p-ERK1/2 and p38MAPK induced by

CoCl2, suggesting that H2S suppresses ROS-activated ERK1/2

and p38MAPK pathways, which may be one of important

mechanisms underlying the neuroprotection of H2S against

chemical hypoxia-induced neuronal injury. However, we did not

find the inhibitory effect of NaHS on CoCl2-induced expression of

JNK (data not shown). The involvement of p38MAPK in the

cytoprotective effect of H2S has also been reported by other

groups. Rinaldi et al. indicated that H2S prevents apoptosis of

human polymorphonuclear cells via inhibition of p38MAPK and

caspase-3 [44]. Hu et al. recently also reported that H2S suppresses

LPS-inflammation by inhibition of p38MAPK in microglia [15]

and that H2S protects SH-SY5Y cells against rotenone-induced

apoptosis via suppression of p38 and JNK MAPK activation [16].

In addition, the stimulatory effect of H2S on glutamate uptake

which can increase GSH production may be associated with the

inhibition of ERK MAPK signaling pathway [14]. Overall, the

above findings suggest that inhibition of ERK1/2 and p38MAPK

may play a critical role in the cytoprotective effects of H2S.

In conclusion, the present study reveals that a concurrent

activation of ERK1/2, p38MAPK and JNK pathways is involved

in CoCl2-induced neuronal injuries and that H2S protects PC12

cells against chemical hypoxia-induced injuries via inhibition of

ROS-activated ERK1/2 and p38MAPK pathways. Continued

attempts to identify novel target molecules of ERK1/2 and

p38MAPK activation and to clarify their cross-talk with upstream

and downstream signaling molecules will pave the way for

understanding of cellular and molecular regulatory mechanisms

of H2S neuroprotection.
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