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Primary liver cancer (PLC) is one of the most common malignancies in China, where it
ranks second in mortality and fifth in morbidity. Currently, liver transplantation, hepatic
tumor resection, radiofrequency ablation, and molecular-targeted agents are the major
treatments for hepatocellular carcinoma (HCC). Overall, HCC has a poor survival rate and
a high recurrence rate. Tumor-infiltrating lymphocytes (TILs) have been discovered to play
essential roles in the development, prognosis, and immunotherapy treatment of HCC. As
the major component cells of TILs, T cells are also proved to show antitumor and
protumor effects in HCC. Foxp3+, CD8+, CD3+, and CD4+ T lymphocytes are the broadly
studied subgroups of TILs. This article reviews the roles and mechanisms of different
tumor-infiltrating T lymphocyte subtypes in HCC.
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INTRODUCTION

According to the International Agency of Research on Cancer of World Health Organization report,
primary liver cancer (PLC) posed a severe threat to people’s life and health, with an estimated
906,000 new cases and 830,000 deaths globally in 2020 (1). In China, liver cancer ranked second
in mortality and fifth in morbidity (2). There are three main pathological types of PLC,
including hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (CC), and
combined HCC/CC. They vary in pathogenesis, biological behavior, histological morphology,
treatment, and prognosis. HCC accounts for 85%-90% among them (3). In this article, liver cancer
as follows refers to HCC. For HCC, currently available therapeutic options include liver
transplantation, tumor resection, radiofrequency ablation, and molecular-targeted agents.
However, the survival rate of HCC is low, and the recurrence rate is high, due to the fact that
when patients are first diagnosed with HCC, they often have intermediate-stage or advanced-stage
HCC, or micro-metastasis tumors (4). The 1-year median survival rate of patients with end-stage
HCC was 11% (3), whereas the 1-year recurrence rate following surgical resection was 70% (5),
suggesting that these treatment options for HCC were limited. As a result, novel therapies for HCC
are still needed. In the past few years, tumor immunotherapy has emerged as a new therapeutic
procedure for HCC. Tumor immunotherapy works by generating and strengthening patients’
existing tumor-specific immune responses, which have high efficiency and strong selectivity when
org September 2021 | Volume 12 | Article 7297051
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compared to traditional tumor therapies. The immunotherapy
regimen that each patient should follow is determined by the
host’s immunological specificity. In addition, the quantities and
distributions of tumor-infiltrating immune cells also assist us in
predicting the response of each patient to immunotherapy prior
to treatment. The compositions of immune cells, on the
other hand, significantly differ between HCC patients and
healthy populations (6). A sufficient understanding of the
tumor microenvironment (TME) is the key to successful
immunotherapy. TME for HCC is a dynamic system that
enriches multiple immune cells, such as regulatory T cells
(Tregs), tissue-resident memory CD8+ T (Trm) cells, resident
natural killer (NK) cells, tumor-associated macrophages (TAMs)
(7). Through interacting with each other and the surrounding
stromal cells, they form a complex network and play essential
roles in the proliferation, migration, invasion, and angiogenesis
of HCC (8).

Tumor-infiltrating lymphocytes (TILs) were formerly
thought to host immune responses to tumors. With extensive
study in this subject, people discover that TILs consist of a variety
of lymphocyte subgroups, including innate immune and
adaptive immune cells, such as mast cells, macrophages, NK
cells, and T lymphocytes. There are many specific antigens on the
surfaces of TILs, for example, Foxp3, CD3, CD4, CD8, CD16,
CD20, CD56, CD57, CD68, and CD169 (9). It is widely thought
that Foxp3, CD3, CD4, and CD8 are linked with T lymphocytes,
CD16 with monocytes, CD20 with B lymphocytes, CD56 and
CD57 with NK cells, as well as CD68 and CD169 with
macrophages. TILs play significant roles in the development,
treatment, and prognosis of HCC. Besides, the antitumor or
protumor effects of TILs are related to the component of
lymphocyte subsets in TME (10). T lymphocytes are the
primary cells of TILs in HCC (11). In addition, Foxp3+,
CD3+, CD4+, and CD8+ T lymphocytes are the broadly
discussed subgroups of TILs (12). However, the results of TILs
in HCC remain controversial. Here, the roles and mechanisms of
common tumor-infiltrating T lymphocyte subsets in HCC
are reviewed.
FOXP3+ T LYMPHOCYTES

Forkhead box protein P3 (Foxp3), consisting of 12 exons, belongs
to the forkhead family of transcriptional factors and regulates the
expression of multiple genes. Foxp3 was revealed to be a reliable
marker of Tregs as well as a key regulator of their growth and
function (13, 14). Tregs were usually divided into two different
subgroups: “natural Treg” cells (nTregs) and “induced Treg” cells
(iTregs). It was commonly thought that nTregs differentiated
from CD4+ CD25+ Foxp3+ T cells in the thymus, whereas iTregs
developed from naive CD4+ Foxp3- T cells in the peripheral
tissues, such as lymph node and spleen, and universally gained
Foxp3 expression outside of the thymus after antigenic
stimulation (15). Both two types of Tregs shared the common
ability to suppress immune responses, but they used distinct ways
to do so. nTregs played roles through cell contact-dependent ways
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via membrane-bound molecules, yet iTregs exerted their
functions through cell contact independent ways via cytokines
including interleukin (IL)-10 and transforming growth factor-b
(TGF-b) (16). Now, there’s no reliable biomarker for
distinguishing nTregs from iTregs. In recent years, Foxp3+ T
cells have been found in many tumors, such as HCC (17),
pancreatic ductal adenocarc (18), colorectal cancer (19), gastric
cancer (20), and esophageal cancer (21), suggesting that Foxp3+ T
cells participated in the tumor progression. However, the subsets
of infiltrating Foxp3+ T cells in tumors remained unclear. With
immunohistochemical staining analysis, Wang et al. (22) found
that Foxp3 was detected in 48% of HCC tumor tissue but not in
healthy liver tissue and para-tumor tissue, indicating that the
recruitment of Foxp3+ T cells played an important effect in the
development of HCC. Foxp3 was mainly present in the nucleus
and cytoplasm of tumor cells (22). A synthetic peptide named P60
could bind to Foxp3, restrict its nuclear translocation, and reverse
the biological activity for HCC (23), which indicated that Foxp3
was required to enter the nucleus to display its function. However,
the expression and regulation mechanisms of Foxp3 are
unknown. In tumor cells from patients with HBV-associated
HCC, PreS2 overexpression could trigger the Foxp3
overexpression. In contrast, PreS2 knockdown could
significantly reduce the expression of Foxp3. This was the first
time a direct conclusion that PreS2 triggered Foxp3 expression in
HCC was reached (24).

According to several studies, nTregs promoted tumor growth
by limiting antitumor immune responses. iTregs, on the other
hand, were shown to favor cancer progression by sustaining
peripheral tolerance and controlling cancer-related inflammation
(25). The exact roles of nTregs and iTregs in cancer are yet
unknown. For this reason, we only talk about total Foxp3+ T cells
in this review. Currently, the role of Foxp3+ T cells for HCC
prognosis remains disputable. The majority of studies showed that
Foxp3+ T cells were related to HCC migration, and high Foxp3
expression predicted a poor prognosis for HCC (17, 26–32)
(Figure 1). A meta-analysis on HCC, which was conducted by
Huang et al. (17), demonstrated that the high Foxp3+ T cells
invading group had worse 1, 3, and 5-year survival than the low
Foxp3+ T cells infiltrating group. At the same time, the high Foxp3
+ T cells infiltrating group had better 1, 3, and 5 year-recurrence
than the low Foxp3+ T cells infiltrating group. According to the
above conclusion, high Foxp3+ T cells infiltrating was a poor
prognostic factor for HCC. The mechanisms in which Foxp3+ T
cells promoted HCC progression might include fostering
angiogenesis (27), decreasing CD8+ T cells (32), progressively
reducing CD4+ CTLs (31), and boosting the formation of portal
vein tumor thrombi (PVTT) (29) and so on. Conversely, new data
suggested that high Foxp3+ T cells in HCC improved the clinical
outcome by suppressing proliferation, migration, and invasion of
tumor cells (33) (Figure 1). Gong and colleagues first reported that
those with high Foxp3 protein expression had better overall
survival than those with low Foxp3 expression in 84 HCC
patients. Based on those finds, they demonstrated that Foxp3
suppressed tumor growth in mouse tumor models by directly or
indirectly inhibiting oncogene c-Myc (33).
September 2021 | Volume 12 | Article 729705
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In conclusion, most studies have found that a high frequency
of infiltrating Foxp3+ T cells was associated with a poor
prognosis in HCC. However, further study is needed to reach a
consensus and explore the functions of nTregs and iTregs.
CD8+ T LYMPHOCYTES

Cytotoxic T lymphocytes (CTLs) always have CD8 surface antigen
and play a function in the antitumor immune response. In current
studies, CD8+ T lymphocyte is the most prevalent T cell subset. It
has been shown that high expression of CD8+ TILs linked to a
good prognosis in multiple tumors, including colorectal cancer
(19), esophageal cancer (34), gastric cancer (35). In HCC, CD8+ T
cells are also widely concerned. Several recent investigations have
stated that CD8+ TILs expression decreased in the tumor tissue
with HCC. Based on immunohistochemistry staining for CD8+
TILs from 29 cases with HCC, Yarchoan’s team found that the
Frontiers in Immunology | www.frontiersin.org 3
expression of CD8+T cells in the tumor tissue was remarkably
lower than that in the liver background, and the expression of
CD8+ T cells in the tumor side was lower than that in the
nontumor side of tumor interface (36). Furthermore, the
distribution of CD8+ T lymphocytes in HCC significantly varied
among different areas and etiologies of the tumor. In non-
alcoholic steatohepatitis (NASH) patients and animal models,
CD8+ T cells were accumulated with strong programmed cell
death protein 1 (PD-1) expression (37). Compared to the invasive
margin region of the tumor in HCC, the central tumor region had
a lower expression and a smaller area of CD8+ T lymphocytes
(38). This phenomenon was also considered to happen because
CD8+ T lymphocytes usually migrated from the peritumor region
towards the central region of the tumor, and Tregs contributed to
suppressing their migration and proliferation (32). While due to
the perspective that HCC is a solid human tumor with abundant
neovascularization and high perivascular infiltration of CD8+ T
cells, the infiltration of immune cells was also believed to originate
FIGURE 1 | Roles of infiltrating immune cells in HCC. (A) The suppressing role of TILs on HCC. Initially, several infiltrating T lymphocytes, including CD3+, CD8+,
activated NKs and Foxp3+ TILs, have been discovered to inhibit HCC directly. Secondly, some TILs could interact with other immune cells to suppress HCC, such
as TIBs prohibited HCC by increasing CD8+ T cells and activating NK cells. Last, different TIL ratios also were proved to hinder HCC progress, just as low Foxp3
+/CD3+ TIL ratio, high CD4+/CD8+ TIL ratio, et al. (B) The promoting role of TILs on HCC. Some infiltrating T lymphocytes have been shown to promote HCC
directly, like Foxp3+, CD3+ TILs. Also, infiltrating T lymphocytes could interact with other immune cells to boost HCC progress via many mechanisms, including
reduced DC-T interaction, weakening the function of CD4+ and CD8+ TILs et al.
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from intratumor vessel extravasation, not the peritumor tissue
migration (39).

As in other tumors, many experts have demonstrated that
CD8+ T lymphocyte in HCC was a protective factor (38–42)
(Figure 1). According to research, high expression of CD8+TILs
in the invasive margin, intratumoral, and perivascular regions
has been linked to improved survival (39, 41). In a cohort
analysis of 446 HCC cases, the densities of CD8+ TILs both in
the intratumor and margin area positively correlated with overall
survival and disease-free survival, and a higher density CD8+
TILs indicated a reduced recurrence rate (38). In addition,
Sideras et al. reported that patients with a low density of CD8+
TILs survived poorly after analyzing stored formalin-fixed
paraffin-embedded HCC tissue samples from 154 patients
using immunohistochemical analysis, which was also
confirmed in their validation cohort (42). This result suggested
that CD8+ TILs with high expression had a positive prognostic
role. Yet, whether CD8+ TILs could exert antitumor activity
normally was still determined by the expression level of
inhibitory receptors on their surface. Another study on NASH-
related HCC discovered that the elimination of enriched CD8+
PD-1 T cells, which represent exhausted effector cells, could
reduce liver damage and HCC incidence. In comparison to virus-
related HCC, NASH-related HCC responded to immunotherapy
treatment worse due to the obviously increased expression of
CD8+ PD-1 T cells (37). Interestingly, a few studies came to an
opposite view that high infiltrating CD8+ T lymphocytes
predicted high recurrence and poor prognosis (28, 43, 44),
which contradicted the antitumor role of CTLs.

Overall, CD8+TIL acting as an antitumor effector decreased in
the tumor tissue, which has been proved to link with poor prognosis
in HCC in the majority of studies. In NASH-related HCC, however,
accumulating CD8+ T cells with elevated PD-1 expression
accelerated tumor growth and reduced immunotherapy response.
CD3+ T LYMPHOCYTES

CD3 also is the typical surface antigen of T lymphocytes.
Compared with HCV-associated cirrhosis, CD3+ TILs
expression in HCV-associated HCC was significantly higher
(43). In addition, the CD3+ TILs density of the intratumoral
region was higher than that of the peritumoral area (45). Now the
role of CD3+ TILs in HCC remains uncertain. Most studies
showed that high CD3+ TILs expression was a protective factor
against HCC (12, 38, 39, 46) (Figure 1). Patients having more
CD3+ TILs in the intratumor tissue lived longer in HCC,
according to Sun’s findings. This result, however, was not seen
in the peritumor tissue. They came to the conclusion that CD3+
TILs in the central zone tumor was an independent indicator for
HCC prognosis while the distribution of CD3+ TILs in peritumor
had little impact on the prognostic value (38). In another
research of 65 patients with I to IV stage HCC, high CD3+
TILs densities both in the center and margin of the tumors were
found to predict low recurrence and prolonged disease-free
Frontiers in Immunology | www.frontiersin.org 4
survival (46). Yao’s group also came to the same conclusion in
a meta-analysis that included 23 relevant papers with 3173 HCC
patients (12). The value of CD3+ TILs in the perivascular area
was likewise proved. A recent study found that patients with a
high amount of CD3+ TILs at the perivascular region had long
disease-free survival, implying that CD3+ TILs in the
perivascular location could also be used as an independent
predictor of HCC (39). Despite the above, the following paper
showed that high CD3+ TILs was a poor prognostic factor for
HCC (41). A meta-analysis of seven articles on TILs involving
1274 HCC patients revealed that high infiltration of CD3+ T
lymphocytes at the tumor center was correlated with poor overall
survival (Figure 1), whereas there was no correlation between
CD3+ TILs density at the margin tumor and overall
survival (41).

In summary, even though there were disputes, most studies
found that a high concentration of CD3+ TILs in the tumor or
perivascular region predicted a favorable outcome in HCC.
CD4+ T LYMPHOCYTES

CD4+ T lymphocytes took on activities in the immune response
against tumor by secreting cytokines and activating CD8+ T
lymphocytes (31, 47). Naive CD4+ T cells can differentiate into
many subsets following antigens stimulation, including T helper
1 (Th1), Th2, Th9, Th17, Th22, follicular helper T (Tfh) cells,
and Tregs. In recent years, CD4+ T cells with cytotoxic activity,
which produce granzyme A, granzyme B, and perforin, have
been termed CD4+ CTLs. It has been shown that CD4+ CTLs
could exert antiviral and antitumor effects (48). CD4+ T cells
have been extensively discovered in many cancers including
HCC. It has been found that the numbers of circulating
CD4+T lymphocytes were significantly higher in HBV-
associated HCC patients than that in chronic hepatitis B
(CHB), HBV-related cirrhosis patients, and healthy individuals
(31). Furthermore, HCV-related HCC had higher CD4+ TILs
than HCV-related cirrhosis (43). When patients progressed to
HCC, CD4+ T lymphocytes were redistributed in tumor tissue,
with CD4+ TILs expression in the peritumoral area being greater
than that in the intratumoral area (28). CD4+ TILs might be
decreasing as HCC progressed. Compared with the early-stage
HCC, the quantity of CD4+ TILs was lower in the advanced-
stage HCC, suggesting that the gradual reduction of CD4+ TILs
might correlate with HCC progression (31). In order to better
understand the mechanism of CD4+ TILs decline in late-stage
HCC, Chaoul’s group observed the subsets of CD4+ TILs. When
compared to the circulating blood of HCC patients, they found
that terminally differentiated effectors (TEFF) strongly reduced
and exhausted in both peritumor and central tumor, indicating
that CD4+ TILs were selectively recruited into the tumor to
escape the immune system (49).

It was found that CD4+ TILs served as a protective factor in
HCC (31, 50) (Figure 1). The progressive decrease of CD4+
CTLs was related to a poor prognosis and a high recurrence of
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HCC (31). Another study performed in the NASH mice model
revealed that inducing apoptosis of CD4+ T lymphocytes could
promote HCC development while rescuing apoptosis of CD4+
T lymphocytes could prevent HCC development (50).
Nevertheless, the mechanism of HCC progression mediated
by a reduction of CD4+ TILs remains unclear. On the one
hand, it was directly responsible for the reduced and exhausted
TEFF of CD4+ TILs. On the other hand, insufficient
stimulation of CD8+ TILs without the assistance of CD4
+TILs might play a potent role in the poor prognosis of
HCC (51). However, several researches argued that there was
no correlation between CD4+ TILs and HCC progression (12,
45). Even though positively correlated with elevated AFP and
poor tumor differentiation, CD4+ TILs were discovered to be
associated with neither overall survival nor disease-free
survival (45).

Collectively, the decreased and impaired CD4+ TILs were
observed in tumor tissue, which triggered the impaired activation
of CD8+ TILs, and correlated with poor prognosis in HCC.
FOXP3+/CD3+, FOXP3+/CD4+,
FOXP3+/CD8+, CD8+/CD3+, CD4+/CD8+
T LYMPHOCYTES RATIO

As stated previously, tumor-infiltrating T lymphocytes with
multiple subgroups exhibited antitumor and protumor effects at
the same time, showing significant predictive value for HCC. So it
is necessary to discover their prognostic value of the different
ratios between TIL subsets for HCC. Low Foxp3+/CD3+,
Foxp3+/CD4+, Foxp3+/CD8+TIL ratio, and high CD4+/
CD8 +TIL ratio were shown to correlate with good prognosis
(Figure 1), while CD8+/CD3+TIL ratio showed no correlation
with survival in HCC (12, 52–54). Yao and co-workers reported
that patients with lower Foxp3+/CD4+ and Foxp3+/CD8+TIL
ratios had better overall survival and disease-free survival (12). A
recent study found that the mortality rate of the high Foxp3 +/
CD4+ TIL ratio group was 3.5 times higher than that of the low
ratio group after observing the distribution of immune cells of 57
HCC patients in tumor tissue and peritumor tissue and the
correlation of immune cells with clinical outcome. Then it
came to a conclusion that the Foxp3+/CD4+ TIL ratio in
tumor tissue was an independent prognostic factor for HCC
(54). Additionally, Mathai’s group discovered that a high
Foxp3 +/CD8+TIL ratio was correlated with poor tumor
differentiation, high recurrence, poor overall survival, and
disease-free survival in post-surgery HCC patients (52). Finally,
in 2006, a report including 69 HCC patients who accepted liver
transplantation from 1998 to 2001 pointed out that patients with
a high CD4 +/CD8+TIL ratio had low recurrence risk after
treatment (53).

Given the above, the ratio between TIL subtypes might be a
useful prognostic indicator in HCC. Low Foxp3+/CD3+,
Foxp3+/CD4+, and Foxp3+/CD8+TIL ratio, as well as high
CD4+/CD8+TIL ratio were found to predict a good prognosis
in recent studies.
Frontiers in Immunology | www.frontiersin.org 5
INTERACTIONS BETWEEN TUMOR-
INFILTRATING T LYMPHOCYTES AND
OTHER IMMUNE CELLS IN HCC

B Lymphocytes
B cells infiltrating in tumor tissue are defined as tumor-
infiltrating B cells (TIBs). Under the stimulation of different
factors and cells in TME, TIBs can differentiate into different
subtypes and then play a dual role in tumors by secreting
antibodies, acting as antigen-presenting cells (APCs), and
secreting cytokines (55). TIBs have been widely focused on
many different types of tumors, such as liver cancer (56),
breast cancer (57), oropharyngeal squamous cell carcinoma
(58), cervical cancer (59). High levels of TIBs, which have been
proved to be a protective factor against HCC, were linked to
smaller tumors and the lack of vascular invasion (60) (Figure 1).
Multiple subsets of TIBs, including CD20+ B cells, naive B cells
(Bn), IgM+ memory B cells (Bm), CD27− isotype-switched
memory B cells (CD27− Sw Bm), as well as plasma cells (PCs),
co-existed in HCC. In HCC tumors, all five subtypes were
reduced and impaired as compared to non-tumor tissue.
High Bn and CD27− Sw Bm densities might be utilized as
independent good predictor factors, possibly because of their
cytokines secreting activity, such as interferon (IFN)- g (61).
Furthermore, B cells might boost the humoral response to
eliminate tumor cells by secreting antitumor antibodies (62).
Last, it has been shown that TIBs were able to influence HCC
progression through interacting with other immune cells
(63). TIBs could increase the infiltration of CD8+ T cells via
IFN-g, IL-12p40, granzyme B to inhibit HCC progression (60)
(Figure 1). TIBs secreting IL-12 and IFN-g also stimulated NK
cells, which had an anticancer impact (64) (Figure 1). Regulating
B cells (Bregs), a novel subset of B cells, could promote HCC
by interacting with many immune cells. When compared to
healthy liver tissue, the amount of Bregs was elevated while the
level of CD4+ CTLs expressing granzyme and perforin was
downregulated in HBV tumor tissue, according to Xue’s group
(65) (Figure 1). Finally, they concluded that the interactions
between Bregs and CD4+CTLs might be the mechanism
for HCC progression. Bregs also promoted HCC by blocking
CD8+ T cells and NK cells while increasing Foxp3+ T cells
(66) (Figure 1).

The roles of TIBs, as outlined, are still open for debate in
HCC. The dual roles of TIB were determined by its subtypes
infiltrating in HCC.

Macrophages
There are two prominent macrophages in liver tissue: tissue-
resident macrophages, such as Kupffer cells, and monocyte-
derived macrophages (MDMs) (67). MDMs could differentiate
into two different functional subtypes in TME, including M1
induced by lipopolysaccharide (LPS), IFN-g, and M2 or tumor-
associated macrophages (TAMs) induced by IL-4 and IL-10 (68).
M1 macrophages mainly exert pro-inflammatory function, while
M2 macrophages have an anti-inflammatory effect (69).
Meanwhile, recent evidence suggested that M2 macrophages
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contributed to the progression of liver cancer by promoting
pathogenic angiogenesis (70), tumor cell invasion and migration
(71), epithelial-mesenchymal transition (EMT), and cancer stem
cell-like characters (72, 73), as well as mediating drug resistance
in HCC (74). According to research published in 2019 (74), not
only did M2 macrophages prompt the progression and
metastasis of liver cancer but also maintained the growth and
metastasis of tumor cells by secreting hepatocyte growth factor
(HGF), which significantly enhanced the resistance to sorafenib
in liver cancer. Moreover, it was proposed that the interactions
between macrophages and infiltrating T lymphocytes also
contributed to liver cancer progression (Figure 1). Kuang et al.
(75) reported that the distribution of CD68+TAMs in liver
cancer tissue was positively correlated with that of Th17, and
TAMs could induce the expansion of Th17, playing a role in
fostering angiogenesis of cancer through secreting inflammatory
factors, which promoted liver cancer finally. In addition, several
studies have demonstrated that Tregs in tumor tissue were
increased and activated by intratumoral macrophages, and
their interactions promoted HCC progression at last (76, 77).

Finally, macrophages were proved to aid HCC progression
through interacting with infiltrating T lymphocytes, such as
Th17 and Tregs.

Dendritic Cells
In the healthy liver, DCs mainly captured antigens as APCs,
presented antigens to T cells with the help of major
histocompatibility complex (MHC), and then activated
antigen-specific T lymphocytes, which linked innate and
adaptive immunity together. The precise role of infiltrating
DCs in HCC remains uncertain. It was widely thought that
high infiltration of DCs was associated with a favorable prognosis
and could predict recurrence and metastasis independently in
individuals following surgery (78) (Figure 1). Their antitumor
function was generated due to the mechanism that DCs could
activate T cells responses to inhibit HCC progression (79). Other
studies, on the other hand, revealed that DCs could be
suppressed, leading to the development of HCC in patients
with high AFP levels (80). Cross-talks between DCs and other
cells, such as tumor cells and immune cells, have also been
discussed in some studies. It has been shown that tumor cells
could induce the immature differentiation of DCs by reducing
adhesion molecules or secreting immune inhibition cytokines,
such as IL-10 and vascular endothelial growth factor (VEGF) (81,
82). Compared with mature DCs, immature DCs could recognize
and process antigens well while present antigens poorly (83). As
a result, DC-T cell interactions were reduced, and T cells could
not fully play the role of antitumor effector cells, which might be
one of the mechanisms of immune resistance to tumors (84)
(Figure 1). In an ex vivo study, DCs with low IL-12 production
caused the functional impairment of T lymphocytes, confirming
the interaction between them (85). In addition, another recent
evidence (86) confirmed that the expression of inhibitory
receptors on the surface of CD4+ and CD8+ T cells, such as
PD-1, T-cell immunoglobulin and mucin-domain containing-3
(TIM3), cytotoxic T-lymphocyte-associated protein 4 (CTLA4),
was higher in the tumor tissue than that in the non-tumor tissue
Frontiers in Immunology | www.frontiersin.org 6
and peripheral blood. Those inhibitory receptors could combine
with corresponding inhibitory ligands of DCs and tumor cells,
induce the disability of CD4+ TILs or suppress the cytotoxic
reaction of CD8+ TILs, which finally mediated the immune
tolerance to the tumor (Figure 1). The latest immune check-
point treatment was founded on those theory bases and had been
used in many types of tumors, including liver cancer. Compared
with traditional tumor therapies, immune checkpoint treatment
could recover the response of impaired TILs to tumor antigens
and prolong the survival of HCC (84, 86).

As can be observed, DCs had a role in the development of
HCC due to inadequate DC-T interactions and an increased
inhibitory function on effector T cells.

Natural Killer Cells
NK cells, which belong to innate immune cells, account for 5-
20% of circulating lymphocytes and over 50% of intrahepatic
lymphocytes. They mainly recognize abnormal cells with low
expression of MHC I, such as tumor cells and infected cells.
Then, activating receptors on NK cells will be activated, which
causes an unbalance towards activated NK cells, and NK cells can
eradicate target cells directly or indirectly, such as NK cell-
mediated cytotoxicity and secreting pro-inflammatory
cytokines (87) (Figure 1). Compared to healthy liver tissue, the
quantity of infiltrating NK cells changed, and their function did
in HCC tissue. Wu’s group (88) reported that the number of
infiltrating NK cells in HCC tissue significantly reduced, and
their functions were also impaired, which might trigger immune
evasion of the tumor and finally cause the progression of HCC.
This suggested that NK cells had the antitumor role. Consistent
with that, another study discovered that higher frequency of NK
cells of intratumor tissues was related to longer recurrence-free
and overall survival in HCC patients treated with sorafinib (89).
Aside from the reduced expression and dysfunction of NKs, the
following mechanisms involved in NKs might promote HCC
progression. First, the final result of HCC patients was
determined by the balance between infiltrating NKs, which
could destroy tumors, and other immune cells, such as Tregs,
which might inhibit immune response. Wang and co-workers
(90) found that, compared with non-tumor tissue, both Tregs
and the activated NK cells significantly increased in liver cancer
tissue. Now, the increased Tregs were shown to be associated
with poor prognosis in HCC (91). Second, the state of NK cells
would be influenced by tumor cells. On the surface of NK cells,
there were activating receptors that could activate NKs to exert
immunity surveillance and inhibitory receptors which could
inhibit NKs to trigger immune evasion, and their imbalance
would determine the function of NKs in HCC (92). NKG2D was
one of the most well discussed activating receptors in HCC.
Although, tumor cells might still manage to escape the immune
surveillance by down-regulating NKG2D via increased TGF-b
secretion (93) or decreased expression of its ligands, such as
major histocompatibility chain-related protein A (MICA) (94).
Third, NKs might promote HCC progression via interacting
with infiltrating T cells. An earlier review (95) discovered that
antigen-specify T lymphocytes regulated by NK cells would
boost as the depletion of NK cells. Hence, it concluded that
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NK cells finally promoted HCC progression by lowering the
immune activity against tumors via diminishing T cells
(Figure 1). It has been found that Treg cells could directly
inhibit the function of NK cells by expressing membrane-
bound TGF-b (96), or reduce the sensitivity of NK cells to
tumor cells via diminishing IL-2 (95) (Figure 1).

Ultimately, NKs failed to exert the antitumor effect for the
sake of their frequency decreasing, function impairment, and
interaction with surrounding tumor cells or other types of
infiltrating immune cells in HCC.
CRITICAL SIGNALING PATHWAYS
RELATED TO TILs IN HCC

TGF-b Signaling
The TGF-b family comprises TGF-bs, activins, inhibins, bone
morphogenetic proteins (BMPs), as well as growth and
differentiation factors (GDFs). The activation of this signaling
pathway starts with the binding of ligands to the extracellular
region of TGF-b type I and type II receptors (TbRI and TbRII),
followed by activating SMAD-dependent and SMAD-
independent pathways to trigger downstream cascades. In
HCC, TGF-b signaling is involved in almost each stage of
tumor formation (97). TME had a large amount of TGF-b,
which was overexpressed by tumor cells and other immune
cells. During the early stage of liver cancer, TGF-b suppressed
the proliferation of premalignant hepatocytes. But in the
advanced HCC phase, it contributed to tumor progression
through regulating immune cells, such as Tregs, CTLs, TAMs,
NKs (98). First, TGF-b could induce the expression of Foxp3 on
CD4+CD25- naive T cells through activating SMAD-dependent
pathways, mediating the formation of Tregs (99) (Figure 2).
Tregs in periphery blood also infiltrated into HCC tumor tissues
to suppress the antitumor effect of CTLs (100) (Figure 2). In
addition, tumor cells of HCC increasingly expressed TGF-b,
which was capable of upregulating the expression of PD-1 on
CD8+ CTLs. CTLs then bound to the PD-L1 on tumor cells and
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APC to induce CTLs exhaustion (101). At last, TGF-b signaling
could participate in the regulation of the innate immune system
by directly suppressing NK cells and promoting the
differentiation of TAM towards M2 to induce immune escape
(102) (Figure 2). Taken together, TGF-b signaling pathways
were broadly involved in the regulation of TILs, and finally
exerted promotion function in HCC.

Signal Transducer and Activator of
Transcription 3 Signaling
The human signal transducer and activator of transcription
(STAT) protein family consist of 7 members, including
STAT1, STAT2, STAT3, STAT4, STAT5A, STAT5B, and
STAT6. Among them, STAT3 has been focused by many
studies on cancer regulation. STAT3 was thought to be
activated rapidly and transiently in healthy cells by several
cytokines, such as IL-6, IL-10, IFNs, and growth factors, such
as VEGF. Nevertheless, it was stimulated persistently and
abnormally in tumor cells. According to a recent study,
phosphorylated STAT3 could be detected in around 60% of
liver cancer samples, which was related to poor prognosis (103).
STAT3 signaling pathway mainly exerted protumor function
through regulating DCs, differentiation of TAMs, NKs, and
Tregs. In DCs, IL-6 secreted by liver tumor cells and hepatic
carcinoma-associated fibroblasts (hCAFs) could bind to the
corresponding IL-6R on DCs, activate janus kinase (JAK), and
then start the downstream phosphorylation cascade of STAT3
signaling pathway to inhibit T cells proliferation and increase
Tregs production (104) (Figure 2). Moreover, STAT3 signaling
was proved to inhibit the expression of activation receptor
NKD2G on NKs and its corresponding ligands MICA/B on
tumor cells, which could block the activation of NKs and result in
failing immune surveillance in HCC (Figure 2). Suppressing
STAT3 signaling in HCC could reactive NKs to exert antitumor
function through altering cytokines in TME, such as reducing the
level of IL-10 (105). Apart from that, IL‐6/STAT3 signaling
facilitated tumor development by reducing M1 polarization
while increasing M2 differentiation of TAM (106) (Figure 2).
FIGURE 2 | Critical signaling pathways related to TILs in HCC, including TGF-b, STAT3, Wnt/b-catenin, NF-kB, HIF-1, and Notch pathway.
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As can be seen, STAT3 signaling influenced multiple immune
cells, which aided in the development of HCC.

Wnt/b-Catenin Signaling
When Wnt ligands bind to their corresponding receptors on the
surface of cells, the Wnt signaling cascade is activated. b-catenin,
usually located in the adherent junctions and cytoplasm of cells,
is driven to accumulate in the cytoplasm and translocate into the
nucleus, where it exerts regulation function (107). Wnt/b-
catenin signaling was frequently stimulated in HCC (108),
which mainly reduced the frequency of TILs and impaired
their function (109). The activation of Wnt/-catenin signaling
in HCC was considered to impair the innate immune system by
lowering DC infiltration (Figure 2), which then impaired the
adaptive immune response through reducing antigen-specific
CD8+ T cell migration (110). Apart from that, Wnt/-catenin
signaling also interfered with the effect of CTLs, causing them to
become exhausted (111) (Figure 2). In summary, Wnt/b-catenin
signaling was frequently activated and promoted HCC through
interacting with TILs, such as CD8+ T cells and DCs.

Other Signaling Pathways
NF-kB signaling pathway including canonical and non-canonical
plays significant roles in many kinds of liver disease, such as
hepatitis, liver cirrhosis, and liver cancer (112). In HCC,
hepatoma-derived factors expressed by tumor cells could bind
to hepatoma-derived toll-like receptor 2 (TLR2) to active
canonical NF-kB signaling pathway. Subsequently, TAMs
differentiation towards M2 was enhanced and acted as
protumor function (113) (Figure 2). Moreover, another two
signaling pathways, named HIF-1 and Notch signaling, have
been proved to be involved in the recruitment and activation of
TAM in HCC (114, 115) (Figure 2). Ultimately, the formation
and development of HCC are complicated. The signaling
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pathways related to TILs in HCC played potent roles in this
process. And further research is still needed to clarify the
mechanisms of HCC progression deeply.
CONCLUSION

Overall, TILs have been shown to exhibit both antitumor and
protumor properties in HCC. They cross-talked to create a
complex map with multiple signaling pathways connecting them
in the development of HCC. Future investigations are necessary to
reveal the undiscovered TIL domains, such as the specific
functions and mechanisms through which TILs function. In the
long term, studying on TILs in the roles and mechanisms of HCC
progression might help us best understand the law of HCC
progression, and identify innovative immunotherapy strategies.
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