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Personalized medicine requires that treatments adapt to not only
the patient but also changing factors within each individual.
Although epilepsy is a dynamic disorder characterized by patho-
logical fluctuations in brain state, surprisingly little is known about
whether and how seizures vary in the same patient. We quanti-
tatively compared within-patient seizure network evolutions us-
ing intracranial electroencephalographic (iEEG) recordings of over
500 seizures from 31 patients with focal epilepsy (mean 16.5 sei-
zures per patient). In all patients, we found variability in seizure
paths through the space of possible network dynamics. Seizures
with similar pathways tended to occur closer together in time, and
a simple model suggested that seizure pathways change on circa-
dian and/or slower timescales in the majority of patients. These
temporal relationships occurred independent of whether the pa-
tient underwent antiepileptic medication reduction. Our results
suggest that various modulatory processes, operating at different
timescales, shape within-patient seizure evolutions, leading to var-
iable seizure pathways that may require tailored treatment
approaches.

focal epilepsy | seizure dynamics | functional connectivity | within-patient
variability | intracranial EEG

Focal epilepsy is characterized by spontaneous, recurrent sei-
zures that arise from localized cortical sites (1). An un-

resolved question is how much seizures themselves can vary in
individual patients. Past studies suggest that seizures within a
single patient share common features (2–6) and evolve through a
similar sequence (7), or characteristic pathway (8), of spatio-
temporal neural dynamics. However, there is also evidence that
various aspects of seizures can differ within the same patient.
Clinically, some patients have multiple seizure onset sites that
each produce their own characteristic seizure dynamics (9), and
long-term electroencephalographic (EEG) recordings suggest
that a subset of patients have multiple types of seizure evolutions
(8, 10–12). Ictal onset patterns (13, 14), the extent of seizure
spread (15–17), and seizure recruitment patterns (18) can also
differ in the same patient. This variability may arise from fluc-
tuations in the underlying brain state (17, 19–23), suggesting that
background neural activity affects not only seizure likelihood (20,
24) but also seizure evolution. Crucially, a given treatment may
only address a subset of a patient’s seizures: for example, a single
neurostimulation protocol may not control the complete reper-
toire of seizures (19), and a single prediction algorithm may fail
to forecast all seizures (10, 12, 25). Consequently, seizure vari-
ability has important implications for clinical management in
these patients.
To design optimal and comprehensive treatments, we there-

fore need to understand the prevalence and characteristics of
within-patient seizure variability. Do seizure pathways vary in all
patients? How are different seizure pathways distributed in
time? To answer these questions, we must objectively quantify
the similarity of seizure pathways. This task is challenging due to
the complexity of seizure dynamics: a variety of spatiotemporal

features change independently during seizure evolution. Al-
though some studies have quantitatively compared within-
patient seizures (26–31), the current gold standard remains vi-
sual inspection of ictal EEG by trained clinicians. This latter
approach is time-consuming and subjective and can miss im-
portant features, including functional network interactions, that
are difficult to detect visually.
Such functional network dynamics, also known as functional

connectivity patterns, describe relationships between the activity
recorded by different EEG channels. Temporal changes in net-
work dynamics play important roles in seizure initiation, propa-
gation, and termination (2, 23, 32–41), in part due to dynamic
changes in the connectivity of the seizure onset zone (7, 42–44).
Past work suggests that in some patients, the brain consistently
progresses through a specific sequence of finite network states
during seizures; however, other patients had unexplained vari-
ability in their seizure network evolutions (7). To fully un-
derstand how functional interactions support ictal processes, we
must also understand if and how multiple seizure pathways,
representing different ictal network evolutions, can coexist in an
individual patient. Such diversity would reveal that the same
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neural regions can variably interact to produce a variety of
pathological dynamics.
In this paper, we therefore focus on quantifying and charac-

terizing within-patient variability in seizure network evolutions;
however, our approach can be adapted to compare the temporal
evolutions of any ictal feature of interest. We first visualized and
compared the within-patient seizure network evolutions of hu-
man patients with focal epilepsy (recorded for 43 to 382 h). In
each patient, we analyzed all seizures with clear electrographic
correlates (i.e., both subclinical and clinical seizures). In total, we
quantitatively analyzed 511 seizures (average 16.5 seizures per
patient), allowing us to characterize the nature of within-patient
variability in these dynamics. In each patient, we found vari-
ability in seizure network evolution, revealing that within-patient
seizures are not well represented by a single characteristic
pathway through network space. However, seizures can share
parts or all of the same pathway, with recurring dynamical ele-
ments across seizures. Furthermore, we explored how seizure
pathways change over different timescales, providing insights
into the temporal changes of within-patient seizures. Our anal-
ysis revealed that seizures change on circadian and/or slower
timescales in each patient, suggesting that different modulatory
processes shape seizure pathways.

Results
We analyzed seizure evolution in 31 human patients (511 sei-
zures total, mean 16.5 seizures per patient) with focal epilepsy
who underwent continuous intracranial electroencephalographic
(iEEG) recordings as part of presurgical evaluation. Patient
details are provided in SI Appendix, Text S1. In this section, we
first demonstrate how we visualized seizure evolution through
network space and quantified the dissimilarity of these seizure
pathways. Importantly, our analysis captured differences in net-
work interactions during seizures, which did not necessarily
correspond to anatomical differences in the location and spread
of seizure activity. We then describe the amount, form, and
temporal patterns of within-patient seizure variability. Finally,
we hypothesize how underlying processes occurring on different
timescales could drive the observed changes in seizure pathways.
We provide a visual guide to our approaches, along with the
goals of each analysis, in SI Appendix, Text S2.

Visualizing and Quantifying Variability in Within-Patient Seizure
Pathways. Our first goal was to objectively compare within-patient
seizure network evolution. For each patient, we extracted the sei-
zure iEEGs (Fig. 1A) and computed the sliding-window functional
connectivity, defined as band-averaged coherence in six fre-
quency bands (Fig. 1B). Thus, each seizure time window was
described by a set of six connectivity matrices that captured
interactions between iEEG channels in each frequency band.
We additionally normalized the magnitude of each connectivity
matrix to focus on the evolving patterns of network interac-
tions, rather than gross changes in the global level of coher-
ence. The set of all possible connectivity patterns created a
high-dimensional space, in which each location corresponded
to a specific network configuration. As such, each time window
could be represented by a high-dimensional data point, and the
evolution of a seizure’s network dynamics formed a pathway in
this high-dimensional connectivity space. By transforming sei-
zures in this manner, we framed our comparison of seizures as a
comparison of seizure pathways (or trajectories) through the
high-dimensional network space.
Due to the high dimensionality of this network space, it was

infeasible to directly visualize seizure pathways. However, sei-
zure pathways could be approximated in a two-dimensional (2D)
projection using multidimensional scaling (MDS), a dimension-
ality reduction technique that attempts to maintain the distances
between high-dimensional data points in the lower-dimensional

space (Fig. 1C). This technique has been previously used to vi-
sualize ictal and interictal network dynamics (43). In our case,
MDS placed seizure time windows in a 2D projection based on
the similarity of their network configurations; each time window
was represented by a single point, and points corresponding to
time windows with more similar network dynamics were placed
closer together. While imperfect, this approximation of the
network space nonetheless provided an intuitive visualization for
comparing seizure pathways in the same patient. For example, in
patient 931, the projection demonstrated that two seizures may
follow approximately the same pathway (seizures 6 and 8), part
of the same pathway (seizures 8 and 9), or completely distinct
pathways (seizures 2 and 10) through the network space, in
agreement with visual impressions of the EEG.
To quantify these visual observations, we developed a seizure

dissimilarity measure that provided a distance between two sei-
zures based on their pathways through network space. Impor-
tantly, our approach recognized similarities in seizure pathways,
even if the seizures evolved at different rates, by first applying
dynamic time warping (45) to each pair of seizure functional
connectivity time courses (SI Appendix, Text S3). Dynamic time
warping nonlinearly stretches each time series such that similar
points are aligned, thus minimizing the total distance between
the two time series. We then defined the dissimilarity between
two seizures as the average difference between the seizure
pathways across all warped time points. The seizure dissimilarity
matrix then summarized the dissimilarity between all pairs of
seizure pathways in the same patient (Fig. 1D). In patient 931,
seizures with similar pathways therefore had a low dissimilarity
(e.g., seizures 6 and 8, dissimilarity 0.49); seizures with distinct,
distant pathways had high dissimilarity (e.g., seizures 2 and 10,
dissimilarity 3.21); and seizures with partially overlapping path-
ways had an intermediate level of dissimilarity (e.g., seizures 8
and 9, dissimilarity 1.75). Again, our measure of seizure dis-
similarity agreed with intuitive comparisons of seizures based on
visually assessing the iEEG (Fig. 1A) and MDS projections of the
seizure pathways (Fig. 1C).
It is important to note that both seizure dissimilarity matrices

and MDS projections were patient-specific: due to different
electrode implantations, we could not compare seizures across
patients using these network features. However, because we
normalized the magnitude of the functional connectivity, we
could compare seizure dissimilarity values across patients, even if
the patients had different numbers of recording electrodes. In
the remainder of the paper, we will focus on the across patients
results, while using patient 931’s seizures as examples. The sei-
zure variability analysis of all patients is available on Zenodo
(46) and summarized in SI Appendix, Text S4.

Seizure Variability Is a Common Feature in All Patients. Using
our measure of seizure dissimilarity, we compared seizure
pathways through network space in each patient. We first de-
termined if seizure variability was present in all patients by visual-
izing the seizure dissimilarity matrix of each patient as a distribution
of seizure dissimilarities (see Fig. 2A for an example). Note that
in these distributions, each point corresponds to the difference in
network evolutions of a pair of seizures, rather than a feature of
a single seizure. Fig. 2B shows the distribution of seizure dis-
similarities in each patient, with patients sorted from lowest
(patient 934) to highest (patient I002 P006 D01) median dis-
similarity. Although the average level of variability differed be-
tween patients (Fig. 2C), it is apparent that all patients had
variability in seizure network evolutions. Even in patients with
more consistent seizures, such as patient 934, there were pairs
of seizures with high dissimilarity, indicating dissimilar seizure
pathways. Many patients, including patient 931, had varying levels
of differences between pathways, with only a few pairs of similar
seizures. In all patients, network differences across all frequency
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bands contributed to the observed seizure dissimilarities, revealing
that variability in seizure network evolutions was not limited to a
narrow frequency range within a given patient (SI Appendix, Text
S5). Additionally, we found that in the majority of patients, the
observed variability was best described as a spectrum of seizure
pathways, rather than distinct groupings of different seizure
pathways (SI Appendix, Text S6). Thus, in most patients, the full
diversity of seizure pathways could not be captured by a few
archetypal seizures.
We also explored if the observed seizure variability was related

to the available clinical information for each patient. First, we
found that within the same patient, seizures of the same clinical
type (subclinical, focal, or secondarily generalized) tended to be
more similar than seizures of different clinical types; however,
there was still a large amount of variability within a given seizure
type (SI Appendix, Text S7). Thus, seizure variability in our pa-
tients was not solely explained by the presence of different
clinical seizure types. This finding was expected given that sei-
zures of the same clinical type may have different features in the
same patient (16, 47, 48). Additionally, we found no association
between postsurgical seizure freedom and measures of seizure
variability (SI Appendix, Text S8). Likewise, higher levels of
seizure variability were not associated with a particular seizure
onset site (SI Appendix, Text S8). These findings suggest that the
level of seizure variability is not associated with certain patient
pathologies or treatment outcomes; instead, other factors may
be more crucial for determining the extent and form of the
variability.

Seizures with More Similar Pathways Tend to Occur Closer Together
in Time. Many time-varying factors, such as sleep (22, 24, 47, 49,
50) and hormones (51–54), are thought to influence seizure
likelihood and dynamics. Additionally, during presurgical mon-
itoring, antiepileptic medication is reduced in many patients,
impacting brain dynamics (55). We therefore explored whether

there is a temporal structure to how seizure pathways change
over time in each patient. Fig. 3A shows the pathways of pa-
tient 931’s seizures, as well as the time that each seizure oc-
curred relative to the patient’s first seizure. From this
visualization, we see that the pathways gradually migrated
through network space as the recording progressed, creating
the observed spectrum of network evolutions. Moreover,
looking at the seizure timings, we also see that seizures with
similar pathways, such as seizures 6 to 8, tended to occur close
together in time.
To quantify this temporal relationship, we defined a tem-

poral distance matrix as the amount of time elapsed between
each pair of the patient’s seizures (Fig. 3B). Patient 931’s sei-
zure dissimilarity and temporal distance matrices have strik-
ingly similar structures: groups of seizures with low dissimilarity
tended to occur together in a relatively short time interval. In
this patient, there was a strong and statistically significant
positive correlation between these features (Spearman’s ρ =
0.69, P = 0.001, one-tailed Mantel test), indicating that seizures
with more similar pathways tended to occur closer together
in time.
Fig. 3C summarizes the relationship between seizure dissimi-

larities and temporal distances across all patients. In almost all
patients, there was a positive Spearman’s correlation between
seizure dissimilarities and temporal distances (range, −0.10 to
0.83; mean, 0.45). This association was significant in 21 patients
(67.7%) after false discovery rate correction. In these patients,
we also observed that the average level of dissimilarity tended to
increase with the time between the two seizures (Fig. 3D). In-
terestingly, there was no association between whether antiepi-
leptic medication was reduced and whether the correlation
between seizure dissimilarities and temporal distances was sig-
nificant (χ2 test, P = 0.96) (SI Appendix, Text S9). Therefore,
although medication levels may affect seizure occurrence and
dynamics (9, 16, 56, 57), medication changes alone could not
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patient’s seizures. For visual clarity, only a representative subset of the recording channels are shown. (B) Functional connectivity of three example seizure
time windows. Functional connectivity was defined as band-averaged coherence in each of six different frequency bands. Each matrix was normalized so that
the upper triangular elements summed to 1. Self-connections are not shown. (C) Projection of all seizure time windows into a 2D space using MDS, allowing
visualization of seizure pathways through network space. Each point corresponds to a seizure time window, and time windows with more similar network
dynamics are placed closer together in the projection. Consecutive time windows in the same seizure are connected to visualize seizure pathways. The time
windows and pathways of the six seizures shown in A have been highlighted using the corresponding colors, and the time windows of the remaining seizures
are shown in gray for reference. The first time windows of the selected seizures are each marked with a black diamond. (D) Seizure dissimilarity matrix of all
of the patient’s seizures, which quantifies the difference in the network evolutions of each pair of seizures. A low dissimilarity indicates that the two seizures
have similar pathways through network space.

11050 | www.pnas.org/cgi/doi/10.1073/pnas.1922084117 Schroeder et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922084117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922084117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922084117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922084117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922084117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922084117/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1922084117/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1922084117


explain the observed shifts in seizure pathways, suggesting that
other factors also play a role in shaping seizure features.

Seizure Pathways Change on Different Timescales. The observed
temporal associations of seizure dissimilarities reflected gradual
changes in seizure network evolutions across the length of each
recording. In other words, we observed relatively slow shifts in
seizure pathways over the course of multiple days. However, we
also hypothesized that seizure pathways may change on shorter
timescales due to, for example, circadian rhythms. Such rhythms
would create timescale-dependent relationships between sei-
zures; in particular, there would be a positive correlation be-
tween seizure dissimilarities and temporal distances on shorter
timescales, but this association would be destroyed over longer
timescales.
Therefore, to explore the possibility of different timescales of

changes in seizure pathways, we scanned the correlation between
seizure dissimilarities and temporal distances on different time-
scales T ranging from 6 h to the longest amount of time between
a seizure pair (Fig. 4A). For example, for T = 3 d, we computed
the correlation between seizure dissimilarities and temporal
distances for all pairs of seizures that occurred within 3 d of each
other. We refer to this set of correlations as a temporal corre-
lation pattern of seizure pathways. Fig. 4A shows the temporal
correlation pattern of patient 931’s seizures. As we determined
earlier, there was a positive correlation between seizure dissim-
ilarities and temporal distances when all seizures were included
in the computation (T = 5 d) as a result of the observed gradual
changes in seizure pathways. At shorter timescales, however, the
temporal relationship fluctuated; for example, the correlation
was relatively low at T = 1 and 2.5 d and higher at T = 0.75 and
2.5 d. These fluctuations were signs of additional, timescale-
dependent changes in seizure pathways.
To investigate how these temporal correlation patterns arose,

we modeled different patterns of seizure variability and the
corresponding temporal correlation patterns (see Materials and
Methods and SI Appendix, Text S10, for modeling details). For
each patient, we then determined which pattern(s) of changes
were most likely to reproduce the observed dynamics. In par-
ticular, we classified patients as having 1) linear changes in sei-
zure pathways (Fig. 4B, Left), which corresponded to the slower,
gradual shifts in seizure evolutions; 2) circadian changes (Fig. 4B,
Middle), which represented dynamics modulated by daily
rhythms; or 3) some combination of both the linear and circadian
changes (example combination shown in Fig. 4B, Right).
Fig. 4B demonstrates how seizure dissimilarities were simu-

lated using patient 931’s seizure times and example models from
each of the above categories. In each model (Fig. 4B, Top), the x
axis value of each seizure gives the seizure’s time, relative to the
first seizure. These values are the same across all three models
because they are the empirically observed seizure times of
patient 931. Thus, the x axis distance between a pair of sei-
zures measures the amount of time, or temporal distance,
between them. Based on the seizure times, each model then
predicted how seizure pathways would change from seizure to
seizure; specifically, the distance between two seizures along
the other dimension(s) corresponds to the simulated dissimi-
larity of each pair of seizures. Each model additionally in-
cluded noisy dynamics that allowed for further, random
fluctuations in seizure pathways and thus seizure dissimilar-
ities (SI Appendix, Fig. S10.1).
From these temporal distances and simulated seizure dissim-

ilarities (Fig. 4B, Middle), we then computed the corresponding
temporal correlation patterns (Fig. 4B, Bottom) using the same
process shown in Fig. 4A. A linear change in seizure pathways
produced a positive temporal relationship that was stronger at
longer timescales. Meanwhile, a circadian model only produced
strong, positive temporal correlations at timescales shorter than
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1 d. Finally, a combination of the linear and circadian factors
created both the short-term temporal relationships and a positive
temporal correlation at the longer timescales. Note that there
were also some additional fluctuations in the temporal correla-
tion patterns due to noisy changes in dynamics; these effects
differed depending on the outcome of the noisy simulation. To
fully explore these noisy effects, we therefore additionally varied
the level of noise added to the models. The tested combinations
of noisy, linear, and circadian contributions are provided in SI
Appendix, Table S10. For each combination of these factors, we
simulated temporal correlation patterns 1,000 times using dif-
ferent noise realizations to produce a series of possible temporal
correlation patterns for each model.
Fig. 4C shows the type of model (linear, circadian, or linear +

circadian) most likely to underlie the observed temporal corre-
lation pattern of each patient. As a measure of model fit, we
defined model likelihood as the percentage of model simulations
that reproduced the patient’s observed temporal correlation
pattern. Model likelihood ranges from 0 to 100%, and higher
values reveal that the modeled changes in dynamics consistently

produced temporal correlation patterns that were similar to the
patient’s observed temporal correlation pattern. We additionally
required the selected model to 1) outperform noisy simulations
alone; 2) clearly distinguish between the linear and circadian
models; and 3) in the case of the linear + circadian model,
clearly outperform one of the simpler models. Using these cri-
teria, 17 patients’ temporal correlation patterns were best
explained by the linear model, 3 by the circadian model, and 7 by
the linear + circadian model. Thus, most patients (77.4%) re-
quired a linear component to explain the observed changes in
seizure pathways, while 32.3% of the patients were well matched
by a model incorporating circadian changes in pathways. Nota-
bly, model likelihood tended to be higher for patients with higher
number of seizures, reflecting greater model certainty in cases
with larger sample sizes (SI Appendix, Fig. S10.4). These differ-
ent classifications of seizure variability were not associated with
surgical outcomes (SI Appendix, Text S8) or whether the pa-
tient’s medication was reduced during presurgical monitoring (SI
Appendix, Text S9).
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Four patients’ temporal correlation patterns could not be
assigned to a model, either because the linear model and circa-
dian model performed similarly (patient Study 038) or the best
model did not outperform noise alone (patients Study 017, Study
033, and 1163). Additionally, in some patients (e.g., patients
Study 020, 756, and 1196), only a small percentage of the sim-
ulations matched the observed temporal correlation patterns,
indicating that reproducing the observed dynamics required
specific patterns of noise. In these cases, other models may
therefore provide a better explanation for the patient’s changes
in seizure pathways. In particular, many of these patients had
strong positive correlations at timescales longer than 1 d but less
than the length of the recording, suggesting multiday fluctuations
in seizure pathways.

Discussion
We have quantitatively compared seizure network evolutions
within individual human patients with focal epilepsy, revealing
that seizure variability is a common feature across patients. We
often observed pairs of seizures with relatively low dissimilarity
due to their largely conserved pathways through the space of
possible network dynamics, suggesting that seizure evolution is
not purely random. However, we likewise found that a single
dynamical pathway cannot comprehensively represent all of a
patient’s seizure evolutions. Interestingly, seizure pathways
changed over time in most patients, with more similar seizures
tending to occur closer together in time. Our modeling results
indicate that in most patients, a combination of circadian and/or
slower changes in seizure pathways may underlie the observed
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variability, suggesting that factors operating on different time-
scales modulate within-patient seizure evolutions.
We investigated variability in seizure functional network evo-

lution due to the importance of network interactions in ictal
processes (2, 7, 23, 32–40, 42–44) and build on previous work by
demonstrating within-patient variability in these pathological
network dynamics. However, in future work, the framework we
present could easily be adapted to compare other features that
highlight different aspects of seizure dynamics. For example, a
univariate feature that captures the amplitude and frequency of
ictal discharges may be better suited for comparing the in-
volvement of different channels, similar to how clinicians visually
compare EEG traces. Data from other recording modalities,
such as microelectrode arrays, could be analyzed to evaluate
consistency in neuronal firing patterns between seizures (4, 5).
Meanwhile, although we do not perform biophysical modeling of
seizure dynamics in this work, other studies have used model
inversion to hypothesize how the activities of different neuronal
populations change during seizures (8, 58, 59). Comparing the
parameter time courses of such models could reveal different
patterns of changes in neural activity during a patient’s seizures.
Finally, due to patient-specific recording layouts, we focused on
comparing seizure pathways within individual patients. However,
comparing seizures across patients, either using spatially in-
dependent features or common recording layouts, in future
studies could uncover common classes of pathological dynamics
(8, 60).
To quantify within-patient variability in seizure pathways, we

developed a seizure dissimilarity measure that addresses the
challenges of comparing diverse spatiotemporal patterns across
seizures. A few previous studies have attempted to quantitatively
compare seizure dynamics using either univariate (27, 28, 30, 31)
or network (26, 29) features computed from scalp or intracranial
EEG. These earlier dissimilarity measures were based on edit
distance, which captures how many replacements, insertions, and
deletions are required to transform one sequence into another.
Importantly, unlike this previous method, our dynamic time
warping approach recognizes that two seizures are equivalent if
they follow the same pathway, even if they do so at different
rates. Despite this difference, those past studies also reported
both common and disparate dynamics across within-patient sei-
zures; however, their analysis was limited to a small number of
patients and/or seizures per patient. Our work provides insight
into the prevalence and characteristics of seizure variability by
analyzing over 500 seizures across 31 patients. Finally, we expand
on previous work by using seizure dissimilarity to characterize
temporal changes in seizure evolutions.
Previous work has found that within-patient seizures have

similar dynamics (2–8), although variability may be introduced
through different rates of evolution (4, 61) or early termination
in the seizure pathway (6, 8). In our cohort, we observed that
subsets of within-patient seizures follow approximately the same
dynamical pathway through network space, and such similar
groups of seizures likely underlie these past findings. However,
we also found that the complete repertoire of within-patient
seizure network evolutions was poorly characterized by a sin-
gle, characteristic pathway. Notably, we also found that a patient
with different seizure pathways did not necessarily have subsets
of distinct pathways; instead, small variations between seizures
often produced a spectrum of pathways. An intriguing possibility
is that various decision points, existing on the framework of
potential seizure pathways, produce a repertoire of seizure
evolutions. Future studies are needed to map these potential
seizure pathways and uncover the factors that determine how
individual seizures evolve.
The crucial question is then how these different seizure

pathways arise from the same neural substrate. In theory, a range
of changes before or during the seizure can affect its network

evolution. We hypothesize that spatiotemporal changes in the
interictal neural state produce seizures with different charac-
teristics. Past studies suggest that neural excitability (20, 57, 62),
inhibition (61), and network interactions (23, 63) influence cer-
tain spatiotemporal seizure features, such as the rate and extent
of seizure propagation. These changes in brain state may be
driven by various factors, including sleep (22, 47, 49), hormones
(51–54), and medication (55). If interictal dynamics indeed
shape how seizures manifest, future research will need to de-
termine how specific interictal features relate to seizure char-
acteristics. One possibility is that elements of seizure networks
are activated during interictal states (43); thus, seizures with
different network features could be preceded by preictal periods
with corresponding network structures. Researchers could also
relate preictal/interictal networks to other seizure features, such
as seizure propagation patterns, perhaps by investigating how the
underlying structural connectome relates to functional networks
(64) and mediates seizure spread (63). Importantly, the re-
lationship between preictal network dynamics and seizure fea-
tures could be limited to a specific frequency band (23), which
could in turn suggest possible physiological mechanisms for the
observed changes in seizure dynamics (65, 66). Additional as-
pects of interictal dynamics, such as the pattern of high-
frequency oscillations (21) and band power changes (17), may
also be linked to changes in seizure features. Overall, a better
understanding of both functional and pathological fluctuations in
interictal dynamics could suggest ways in which the background
brain state alters seizure evolutions.
Toward this goal, prolonged recordings of patients with focal

epilepsy may provide insight into how pathological brain dy-
namics change over time and influence seizure features. In
particular, recent studies using such data have shown that the
rates of epileptiform discharges and seizures fluctuate according
to both circadian and patient-specific multidien (approximately
weekly to monthly) cycles (50, 67). An intriguing possibility is
that the same factors that rhythmically modulate seizure likeli-
hood may also influence seizure evolution. Consistent with this
hypothesis, we found that the majority of observed temporal
patterns of seizure variability were well explained by models
incorporating circadian and/or linear changes in seizure path-
ways. In particular, the linear component of the model may re-
flect gradual changes in pathways on slower timescales, ranging
from weeks to months. These simple models provided an initial
hypothesis for the observed patterns of changes in seizure evo-
lutions. Some patients’ seizure patterns may be better explained
by more complex models that capture different dynamics, such as
multistability or multidien cycles. Ultimately, it is likely that
various factors, with differential effects on seizure evolution,
interact to produce the observed repertoire of seizure pathways.
Analyzing within-patient seizure variability in long-term record-
ings could provide additional insight into such patterns of
changes in seizure pathways.
Many of the patients in our study underwent antiepileptic

medication reduction as part of presurgical monitoring, making
it difficult to disentangle the effects of changing drug levels from
other potential slow-varying modulators of seizure pathways.
Changes in antiepileptic medication can impact neural excit-
ability (68–70), and medication tapering increases seizure like-
lihood in most patients (16, 71); however, it is controversial
whether it also affects seizure patterns (9, 16, 56, 71). In some
cases, it appears that medication tapering reveals latent seizure
pathways that are suppressed by medication (9) or allows existing
pathways to further progress (e.g., the secondary generalization
of typically focal seizures) (16). It is possible that the impact of
medication reduction on seizure dynamics is drug-, patient-, and
dose-dependent and may ultimately depend on how well the
medication controls neuronal excitability (57). However, medi-
cation changes alone cannot account for the observed seizure
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variability in our cohort, as we observed temporal associations of
seizure pathways in patients that did not undergo medication
reduction. In future work, associating medication levels with
differences in seizure pathways could help untangle the different
factors shaping seizure dynamics.
Another confounding factor in our data is that the surgical

implantation itself could artificially alter seizure dynamics. Using
chronic recordings of epileptic canines, Ung et al. (72) found
variability in seizure onset and interictal burst dynamics, with the
most stable dynamics emerging approximately a few weeks after
electrode implantation. In agreement with their work, we found
that earlier seizure evolutions often recurred later in the re-
cording, making it unlikely that gradual changes in the recording
quality or an acute reaction to the surgery underlay the observed
variability. Instead, Ung et al. (72) hypothesized that seizure
variability results from transient, atypical dynamics as the brain
recovers from surgery, with later dynamics representing a truer
epileptic network. Other stressors, such as medication with-
drawal, could similarly elicit abnormal dynamics. Nevertheless, a
large number of our patients had good surgical outcomes, sug-
gesting that their recorded seizures accurately represented their
epileptic networks. Additionally, clinicians often note that pa-
tients have typical seizures during iEEG recordings, as compared
to preimplantation reports, despite the effects of surgery and
medication withdrawal (16). As such, the observed seizure dy-
namics in our cohort may be part of their usual repertoires of
seizure evolutions, even if some dynamics are only elicited by
strong stressors. Further analysis in chronic human recordings,
such as the NeuroVista dataset (8, 12), is needed to determine
whether and how seizure pathways vary in a more naturalistic
setting.
Contrary to the expectation that high levels of seizure vari-

ability may worsen surgical outcomes, we found no association
between these patient features. It may be that only some types of
variability, such as multifocal (9) or secondarily generalized (73)
seizures, impact the likelihood of seizure freedom following
surgery. Importantly, variability in the seizure onset network
state does not indicate that a patient has multifocal seizures, as
different network configurations can be associated with the same
apparent ictal onset zone. Additionally, variability in seizure
pathways may not be inherently deleterious, as long as it is ob-
served and accounted for when planning the surgical resection.
Indeed, due to the short presurgical monitoring time and limited
spatial coverage of the recording electrodes, some potential
seizure pathways may not have been captured (11, 72), leading us
to underestimate the level of variability in some patients.
Although the amount of seizure variability was not associated

with postsurgical seizure freedom, it may have implications for
clinical treatments. First, regardless of the source of the observed
seizure variability, the different seizure dynamics observed dur-
ing presurgical monitoring provide crucial information for
guiding surgical resection. For example, recent studies suggest
that seizure network properties can help identify epileptogenic
tissue (7, 74, 75); however, we must determine if seizures with
different network evolutions provide equivalent localization in-
formation. Seizure variability may also have implications for
seizure prediction. In particular, in that same patient, seizures
with different pathways may have distinct preictal signatures,
making seizure prediction more difficult (10, 12). A successful
seizure prediction algorithm would either need to recognize
multiple signatures or find common features among the dispa-
rate preictal dynamics. Finally, neurostimulation offers a prom-
ising new approach for controlling seizures; however, in rodent
models, the effectiveness of a given stimulation protocol depends
on the preictal brain state (19). Thus, such interventions may
need to recognize and adapt to the specific characteristics of
each corresponding seizure evolution in order to control all
seizures. Importantly, our cohort was limited to patients with

medication refractory focal epilepsy who were candidates for
surgical resection. The characteristics and clinical implications of
seizure variability may be different in other patient cohorts.
More generally, our work adds to the growing literature on

within-subject variability in brain dynamics and other physio-
logical states (76) in both health and disease. In particular, there
is increasing interest in developing improved, time-sensitive
treatments that adapt to the patient’s changing state. Rather
than delivering a continuous or regular therapy, such treatments
would be modified and/or timed to improve their efficacy while
also reducing treatment side effects. Treatment parameters may
be tuned to biological rhythms (50, 67, 77–79) or respond directly
to fluctuating conditions within each patient (80–82). To in-
vestigate temporal fluctuations within each patient and de-
termine how treatments interact with these changes, researchers
may draw inspiration from spatiotemporal analyses in other
fields, such as ecology (83), genetics (84), and engineering (85,
86), as well as develop new techniques that address specific data-
analytical challenges.
In summary, we have shown that there is within-patient vari-

ation in seizure network evolution in patients with focal epilepsy.
Temporal changes in seizure evolution suggest that a combina-
tion of circadian and slow-varying factors shape these seizure
pathways, perhaps by modulating the background brain state.
Further research is needed to determine whether and how pre-
ictal dynamics influence seizure pathways. Uncovering these
mechanisms could provide novel approaches for predicting and
controlling seizures that are tailored to the complete repertoire
of pathological neural dynamics in each patient.

Materials and Methods
Patient Selection and Data Acquisition. This work was a retrospective study
that analyzed seizures from 13 patients from theMayo Clinic and the Hospital
of the University of Pennsylvania [available on the IEEG Portal, https://www.
ieeg.org/ (87, 88)] and 18 patients from the University College London
Hospital (UCLH) who were diagnosed with refractory focal epilepsy and
underwent presurgical monitoring. Patients were selected without refer-
ence to the cause or other characteristics of their pathology. All IEEG Portal
patients gave consent to have their anonymized iEEG data publicly available
on the International Epilepsy Electrophysiology Portal (https://www.ieeg.
org/) (87, 88). For the UCLH patients, their iEEG was anonymized and
exported, and the anonymized data were subsequently analyzed in this
study under the approval of the Newcastle University Ethics Committee
(reference number 6887/2018).

For each patient, the placement of the intracranial electrodes was de-
termined by the clinical team, independent of this study. Ictal segments were
identified and extracted for the analysis based on clinical seizuremarkings. To
be included in the study, each patient was required to have had at least six
seizures suitable for the analysis. This threshold was chosen to allow ex-
amination of seizure variability in a broad cohort of patients, while still
ensuring that enough seizures were observed to draw conclusions about the
characteristics of seizure variability in each patient. Seizures were excluded
from the analysis if they did not have clear electrographic correlates (with
clear onset and termination), if they were triggered by/occurred during
cortical stimulation, if they had noisy segments, or if they had large missing
segments. Periods of status epilepticus and continuous epileptiform dis-
charges were also excluded. However, electrographic seizures without clinical
correlates (i.e., subclinical seizures) were included in the analysis as they may
have either similar or disparate dynamics (relative to clinical seizures) that
convey clinically relevant information (89). Additional information about
each patient and the analyzed seizures is shown in SI Appendix, Text S1.

iEEG Preprocessing. For each patient, if different seizures were recorded at
multiple sampling frequencies, all of the recordings were first downsampled
to the lowest sampling frequency. Noisy channels were then removed based
on visual inspection. In the remaining channels, short sections of missing
values were linearly interpolated. These sections of missing values
were <0.05 s with the exception of one segment in seizure 2 of patient Study
020, which was 0.514 s. All channels were rereferenced to a common aver-
age reference. Each channel’s time series was then bandpass filtered from 1
to 150 Hz (fourth-order, zero-phase Butterworth filter). To remove line
noise, the time series were additionally notch filtered (fourth-order, 2-Hz
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width, zero-phase Butterworth filter) at 60 and 120 Hz (IEEG Portal patients)
or 50, 100, and 150 Hz (UCLH patients).

Computing Functional Connectivity. To compute the time-varying functional
connectivity of each seizure, a 10-s sliding window, with 9-s overlap between
consecutive windows, was applied to each preprocessed ictal time series. The
same sliding window parameters have previously been used to estimate
time-varying coherence in ictal iEEG data (90). For each window, the co-
herence between each pair of iEEG channels was computed in six different
frequency bands (delta 1 to 4 Hz, theta 4 to 8 Hz, alpha 8 to 13 Hz, beta 13 to
30 Hz, gamma 30 to 80 Hz, and high gamma 80 to 150 Hz). The coherence in
each frequency band was computed using band-averaged coherence,
defined as

Ci,j   =  

⃒⃒∑f2
f=f1Pi,j(f)

⃒⃒2
∑f2

f=f1Pi,i(f)∑f2
f=f1Pj,j(f)

,

where f1 and f2 are the lower and upper bounds of the frequency band;
Pi,j(f) is the cross-spectrum density of channels i and j; and Pi,i(f) and Pj,j(f) are
the autospectrum densities of channels i and j, respectively. In each window,
channel autospectra and cross-spectra were calculated using Welch’s
method (2-s sliding window with 1-s overlap). Note that band-averaged
coherence is equivalent to coherence but filtered in the frequency domain
to the frequency band of interest. As such, band-averaged coherence ranges
from 0 to 1 and will be higher when the two signals have a consistent phase
and amplitude relationship in the specified frequency band.

Thus, in a patient with n iEEG channels, the functional connectivity of each
time window was described by six symmetric, nonnegative, n × nmatrices, in
which each entry (i,j) gives the coherence between channels i and j in the
given frequency band. Each matrix was then written in vector form by
rearranging the upper-triangular, off-diagonal elements into a single col-
umn vector of length (n2

– n)/2. Each vector was normalized so that the L1
norm (i.e., sum of all elements) was 1, thus ensuring that differences be-
tween connectivity vectors captured a change in connectivity pattern rather
than gross changes in global levels of coherence. This normalization step
also allowed the magnitude of seizure dissimilarities to be compared across
patients with different numbers of electrodes. For each time window, the six
connectivity vectors were then vertically concatenated together, forming a
single column vector of length 6*(n2

– n)/2. Each patient’s ictal connectivity
vectors were subsequently horizontally concatenated together to form a
matrix V containing 6*(n2

– n)/2 features and m observations, where m is the
total number of ictal windows across all seizures.

Dimensionality Reduction and Visualization. Small fluctuations in the func-
tional connectivity due to noise would create a high baseline dissimilarity
between seizures. Therefore, to reduce noise in the connectivity matrices,
nonnegative matrix factorization (NMF) (91) was used to approximately
factor each patient’s ictal time-varying connectivity matrix V into two non-
negative matrices, W and H, such that V∼W × H (details provided in SI Ap-
pendix, Text S11). The matrix W contained patient-specific basis vectors,
each of which had 6*(n2

– n)/2 features that captured a pattern of connec-
tivity across all channels and frequency bands. Each original ictal time win-
dow was summarized as an additive combination of these basis vectors, with
the coefficients matrix H giving the contribution of each basis vector to each
time window. These factorizations were patient-specific since the basis
vector features depended on the iEEG electrode layout in each patient. The
optimal number of basis vectors, r, was determined using stability NMF (84).

For each patient the selected factorization was then used to create V* =
W × H, a lower-rank approximation of the original time-varying seizure
functional connectivity (SI Appendix, Text S11). This return to the original
feature space is necessary since NMF basis vectors are not orthogonal, and
distances in NMF basis vector space are therefore not equivalent to distances
in feature space. Each reconstructed connectivity vector was then renor-
malized to have an L1 norm of 1, ensuring that differences in reconstruction
accuracy did not affect the distances between different ictal time points. To
visualize the connectivity vectors of patient 931’s seizures in Fig. 1C, all time
seizures windows were projected into a 2D embedding using MDS (specifi-
cally, Sammon mapping) based on their L1 (cityblock) distances in the high-
dimensional reconstructed feature space.

Computing Seizure Dissimilarities. Following the NMF-based reconstruction of
the seizure connectivity, the network evolution of each seizure was de-
scribed by a multivariate time series with 6*(n2

– n)/2 features. To compare
network evolutions across within-patient seizures, a seizure dissimilarity

matrix was created for each patient. Each pair of seizure functional con-
nectivity time series was first warped using dynamic time warping, which
stretches each time series such that the total distance between the two time
series is minimized (SI Appendix, Text S3). This step ensures that 1) similar
network dynamics of the two seizures are aligned and 2) the warped sei-
zures are the same length. We chose to minimize the L1 distance between
each pair of seizures as this metric provides a better measure of distances in
high-dimensional spaces (92).

Following dynamic time warping, the L1 distance between the pair of
warped time series was computed, resulting in a vector of distances cap-
turing the dissimilarity in the seizures’ network structures at each time point.
The seizure dissimilarity between the two seizures was defined as the av-
erage distance across all warped time points. The seizure dissimilarity matrix
contains the dissimilarities between all pairs of the patient’s seizures. Note
that seizure dissimilarity is not a metric distance, because the triangle
equality does not necessarily hold; however, it performs similarly to alter-
native metric distances of seizure dissimilarity (SI Appendix, Text S12).

Comparison to Temporal Distances. For each patient, we computed a temporal
distance matrix containing the amount of time elapsed (measured in days)
between the onset times of each pair of seizures. Spearman’s correlation was
computed between the upper triangular elements of the seizure dissimi-
larity matrix and the temporal distance matrix of each patient. Since the
distances in each matrix were not independent observations, the Mantel test
(93) was used to determine the significance of each correlation. Briefly, the
rows and columns of one matrix were randomly permuted 10,000 times. The
correlation between the two sets of upper triangular elements was recom-
puted after each permutation, resulting in a distribution of correlation
values that described the expected correlation if there were no relationship
between seizure dissimilarities and temporal distances. The P value of the
association was then defined as the proportion of permuted correlation that
was greater than or equal to the observed correlation. To correct for mul-
tiple comparisons, the Benjamini–Hochberg false discovery rate (FDR) cor-
rection (94) was applied to the set of P values computed across all patients
(31 total tests). The correlation was considered significant if the associated
adjusted P value was less than 0.05.

Computing Temporal Correlation Patterns. To quantify how seizure dynamics
change over different timescales in each patient, Spearman’s correlation
between seizure dissimilarities and temporal distances was computed only
for seizure pairs with temporal distances less than or equal to timescale T. T
was scanned from 0.25 d up to the patient’s largest temporal distance in
steps of 0.25 d. A timescale was excluded from the analysis if fewer than
seven pairs of seizures occurred within the given timescale or if no new
seizure pairs were added when the timescale was increased. The resulting
set of correlations across various timescales was referred to as a temporal
correlation pattern.

Modeling Seizure Dissimilarities and Temporal Correlation Patterns. To de-
termine the underlying processes that could produce the observed temporal
correlation patterns, changes in seizure dynamics were modeled using the
functions

flðtÞ ¼   17 t   ða  line with  a  slope  of  one  per weekÞ,
fcðtÞ ¼   sin 2 πtða  sine wave with  a  period  of  1  dÞ,
fnðtÞ  �  Nð0,1Þ  ðGaussian  noise with  a mean  of  zero  and  SD  of  1Þ,

where t is time in days.
For each function, a simulated distance matrix D was then defined for the

patients’ seizures, with

D(i, j) =  
⃒⃒
f(ti) − f(tj)⃒⃒,

where ti is the time of seizure i, tj is the time of seizure j, and f(t) is the
corresponding function. The dissimilarity of the two seizures was then
defined as

Diss(i, j) =  

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[lDl(i, j)]2 +   [cDc(i, j)]2 +   [nDn(i, j)]2

√
,

where l, c, and n are scalar parameters controlling the relative contributions
of the linear, circadian, and noise functions, respectively.

The relative contributions of the linear, circadian, and noise functionswere
scanned by varying the levels of l, c, and n. For each set of parameters,
seizure dissimilarities were simulated 1,000 times using different noise
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realizations (and correspondingly changing the noise distance matrix, Dn),
and the resulting temporal correlation patterns were computed for each set
of simulated dissimilarities. Note that because temporal correlation patterns
only depend on the order of the dissimilarities, only the relative magnitudes
of the parameters l, c, and n affected the modeling results. A model was
termed a linear model if c = 0, a circadian model if l = 0, and a linear +
circadian model if l > 0 and c > 0.

To determine if a patient’s seizure dynamics could be categorized as
linear, circadian, or linear + circadian, the simulated temporal correlation
patterns were compared to the patient’s observed temporal correlation
pattern by computing the mean squared error (MSE) of each simulated
pattern. Simulated temporal correlation patterns with MSE ≤ 0.02185 were
defined as good matches to the observed dynamics. This threshold was
chosen because it was the fifth percentile of the set of all MSEs, across all
patients, and based on visual inspection of simulated temporal correlation
patterns with different MSEs. The likelihood L of a given parameter set was
then defined as the percentage of good matches produced by the 1,000
noisy simulations of seizure dissimilarities at those parameter values. For
each class of model (linear, circadian, or linear + circadian), the model’s
likelihood (Ll, Lc, or Ll+c, respectively) was the highest likelihood among the
model type’s parameter sets, and the best model was the model with the
highest likelihood. Ln was also defined as the highest likelihood of the pa-
rameter sets without any linear or circadian contributions (l = 0, c = 0, n > 0).

This best model with likelihood Lmax was then used to categorize the
patient’s dynamics if it outperformed all competing models. Specifically, we
required that 1) the best model clearly outperform noise alone (Lmax ≥ 2Ln);
otherwise, the patient’s dynamics were classified as other/indeterminate; 2)
the performance of the linear model and circadian model were clearly dis-
tinguishable (Ll ≥ 2Lc if the linear model was best; Lc ≥ 2Ll if the circadian
model was best); otherwise, the patient’s dynamics were classified as other/
indeterminate; and 3) if the best model was linear + circadian, it clearly

outperform the two simpler models (Ll+c ≥ 2Ll and Ll+c ≥ 2Lc); otherwise, the
patient’s dynamics were classified as the simpler model (if one simpler model
performed comparably by this criterion) or as other/indeterminate (if both
simpler models performed comparably).

See SI Appendix, Text S10, for additional modeling details and the se-
lected models for each patient.

Code and Data Availability. All data were analyzed using MATLAB version
R2018b. To perform NMF, we used the Nonnegative Matrix Factorization
Algorithms Toolbox, available at https://github.com/kimjingu/nonnegfac-
matlab/, which implements the alternating nonnegative least squares with
block principal pivoting algorithm (95, 96). For the remainder of the analysis,
we used MATLAB implementations of standard algorithms (multidimen-
sional scaling [Sammon mapping]: mdscale, criterion “Sammon”; dynamic
time warping: dtw; hierarchical clustering: linkage; Torgerson’s multidi-
mensional scaling: cmdscale; gap statistic: evalclusters; FDR correction:
mafdr) or custom code. The iEEG time series of all IEEG Portal patients is
available at https://www.ieeg.org/. The NMF factorizations of all analyzed
seizure network evolutions, along with the code for producing the primary
downstream results (seizure dissimilarity matrices, clustering, and temporal
analysis) and figures, are published on Zenodo (46).
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