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Abstract: Chromatin structure plays an essential role in eukaryotic gene expression and cell identity.
Traditionally, DNA and histone modifications have been the focus of chromatin regulation; however,
recent molecular and imaging studies have revealed an intimate connection between RNA epigenetics
and chromatin structure. Accumulating evidence suggests that RNA serves as the interplay between
chromatin and the transcription and splicing machineries within the cell. Additionally, epigenetic
modifications of nascent RNAs fine-tune these interactions to regulate gene expression at the co- and
post-transcriptional levels in normal cell development and human diseases. This review will provide
an overview of recent advances in the emerging field of RNA epigenetics, specifically the role of
RNA modifications and RNA modifying proteins in chromatin remodeling, transcription activation
and RNA processing, as well as translational implications in human diseases.

Keywords: 5’ cap (5’ cap); 7-methylguanosine (m7G); R-loops; N6-methyladenosine (m6A); RNA
editing; A-to-I; C-to-U; 2’-O-methylation (Nm); 5-methylcytosine (m5C); NOL1/NOP2/sun domain
(NSUN); MYC

1. Introduction

In eukaryotes, genomic DNA and its associated proteins, primarily histones, are or-
ganized into chromatin structural domains that affect the binding of transcription factors
(TFs), recruitment of RNA polymerases (RNAPs) and the initiation and elongation of
transcription [1]. The advent of new genome-wide sequencing technologies has identified
chromatin-associated RNAs (ChrRNAs) [2], including nascent RNAs, coding RNAs and
various regulatory non-coding RNAs (ncRNAs). RNAs can act either in cis by targeting
genomic DNA or in trans through RNAP complexes and interactions with DNA-binding
proteins, such as TFs and DNA/histone modifiers, to regulate chromatin structure and
gene expression. There are extensive studies and reviews of the roles of ncRNAs in the
regulation of DNA/histone modifications, chromatin structure, and gene expression [3–10].
In contrast, the role of RNA modifications and RNA modifying proteins (RMPs) in chro-
matin plasticity and transcription regulation remains largely unknown. This review will
discuss recent studies, which suggest RNA modifications and RMPs function to fine-tune
chromatin structure, in turn facilitating transcription activation or repression.

2. Co- and Post-Transcriptional RNA Modifications and RNA Modifying Proteins
2.1. Overview of RNA Modifications and RMPs

Over 170 chemical modifications have been identified in RNA [11]. The associated
RNA modifying proteins (RMPs) are classified into three groups based on their roles in RNA
modification: (1) writers: enzymes that catalyze specific RNA modifications, (2) readers:
enzymes that recognize and selectively bind to RNA modifications and (3) erasers: enzymes
that remove specific RNA modifications. These RMPs are distributed throughout the
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nuclei, cytoplasm and mitochondria and are involved in nearly all essential bioprocesses
(Figure 1) [11–13]. In this section, we will provide a brief update on the common RNA
modifications and their associated RMPs as well as their impact on chromatin structure
and transcription regulation. The common RNA modifications and their writers, readers
and erasers are shown in Figures 2 and 3; N6-methyladenosine (m6A) and its RMPs are
summarized in Figure 2A; 5-methylcytosine (m5C) and its RMPs in Figure 2B; Adenosine
to inosine (A-to-I) RNA editing and its RMPs in Figure 3A; Cytosine to uracil RNA editing
and its RMPs in Figure 3B.

Genes 2021, 12, x FOR PEER REVIEW 2 of 41 
 

 

RNA modifying proteins (RMPs) are classified into three groups based on their roles in 
RNA modification: (1) writers: enzymes that catalyze specific RNA modifications, (2) 
readers: enzymes that recognize and selectively bind to RNA modifications and (3) 
erasers: enzymes that remove specific RNA modifications. These RMPs are distributed 
throughout the nuclei, cytoplasm and mitochondria and are involved in nearly all essen-
tial bioprocesses (Figure 1) [11–13]. In this section, we will provide a brief update on the 
common RNA modifications and their associated RMPs as well as their impact on 
chromatin structure and transcription regulation. The common RNA modifications and 
their writers, readers and erasers are shown in Figures 2 and 3; N6-methyladenosine 
(m6A) and its RMPs are summarized in Figure 2A; 5-methylcytosine (m5C) and its RMPs 
in Figure 2B; Adenosine to inosine (A-to-I) RNA editing and its RMPs in Figure 3A; Cy-
tosine to uracil RNA editing and its RMPs in Figure 3B. 

 
Figure 1. Subcellular Distribution of RNA Modifications and RMPs in Eukaryotes. Abbreviations: RMP, RNA modifying 
protein; RBP, RNA binding proteins; m7G, 7-methylguanosine; Nm, 2′-O-methylation; m6A, N6-methyladenosine; m5C, 
5-methylcytosine; hnRNPs, heterogeneous nuclear ribonucleoproteins. 

Figure 1. Subcellular Distribution of RNA Modifications and RMPs in Eukaryotes. Abbreviations: RMP, RNA modifying
protein; RBP, RNA binding proteins; m7G, 7-methylguanosine; Nm, 2′-O-methylation; m6A, N6-methyladenosine; m5C,
5-methylcytosine; hnRNPs, heterogeneous nuclear ribonucleoproteins.



Genes 2021, 12, 627 3 of 41Genes 2021, 12, x FOR PEER REVIEW 3 of 41 
 

 

 
Figure 2. Formation, Recognition and Removal of RNA m6A and m5C in Eukaryotes. (A). Formation, Recognition and 
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at the RRAH motifs in RNA. m6A is then recognized by m6A readers (m6A-selective binding proteins), and eventually 
removed by RNA m6A erasers. (B). Formation, Recognition and Removal of RNA:m5C. RNA m5C writers methylate cy-
tosine residues, which are then recognized by m5C readers, or TETs, which oxidize m5C to hm5C, f5C and ca5C, respec-
tively. Abbreviations: SAM, S-adenosylmethionine; SAH, S-adenosyl homocysteine; RBM15, RNA binding motif protein 
15; METTL3/14, methyltransferase like 3/14; ZC3H13, zinc finger CCCH-type containing 13; WTAP, Wilms tumor sup-
pressor gene WT1; VIRMA, Vir-like m6A methyltransferase associated; HAKAI, Cbl Proto-Oncogene Like 1; FTO, Fat 
mass and obesity associated; ALKBH5, AlkB homolog 5; YTHDC1/2, YTH domain containing 1/2; YTHDF2/3, YTH N6, 
methyladenosine RNA-binding protein 2/3; HNRNP family, heterogeneous nuclear ribonucleoproteins; IGF2BP1/2/3, 
insulin-like growth factor 2 mRNA binding protein 1/2/3. NSUN family, NOL1/NOP2/sun domain; DNMT2, DNA me-
thyltransferase 2; ALYREF, Aly/REF export factor; YTHDF2, YTH N6-methyladenosine RNA binding protein 2; TETs, ten 
eleven translocation elements; hm5C, 5-hydroxymethylcytosine; f5C, 5-formylcytosine; ca5C, 5-carboxylcytosine. 

Figure 2. Formation, Recognition and Removal of RNA m6A and m5C in Eukaryotes. (A). Formation, Recognition and
Removal of RNA:m6A. The METTL3/14 methyltransferase complex transfers methyl groups from SAM to N6-adenosines
at the RRAH motifs in RNA. m6A is then recognized by m6A readers (m6A-selective binding proteins), and eventually
removed by RNA m6A erasers. (B). Formation, Recognition and Removal of RNA:m5C. RNA m5C writers methylate
cytosine residues, which are then recognized by m5C readers, or TETs, which oxidize m5C to hm5C, f5C and ca5C,
respectively. Abbreviations: SAM, S-adenosylmethionine; SAH, S-adenosyl homocysteine; RBM15, RNA binding motif
protein 15; METTL3/14, methyltransferase like 3/14; ZC3H13, zinc finger CCCH-type containing 13; WTAP, Wilms tumor
suppressor gene WT1; VIRMA, Vir-like m6A methyltransferase associated; HAKAI, Cbl Proto-Oncogene Like 1; FTO, Fat
mass and obesity associated; ALKBH5, AlkB homolog 5; YTHDC1/2, YTH domain containing 1/2; YTHDF2/3, YTH N6,
methyladenosine RNA-binding protein 2/3; HNRNP family, heterogeneous nuclear ribonucleoproteins; IGF2BP1/2/3,
insulin-like growth factor 2 mRNA binding protein 1/2/3. NSUN family, NOL1/NOP2/sun domain; DNMT2, DNA
methyltransferase 2; ALYREF, Aly/REF export factor; YTHDF2, YTH N6-methyladenosine RNA binding protein 2; TETs,
ten eleven translocation elements; hm5C, 5-hydroxymethylcytosine; f5C, 5-formylcytosine; ca5C, 5-carboxylcytosine.
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drolytic deamination of cytidine. Abbreviations: ADAR1/2, adenosine deaminases acting on RNA; APOBEC1, apolipo-
protein B mRNA editing enzyme catalytic subunit 1; RBM47, RNA binding motif protein 47; ACF/A1CF, APO-
BEC1-complementation factor. 
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(A). A-to-I RNA Editing Mechanism. ADAR1 and ADAR2 catalyze the site-specific conversion of A-to-I within imperfectly
duplexed RNA. Meanwhile ADAR3 inhibits A-to-I editing. (B). C-to-U RNA Editing Mechanism. APOBEC1 and ACF bind
to the RNA duplex, and RBM47 interacts with APOBEC1 and ACF, to produce C-to-U conversion via hydrolytic deamination
of cytidine. Abbreviations: ADAR1/2, adenosine deaminases acting on RNA; APOBEC1, apolipoprotein B mRNA editing
enzyme catalytic subunit 1; RBM47, RNA binding motif protein 47; ACF/A1CF, APOBEC1-complementation factor.

2.2. 5′Cap RNA Modifications and RMPs

In eukaryotes, a newly synthesized mRNA (pre-mRNA) must undergo three steps
to become a mature mRNA, which include (1) capping at the 5′ end, (2) adding a poly(A)
tail to the 3′ end and (3) splicing to remove introns [14]. The 5′ cap addition is a complex
process, illustrated in Figure 4, concluding with a final m7G0pppN1 structure [15]. Loaded
by RNA guanine-N7 methyltransferase (RGMT), 7-methylguanosine (m7G) protects the
pre-mRNA from degradation and is recognized by 5′ cap-binding complex (CBC). CBC
binds the 5′ cap and interacts with transcription machinery and the RNA splicing complex
as well as translation initiation factors and the 40S ribosomal subunit to co-ordinate the
functions of transcription, splicing, RNA export and translation [15,16].
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phosphatase; RTPase-RNA triphosphatase; SAM, S-adenosylmethionine; SAH, S-adenosyl homocysteine; PCIF1/CAPAM,
PDX C-terminal inhibiting factor 1; CMTR1/2, cap methyltransferase 1/2.

2′-O-methylation (Nm) is one of the most abundant RNA modifications and can occur
on any base in all RNA species [17]. In about half of all capped and polyadenylated
RNA molecules, mRNA and small nuclear RNAs (snRNAs) with a 5′ cap structure are
further modified by cap methyltransferases 1 and 2 (CMTR1 and CMTR2) to add Nm on
the first and second transcribed nucleosides, respectively [18,19] (Figure 4). Cytoplasmic
sensors MDA5 and RIG-I, which recognize non-2′-O-methylated viral RNAs, highlight
an important function of Nm in the mRNA 5′ cap as a distinction between self and non-
self [20–23].

N6-methyladenosine (m6A) is one of the most prevalent modifications in the 5′ cap of
mRNAs [24], and the 5′ cap m6A stabilizes mRNA transcripts through resistance to the
mRNA-decapping enzyme DCP2 [25]. The previously-known phosphorylated carboxyl-
terminal domain (CTD) of RNA polymerase II (RNAP II) interacting factor (PCIF1) was
recently found to be a 5′ cap-specific adenosine N6-methyltransferase (CAPAM), which
catalyzes m6A of the first transcribed nucleoside adenosine to form the cap structure
m7G(5′)ppp(5′)m6Am [26] (Figure 4). CAPAM/PCIF1 negatively regulates RNAPII-
dependent transcription [27]. CAPAM/PCIF1 is the only known cap-specific adenosine
N6-methyltransferase that does not methylate adenosine residues in the RNA body and its
function is the subject of ongoing research [28].
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2.3. Internal m6A and Associated RMPs

m6A is one of the most abundant modifications on mRNA and was first discovered
in 1965 [29]. m6A exhibits tissue-specific distribution and is enriched near stop codons
and in 3′ untranslated region (3’-UTRs) [30]. Found in all RNA types, including mRNA,
tRNA, rRNA and non-coding RNA (ncRNA), m6A is involved in nearly every aspect of the
mRNA life cycle and cellular processes, as well as cell/organ development and disease
pathogenesis [11,13]. The m6A associated RMPs, i.e., writers, readers and erasers, are
listed in Figure 2A. Methyltransferase 3 (METTL3) and methyltransferase 14 (METTL14)
form a stable heterodimer that can efficiently catalyze methyl group transferring from
S-adenosylmethionine (SAM) to the N6-amine of adenosine in the sequence motif RRACH
(where R = G/A, H = A/C/U) of RNA [31–33]. The Wilms tumor-associated protein
(WTAP) complex can interact with the METTL3/14 complex to promote mRNA methyla-
tion [31,34] (Figure 2A). Of note, recent studies showed that METTL16 binds to U6 snRNA
and other ncRNAs as well as numerous lncRNAs and pre-mRNAs at a sequence motif,
which is different from the METTL3/METTL14 binding motif [35,36], to regulate splicing
and mouse embryonic development [35,37].

Readers of RNA m6A modifications primarily include members of the YTH family
proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) (Figure 2A) [38–41].
YTH family proteins are mainly involved in translation regulation and degradation, either
promoting m6A-modified RNA translation (YTHDF1 and 3, YTHDC2) or regulating m6A-
modified RNA splicing and degradation (YTHDF2 and 3, YTHDC1) [38,42–44]. Similarly,
hnRNPs are involved in regulating RNA processing/alternative splicing, and HNRNPC
and HNRNPG facilitate m6A binding by targeting m6A-induced structural changes in
RNA structure [40]. Additional m6A readers have been identified, such as IGF2BP1-2 and
Prrc2a, which stabilize and promote storage of m6A-modified mRNA, further affecting
gene expression [45]. Finally, fat mass and obesity associated (FTO) and ALKBH5 have
been identified as m6A erasers [46–48]. FTO and ALKBH5 are known to regulate pre-
mRNA alternative splicing and subsequent mRNA processing, metabolism, and export,
respectively [48,49].

2.4. m5C and Associated RMPs

5-methylcytosine (m5C) has been well-characterized in tRNA and rRNA [50,51] and
is now increasingly recognized as a widespread RNA modification in coding and non-
coding eukaryotic mRNA as well [52–54]. However, m5C levels in mRNA remain low,
reportedly ~0.43% by one early study [52]. The low abundance of m5C in mRNA is an
obstacle in determining m5C function in transcription regulation [50], but the abundance
of m5C methyltransferases and readers has revealed some insight into this concept. RNA
m5C is catalyzed by RNA cytosine methyltransferases (RCMTs) (Figure 2B). This group is
comprised of NOL1/NOP2/sun (NSUN) family members 1–7 and DNA methyltransferase
2 (DNMT2) [55]. RCMTs are known to play a wide variety of roles, notably ribosomal
assembly, transcription regulation, mRNA nuclear export and tRNA cleavage and charg-
ing [55]. NSUN2 is known to be responsible for the majority of m5C in mRNA [56,57].
NSUN6 has been shown to be implicated in the formation of m5C in mRNA [58].

ALYREF has been shown to selectively bind m5C and is critical for exporting mRNAs
that are methylated by NSUN2 [59]. Other proteins, which function as m5C readers,
include YTHDF2, and Y-box binding protein 1 (YBX1) [60,61]. Together, these m5C readers
are known to selectively bind m5C to regulate transportation, ribosomal biogenesis, and
mRNA stability (Figure 2B).

Ten–eleven translocation (TET) enzymes are traditionally known to “reverse” DNA
cytosine methylation by oxidizing m5Cs to 5-hydroxymethylcytosines (5hmCs). Recently
TET1/2 enzymes have been shown to share partial responsibility for RNA m5C demethy-
lation to 5-hydroxymethylcytosine (hm5C) in tRNA to promote translation [62] and to
regulate embryonic stem cell (ESC) self-renewal network regulation [63].
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2.5. RNA Editing: A-To-I and C-To-U

RNA editing is another common RNA modification. There are two common forms of
RNA editing in higher eukaryotes, known as adenosine-to-inosine (A-to-I) and cytosine
to uracil (C-to-U) editing [64]. Both A-to-I and C-to-U are important for codon alteration,
as well as implicated in RNA splicing and mRNA processing, stability, localization and
translation [64].

A-to-I editing is carried out by adenosine deaminase acting on RNA (ADAR) enzymes
1–3 (Figure 3A), and the vast majority of A-to-I sites are in noncoding sequences, 5′ and
3′ UTRs, and intronic retrotransposon elements, such as Alu [64]. Globally, ADAR1 is the
primary editor of repetitive sites and ADAR2 is the primary editor of non-repetitive coding
sites, whereas ADAR3 predominantly acts as an inhibitor of editing [65].

Occurring within regions of double-stranded RNA (dsRNA), A-to-I editing causes dis-
ruption and destabilization of dsRNA base pairing and affects the RNA interference pathway
(RNAi), RNA splicing, and RNA secondary structures in a tissue-specific manner [66–68].

ADAR1-mediated A-to-I editing of endogenous dsRNA is needed for normal develop-
ment [66] and essential in the prevention of cytosolic innate immune system activation [69].
ADAR3-mediated editing occurs primarily in the brain and is found to be overexpressed in
glioma cells [70], as well as involved in mouse learning and memory [71]. Interestingly,
A-to-I editing has been found to occur in a negative correlation with m6A [72].

C-to-U editing involves the hydrolytic deamination of a cytosine to a uracil base by
a member of the AID/APOBEC enzyme family (Figure 3B). All members (apart from
APOBEC2 and 4) demonstrate C-to-U deaminase activity on single-stranded DNA or
RNA [73]. Genome-wide sequencing studies have shown that C-to-U editing is widespread,
predominantly in 3′ UTR and coincident with splicing and polyA sites [74]. When in coding
regions, such editing can create start or stop codons or alter amino acid codes and splice
sites, leading to varied genetic information on the RNA level [75,76]. Finally, APOBEC1 and
ACF regulate nonsense-mediated RNA decay [77]. Taken together, these studies suggest
C-to-U editing functions in the regulation of mRNA processing, stability, localization
and translation.

3. Transcription and Nascent RNA-Associated Chromatin Structure
3.1. Transcription and Nascent RNA Synthesis

Transcription is the first step of an essential multistep bioprocess and consists of
three major steps: initiation, elongation and termination [78]. In eukaryotes, the activity
between transcription initiation and elongation can be further described in five major steps:
(1) chromatin remodeling; (2) formation of the preinitiation complex (PIC); (3) formation of
an open complex and abortive synthesis of short (2–8) nt RNAs; (4) promoter pausing and
escaping by RNAPII; and (5) pause releasing and productive elongation (Figure 5). In this
section, we will describe these steps in detail.

Chromatin remodeling begins with the interaction between sequence-specific tran-
scription factors (TFs) and chromatin modifiers to “open” condensed chromatin (hete-
rochromatin) [79] (Figure 5, step 1), allowing RNAPII/Mediator complex to bind specific
DNA sequences and form a PIC at the gene promoters and enhancers [79] (Figure 5, step 2).
The mediator of RNAPII transcription (mediator) complex is critical in transcription activa-
tion and is assembled at the PIC. Interactions between RNAPII and mediator complex are
facilitated by the C-terminal domain (CTD) of the largest unit, RPB1, of RNAPII, which
contains a highly conserved region with up to 52 repeats of the heptad of Y1S2P3T4S5P6S7
(YSPTSPS) largely unphosphorylated during initiation [80] (Figure 5, step 2). Open com-
plex formation is initiated by the multiprotein complex TFIIH. TFIIH can not only unwind
DNA to form the transcription “bubble” through its associated helicases (Figure 5, step 3),
but can also phosphorylate the YSPTSPS CTD serine 5 residue through its associated CDK7
and cyclin H kinases, stimulating mediator complex and PIC general TF dissociation and al-
lowing RNAPII escape from the promoter [81,82] (Figure 5, step 3). Two other factors, DRB
sensitivity inducing factor (DSIF) and negative elongation factor (NELF) contribute to the
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transition from transcriptional initiation to elongation and RNAPII promoter escape [83].
DSIF is a heterodimer composed of Spt4 and Spt5, and NELF consists of four subunits (A,
B, C/D, and E) [84,85]. Spt5 interacts with the 5′ cap of nascent RNA (pre-mRNA), and
then NELF recognizes the Spt5 interface [86]. TFIIH interacts with DSIF and NELF, which
then cooperatively induce RNAPII promoter escape and subsequent pausing (Figure 5,
step 4). Finally, transcription elongation is promoted by P-TEFb [87], which consists of a
kinase/cyclin pair of CDK9 and CCNT1 (or CCNT2). P-TEFb phosphorylates DSIF and
RNAPII CTD serine 2, inducing NELF release from RNAPII [88] and allowing RNAPII
interaction with other elongation factors and chromatin modifying complexes to ensure
productive transcription elongation, respectively [89–91] (Figure 5, step 5).
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Figure 5. Transcriptionally Active Chromatin Structure and the Five Steps of Transcription Activation. Step 1. Chromatin
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sensitivity-inducing factor; CDK9/p-TEFb, cyclin-dependent kinase 9.

3.2. R-Loops as the Regulators of Transcription and Chromatin
3.2.1. Mechanisms of R-Loop Formation

R-loops are three-strand nucleic acid structures consisting of an RNA-DNA duplex and
an unpaired DNA strand generated during transcription upon nascent RNA “threadback”
invasion into the DNA duplex to displace the non-template strand [92] (Figure 5). Different
from the RNA: DNA hybrids occurring inside the active sites of RNAP during replication
and transcription, R-loops span a much longer range (~100–200 base pairs) and form
outside of RNAP during transcription [93]. R-loops are found ubiquitously from bacteria
to mammals and frequently at gene promoters and enhancers, as well as terminators.
Functionally, R-loops can positively and negatively regulate transcription and affect the
differentiation and lineage plasticity of pluripotent progenitors/stem cells [94–96].
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3.2.2. Distribution and Function of R-Loops

R-loops prevent DNA methylation by DNMT3B1 and are found to be clustered at
the CpG islands (CGIs) of gene promoters and enhancers in the human genome [97]. In
transcription activation, R-loops are found to promote recruitment of epigenetic modifiers
and RNAPII to CGIs [98]. As shown in Figure 5, R-loops at gene promoters and enhancers
are associated with active chromatin markers, such as H3 lysine 27 acetylation (H3K27ac)
and H3 lysine 4 trimethylation (H3K4me3), which suggests the involvement of R-loops in
enhancer–promoter looping and high-order chromatin architecture [95,99].

Antisense RNA transcripts promote the formation of R-loops, creating a local chro-
matin environment which facilitates the recruitment of transcription factors and chromatin
modifiers to promote gene transcription [100,101]. For example, the LncRNA TARID is
reportedly involved in TCF21 transcriptional activation by generating an R-loop at the
CpG-rich promoter of TCF21, enabling GADD45A binding to the R-loop and recruitment
of the DNA demethylase TET1 [102]. On the other hand, it is also well-documented that
R-loops can trigger chromatin condensation and heterochromatin formation to repress gene
expression [103]. Co-transcriptional R-loops have been shown to impede the movement
of RNAP in vitro and exert a negative impact on transcription elongation [104]. R-loops
were reported to regulate the chromatin structure of specific genes involved in control of
mouse ESC differentiation by differentially interacting with the active Tip60-p400 histone
acetyltransferase complex and repressive PRC2 H3K27me3 complex [95]. Mechanistically,
higher Tip60-p400 and lower PRC2 levels are associated with promoter-proximal R-loops
and active transcription to promote ESC differentiation, while decreased Tip60-p400 and
increased PRC2 disrupts R-loop formation and impairs ESC differentiation [95].

In addition to gene promoters and enhancers, R-loops are highly enriched in retrotrans-
posons (i.e., LINE-1), ribosomal RNA (rRNA), tRNA loci and mitochondria, and are crucial
for regulating genome stability, stress response and mitochondrial function [105–107]. R-
loops can cause hypermutation, hyperrecombination, chromosomal rearrangements or
chromosome loss, leading to genome instability and chromosome fragility [108]. Genome-
wide mapping of R-loops demonstrates an enrichment at the 3′ end of genes with GC
skew patterns in mammalian cells, and R-loop accumulation at the 3′ end of genes inhibits
transcription [109]. R-loops were found to be associated with a subset of developmental reg-
ulator genes, which are targeted by Polycomb complexes PCR1 and PCR2 [110]. Removal
of the R-loop causes decreased PRC1 and PRC2 binding and increased RNAPII recruitment,
resulting in activation of these PRC1/2 targeting genes [110]. Arginine methyltransferases
PRMT1/5 and CARM1 interact with tudor domain-containing protein 3 (TDRD3) to facili-
tate recruitment of topoisomerase IIIB (TOP3B) to prevent such R-loop accumulation [111],
and release RNAPII for successive transcription by methylating the arginine residues in
histone tails, as well as the RNAPII CTD [112].

It is increasingly clear that the formation, distribution and removal of R-loops is tightly
regulated during DNA transcription and replication.R-loops are involved in regulation
of all stages of gene expression, from transcription initiation to termination, and can
act as transcriptional activators or repressors at specific gene loci in different cell types
and differentiation states. Regulatory R-loops are important for transcription elongation
and termination, as well as telomere stability and DNA repair in normal physiological
conditions. In contrast, dysregulated R-loops are associated with transcription elongation
defects, DNA damage and genome instability in pathophysiological conditions, such as
cancer [92,105].

3.3. MYC, 7SK snRNP and BRD4 Transcription and Chromatin Structure Regulation
3.3.1. MYC-Mediated RNA 5’ Capping, Transcription Elongation and Active Chromatin

MYC is well-known to activate Myc-dependent transcription, but its underlying
mechanisms remain incompletely understood [113,114]. As shown in Figure 6, MYC is
involved in m7G 5′ capping of pre-mRNAs by binding to the E-box in the promoter of active
genes, which recruits the capping enzyme complex composed of RNA guanylyltransferase
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and 5’-phosphatase (RNGTT) and CMTR1 [114]. Upon binding to the E-box, MYC also
recruits CDK7/TFIIH and CDK9/P-TEFb to gene promoters, which phosphorylate RNAPII
CTD serine 5 and 2 residues, respectively [115].
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Finally, MYC appears to be implicated in regulation of R-loop formation as well.
Recent studies have shown that MYC can suppress R-loop formation in promoter-proximal
regions through recruitment of BRCA1, which stabilizes the DCP2 de-capping enzyme com-
plex and enables RNAPII escape from promoter pausing, leading to increased transcription
elongation and gene expression [116] (Figure 6).

3.3.2. SK snRNP Complex as a Negative Regulator of Transcription Elongation

The 7SK small nuclear ribonucleoprotein (7SK snRNP) complex is composed of the
core 7SK snRNPs and other proteins, including AFF1/4, HEXIM1/HEXIM2, LARP7,
MePCE and hnRNPs [117]. This complex functions as a major negative regulator of
CDK9/P-TEFb by inhibiting CDK9/P-TEFb-mediated RNAPII escape and transcription
elongation [118,119]. 7SK snRNP interacts with HEXIMI that directly binds CDK9/P-TEFb,
inactivating its kinase activity and inhibiting transcription elongation [120] (Figure 6).

3.3.3. BRD4-Mediated Transcription Elongation and Active Chromatin

BRD4 is a member of the Bromodomains and Extraterminal (BET) family and con-
tains two bromodomains that recognize acetylated lysine residues of histone tails [121,122].
BRD4 not only promotes the establishment of chromatin, favoring transcriptional activation,
but also directly competes with release of CDK9/P-TEFb sequestrated by the 7SK snRNP
complex, which promotes CTD-S2 phosphorylation and activates RNAPII-dependent
transcription elongation [123] (Figure 6). BRD4 was initially reported to interact with
CDK9/P-TEFb through its bromodomain, resulting in CDK9/P-TEFb-dependent phospho-
rylation of RNAPII CTD serine 2 (CTD-S2) and transcription activation in vivo [124,125].
However, later studies demonstrated that BRD4 functions as an atypical kinase by di-
rectly binding and phosphorylating CTD-S2 both in vitro and in vivo under conditions
where other CTD kinases are inactive [126]. Our study demonstrated that RNA cytosine
methyltransferase NOP2/NSUN1 and NSUN2 interact with BRD4 and the elongating form
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of RNAP (CTD-S2P) to form a transcriptionally active chromatin structure in leukemia
cells [127] (Figure 6). BRD4 was also found to prevent R-loop accumulation and to pro-
tect against transcription-replication collision [128]. Loss of BRD4 in cancer cells leads to
replication stress, DNA damage and eventually apoptotic cell death [128].

4. Co-Transcriptional RNA Splicing and Its Associated Chromatin Structure
4.1. RNA 5′ Capping Enzyme-Coupled Spliceosome Assembly

Over 90% of human genes undergo alternative splicing, which is carried out by splic-
ing machinery called the spliceosome. The spliceosome contains more than 150 associated
proteins and five uridine-rich small nuclear RNAs (snRNAs)—U1, U2, U4, U5 and U6
(RNU1, RNU2, RNU4, RNU5 and RNU6) [129,130]. Nascent RNA splicing is regulated by
multiple cis-elements and trans-factors through extensive interactions between splicing
factors and the core transcription machinery [131–136]. At the earliest stages of spliceosome
assembly (Figure 7A), the CTD serine 5 phosphorylation (S5P) of RNAPII facilitates re-
cruitment of the 5′ capping enzyme complex (CE/RGMT). The U1 snRNP binds to the GU
sequence at the 5′ splice site (5′SS) of the first intron of mRNA through base pairing, and
splicing factors U2AF1 and U2AF2 bind at the 3′SS and the branch point sequence (BPS),
respectively [137]. The U2 snRNP complex interacts with the BPS and the pre-mRNA 3′SS
site of pre-mRNA, and the SF3A and SF3B proteins in the U2 snRNPP complex stabilize
these interactions [138]. The U5/U4/U6 snRNP trimer is recruited with the U5 binding
to the 5’SS and the U6 binding to U2 (Figure 7A). Then the U1 snRNP is released, U5
shifts from exon to intron, and the U6 binds at the 5’ splice site (Figure 7b). The splicing
factor SF2/ASF binds the S2-phosphorylated CTD of RNAPII to facilitate the interactions
between the spliceosomal U1 and U2 snRNPs complexes as well as RNAPII during the
splicing process [139,140].

4.2. Alternative Spliceosome Assembly and Determination of Internal Exon/Intron Junctions

Determination of the internal exons and introns of pre-mRNAs, i.e., alternative splic-
ing, is carried out by the spliceosome through extensive interactions between trans-acting
factors/complexes and cis-acting spicing elements/sequences, as well as transcription ma-
chinery and chromatin modifying complexes [132,135,141–147]. Serine and arginine rich
splicing factors (SRSFs) selectively bind to cis exonic and intronic splicing elements, promot-
ing spliceosome formation [148], while hnRNPs, such as hnRNPA1 (HNRNPA), negatively
regulate spliceosome formation by binding to exonic or intronic splicing silencers [149]
(Figure 7B).

4.3. Alternative RNA Splicing Regulation by Transcription Elongation Complex

Transcription elongation rate and chromatin structure have a large impact on splice
site identification and definition of exons and introns by the spliceosome [143]. Recent
studies show depletion of the pre-exon junction complex (EJC), a protein complex formed
at the junction of two exons of a pre-messenger RNA during RNA splicing, led to a
global decrease in RNAPII pausing and premature entry into elongation by CDK9/P-
TEFb, suggesting that the pre-EJC serves as an early transcriptional checkpoint to prevent
premature entry into elongation and proper exon definition [150].
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Other trans-acting factors, such as MYC, BRD4 and many RNA-binding proteins
(RBPs) regulate transcription elongation and alternative splicing in tissue-specific patterns
and sizes [151,152]. MYC and BRD4 have been shown to physically interact with RNA
splicing factors to contribute to spliceosome formation and alternative splicing regulation
at the co- and post-transcriptional levels [153–157], as shown in Figure 7.

4.4. Nascent Cis-Acting Elements and Degradation Machinery Regulate Alternative RNA Splicing

Intronic RNAs constitute most pre-mRNAs in vertebrate cells and were traditionally
considered transcriptional “junk” or “waste” due to their complete degradation first by a
unique debranching endonuclease, followed by exoribonucleases after splicing [158]. How-
ever, recent studies show that many spliced introns can escape complete degradation and
are further processed to generate regulatory RNAs that can regulate chromatin structure,
gene expression, and genomic stability [159] (Figure 7).

Terminal exons are defined by the cleavage and polyadenylation complex (CPA),
which is composed of the cleavage and polyadenylation specificity factor (CPSF) complex,
cleavage factors (CFs) and the cleavage stimulation factor (CstF) complex. The CPSF
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complex recognizes the polyadenylation signal sequence AAUAAA and other nearby
sequences [160] (Figure 7B). The poly(A) tail is added to nascent RNA when the nascent
RNA is cleaved to produce mature RNA by the polyadenylate polymerase complex, which
is also physically linked to the spliceosome [161]. After introns are spliced out from pre-
mRNA, exons are ligated together to yield multiple mature mRNAs through alternative
splicing, significantly increasing transcriptomic/proteomic complexity [162].

4.5. The Impact of Chromatin Structure and R-Loops on Alternative RNA Splicing

Earlier studies showed that nucleosome positioning contributes to definition of exons
and introns, and the ratio between nucleosome occupancy within and upstream from the
exons correlates with exon-inclusion levels [163–165]. Recent studies have demonstrated
that splicing machinery interacts with histone and DNA modifications and their modifiers,
such as histone acetyltransferases (HAT), histone deacetylases (HDACs), histone methyl-
transferases (HMTs), DNA methylation, and DNA methyltransferases (DNMTs) [166,167]
(Figure 7A,B). Using HDAC inhibitors (HDACIs), such as trichostatin A (TSA) or knock-
down of HDAC1 or HDAC2 increased H4 acetylation, specifically at the exon 2 of MCL1,
a gene encoding a longer form of antiapoptotic protein (MCL1L) and a shorter form of
proapoptotic protein (Mcl-1S), resulting in exon 2 skipping and production of the short form
of proapoptotic MCL1S [168,169]. Altered histone methylations and methyltransferases are
associated with differential exon inclusion and intron retention [170,171]. ZMYND11, aka
BS69, is a reader for histone H3.3 lysine 36 trimethylation (H3K36me3) and involved in
transcription elongation. It is known to interact with U5 snRNP in the spliceosome, and
depletion of BS69/ZMYND11 strongly decreases intron retention [172].

Other studies have shown that DNA methylation and DNA modifiers are also in-
volved in RNA splicing [173]. Higher levels of DNA methylation have been identified
in exons, and especially splice sites, than those found in flanking introns [174]. The
zinc-finger protein CCCTC-binding factor (CTCF) negatively regulates RNAPII elonga-
tion rate through transient obstruction of RNAPII and promotes splicing by favoring
spliceosome assembly at weak splice sites. DNA 5-methylcytosine (5mC) promotes exon
exclusion through 5mC-mediated CTCF eviction; however, TET1 and TET2-mediated 5-
hydroxymethylcytosine (5hmC) has an opposite effect on CTCF-dependent splicing [175]
(Figure 7). The methyl-CpG binding protein 2 (MeCP2) was shown to interact with the
RNA-binding protein Y box-binding protein 1 (YBX1) and to regulate alternative splicing
in Rett syndrome (RTT) mouse models [176]. Additionally, a recent study demonstrated
that R-loops are able to activate gene promoters by recruiting the DNA methylcytosine
dioxygenase TET1 to demethylate CpG islands [102].

5. Chromatin Associated Non-Coding RNAs and Acting Modes in Chromatin
Remodeling
5.1. Non-Coding RNAs (ncRNAs) Subtypes

The advent of genome-wide sequencing technologies has revealed that 75% of the
human genome is transcribed into RNA, but only a small percentage of transcribed RNA
encodes proteins [177,178]. Noncoding RNAs play an important role in regulating gene
expression and chromatin structure and can be functionally or structurally divided into
several subtypes [179–184], as shown in Table 1.
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Table 1. The types and functions of regulatory non-coding RNAs (ncRNAs) in mammalian cells.

Types of ncRNAs NcRNA
Abbreviation ncRNA Strands Size of ncRNAs Function References

Small ncRNAs <200 nucleotides

Small interfering RNAs siRNAs double 21–23
suppress homology

containing transcripts
via mRNA degradation

[179,180]

Micro-RNAs miRNAs single ~22
repress translation;
accelerate mRNA

degradation
[181]

Piwi-interacting RNAs piRNAs single 21–25 regulate gene expression;
fight viral infection [182,183]

Small nucleolar RNAs snoRNAs single 60–300

rRNA, snRNA, and
other RNA

posttranscriptional
modification

[182,183]

Small Cajal body RNAs
(snoRNA) scaRNAs single 60–300

biochemical
modification of

premature
spliceosomal RNAs

[182,183]

Long non-coding RNAs lncRNAs single >200
nucleotides

Chromatin remodeling;
transcriptional and post-
transcriptional regulation

[184]

As stated previously, ncRNAs were traditionally considered transcriptional “junk”
or “waste”, but are now widely accepted to play an important role in regulation of tran-
scription elongation and chromatin structure [185]. It is well-known that ncRNAs can be
generated from gene bodies, extragenic regions (particularly enhancers) [186,187], and
promoter upstream sequences to generate a class of short, polyadenylated, and highly un-
stable RNAs called promoter upstream transcripts (PROMPTs) [188,189]. Expression levels
of enhancer RNAs (eRNAs) are correlated with signal-regulated transcriptional activity
of gene enhancers. Furthermore, the heterogeneity of eRNAs may also be correlated with
their functional diversity in the mammalian genome [187,190].

5.2. Non-Coding RNAs Regulate Chromatin Structure and Transcription in Cis

The cis-acting models of ncRNAs include formation of R-loops and DNA-RNA triple
helixes through Hoogsteen base-pairing interactions between the major groove of double-
stranded DNA and single stranded RNA [191–193]. Particularly, the cis-acting symmetrical
triplex-forming motifs in lncRNAs favor the formation of RNA-DNA triplexes, which can
affect RNA-RNA, RNA-protein, and RNA-DNA interactions and modulate chromatin struc-
ture [191]. By forming RNA: DNA: DNA triplexes/R-loops, lncRNAs can target specific
DNA sites, such as enhancers, to contribute to local chromatin organization [194,195].

5.3. Non-Coding RNAs Regulate Chromatin Structure and Transcription in Trans

The most common mode of ncRNA-mediated chromatin organization is through in
trans RNA-protein interactions. The role of RBPs in regulating chromatin structure and
gene expression has been studied extensively [196,197]. RBPs may have single or multiple
previously characterized canonical RNA binding domains (RBDs), including zinc finger
domains [198,199], RNA recognition motif (RRM) [200], double-strand RNA binding do-
main (dsRBD) [201] and hnRNPK homology domain (aka KH) [202,203]. As one of the
best-characterized RBPs, hnRNPK is known to play a role in regulating transcription and
splicing, as well as chromatin structure and DNA damage and repair [204–207]. Other
RBPs are known to be involved in chromatin remodeling through interaction with DNA
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methyltransferases (DNMTs) or methyl-DNA-binding domain (MBD)-containing proteins,
such as Methyl-CpG binding protein 2 (MeCP2) [208,209]. MeCP2 is a multifunctional epi-
genetic reader that can bind RNA and methylated CpGs in DNA to orchestrate chromatin
compartmentalization and higher order genome architecture [209].

Recent genome-wide proteomic studies have identified many new RBPs [2,210]. Those
newly identified RBPs are conserved from yeast to humans. Despite lacking the conven-
tional or canonical RBDs, those new RBPs can modulate chromatin structure and gene
expression in response to various environmental and intrinsic stimuli [2,210–213]. Both
canonical and non-canonical RBPs are reported to function together to regulate transcrip-
tion and chromatin structure [214,215].

6. Fine-Tuning Chromatin and Transcription through RNA Modifications and
RNA-Modifying Proteins

6.1. m6A and RMPs Modulate Interactions between Non-Coding RNAs, Transcription Factors and
Chromatin Modifiers

The METTL3/14 methyltransferases, YTH-domain-containing proteins (YTHDs)/
HNRNPs, and FTO/ALKB family proteins function as m6A writers, readers and erasers,
respectively, to regulate the level and distribution of m6A in a tissue-/differentiation-
specific manner [31,34,38,46,216] (Figure 2A). Recent studies have shown widespread m6A
in human tissues, which is significantly enriched in long intergenic non-coding RNA
(lincRNA) and CpG-rich gene promoters, suggesting that m6A is positively correlated
with gene expression homeostasis and has broad involvement in human development and
disease [217].

Increasing evidence suggests that m6A and its associated RMPs, more specifically
m6A writers and readers, modulate chromatin structure and transcriptional activation
through interactions with TFs and chromatin modifying proteins/complexes [218,219].
METTL14 was reported to recognize the active histone mark H3K36me3, resulting in
METTL3-METTL14-WTAP m6A methyltransferase complex recruitment to the vicinity of
H3K36me3 peaks, promoting m6A and positively regulating transcription elongation [220]
(Figure 8A).

Zinc finger protein 217 (ZFP217), a chromatin-associated oncogenic TF important for
embryonic stem cell (ESC) differentiation [221], is associated with repressive chromatin
marked by histone 3 lysine 9 trimethylation (H3K9me3) and histone 3 lysine 27 trimethyla-
tion (H3K27me3) through interactions with G9a and EZH2 methyltransferases [8]. ZFP217
also negatively affects m6A deposition at its own target gene mRNAs by sequestering
METTL3 in an inactive status, in which METTL3 is dissociated from the METTL14/WTAP
co-factor complex [221,222] (Figure 8A).

YTHDC1 can de-repress (activate) gene expression by physically interacting with and
recruiting KDM3B demethylase to hyper-m6A in nascent RNAs, leading to demethylation
of the repressive transcriptional histone modification H3K9me2 [223]. YTHDC1 can also
facilitate the decay of a subset of these m6A-modified RNAs, especially LINE-1, through
nuclear exosome targeting-mediated nuclear degradation, while METTL3 deposits m6A
modifications on chromosome-associated regulatory RNAs (carRNAs), including promoter-
associated RNAs, enhancer RNAs and repeat RNAs [224].

m6A was reported to promote translation of the SETD1A/B components, which
increases the transcriptional activation histone mark H3K4me3 and recruitment of the
erythroid-specific zinc finger transcription factor KLF1 to its target gene promoters [225].
Inhibition of the METTL3/METTL14/WTAP m6A methyltransferase complex blocks ery-
thropoiesis in human bone marrow hematopoietic stem/progenitor cells (HSPCs). The
METTL3-METTL14-WTAP complex also functionally interacts with SMAD2/3 proteins,
the key signal transducers and transcriptional modulators of the TGFβ pathway. SMAD2/3
promotes binding of the m6A methyltransferase complex to a subset of transcripts involved
in early cell fate decisions [226]. In addition, a recent study showed that RBM15, a subunit
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of the m6A methyltransferase complex, mediates the degradation of the pre-BAF155 mRNA
to affect the chromatin remodeling function of the BAF (SWI/SNF-like) complex [227].
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6.2. The Impact of m5C and Its RMPs on Chromatin and Transcription

In eukaryotes, RNA m5C is catalyzed by RCMTs, including NOL1/NOP2/SUN
domain (NSUN) family enzymes and DNMT2 (Figure 2B). NSUN2 is responsible for cat-
alyzing the majority of m5C in mRNAs and non-coding RNAs [57,228,229]. Our study
demonstrated a marked increase in NOP2/NSUN1 and NSUN2-mediated m5C in drug
(5-azacitidine) resistant myeloid leukemia cells [127]. NSUN7 is reported to promote tran-
scription of genes labeled with enriched m5C eRNAs in mouse hepatoma cells and primary
hepatocytes for adaptive metabolic responses [226]. Mechanistically, the methyltransferase
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SET7/9 methylates histone 3 K4 residues [227] and PGC-1α K779, a transcriptional co-
activator important for regulating adapted metabolic responses [230]. Methylated PGC-1α
interacts with Spt-Ada-Gcn5-acetyltransferase (SAGA) and mediator complexes, as well as
NSUN7, at the m5C-marked enhancer RNAs of PGC-1α target genes to promote recruit-
ment of transcription machinery and reinforce transcription of those genes (Figure 8).

Heterozygous mutations in the X-linked gene encoding MeCP2 cause the neurological
disorder Rett syndrome. MeCP2 interacts with more than 40 binding partners, including
transcriptional regulators, chromatin modifiers and RNA- splicing factors [231]. MeCP2
chromatin binding is controlled by m5C, and recent studies show enrichment of MeCP2 on
long non-coding RNAs (lncRNAs), such as retinal noncoding RNA3 (RNCR3) [232], muscle-
specific long non-coding RNA (ChRO1) [233], and major Satellite Forward RNAs [234].
This MeCP2 enrichment on lncRNAs promotes deposition of H3K9me3 and H4K20me3
and heterochromatin formation. Additionally, m5C is present in a wide variety of RNA
species, including cytoplasmic and mitochondrial ribosomal RNAs (rRNAs) and tRNAs, as
well as mRNAs, eRNAs and other types of non-coding RNAs [55]. There are widespread
and dynamic changes in RNA m5C in response to stress and stimuli, which suggests an
important role of m5C and its RMPs in epigenetic gene regulation [55]. However, the
detailed mechanisms underlying m5C and its RMP-mediated chromatin remodeling and
gene regulation are yet to be elucidated.

6.3. RNA Modifications and RMPs in R-Loop Formation and Transcription Regulation

R-loops can be formed both in cis by a nascent RNA folding back to its DNA template
at the same transcription locus and in trans by ncRNAs at distant enhancers (Figure 5).
R-loops are prevalent in highly transcribed genes, and occur most frequently at conserved
genetic hotspots, such as unmethylated CpG island promoters, G-rich terminators and
other regulatory chromosomal loci [98,104]. R-loops play an important role in organizing
chromatin structure and maintaining genome stability [99], and RNA modifications and
their associated RMPs can modulate the interactions between chromatin-associated RNAs
and chromatin modifiers, as well as transcription machinery, to regulate chromatin structure
and transcription in a position and context-dependent manner [235].

6.3.1. m6A and Its RMPs Promote R-Loop Formation at Transcription Termination Sites

A recent study showed that R-loops accumulate in m6A-rich transcription termination
sites (TTSs) [236]. Depletion of m6A methyltransferase complex components dramatically
reduces R-loop accumulation in m6A marked genes around TTSs, leading to disruption of
proper transcription termination [236]. In contrast, depletion of the nuclear m6A reader
protein YTHDC1 does not affect R-loop levels [236].

6.3.2. m6A and RMPs Associated R-Loop Formation on DNA Damage-Associated RNAs

ATM serine/threonine kinase (ATM) is recruited to DNA double-strand break (DSB)
sites to phosphorylate several key proteins, leading to cell cycle arrest, DNA repair or
apoptosis [237]. Specifically, in response to DSBs, ATM phosphorylates METTL3 serine 43,
and the phosphorylated METTL3 is then recruited to DNA-damage sites to catalyze m6A
in the DNA damage-associated RNAs. This increased m6A deposition leads to YTHDC1
recruitment and R-loop accumulation, promoting homologous recombination-mediated
DNA repair [238]. In human pluripotent stem cells, m6A-containing R-loops are reported to
accumulate during G2/M and are depleted at G0/G1 phases of the cell cycle [239]. Knock-
out of the m6A reader YTHDF2 leads to increased R-loop levels, cell growth retardation,
and accumulation of the DNA double-strand break marker γH2AX in mammalian cells,
which suggests that YTHDF2 negatively regulates m6A and R-loop accumulation [239].
Taken together, these results suggest that m6A and its RMPs regulate accumulation of
R-loops and genomic stability in a position and context-dependent manner [96,240,241].
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6.3.3. RNA Cytosine Methylations and RMPs in R-Loop Formation

R-loops have been found to be required for transcription-coupled homologous re-
combination, as they recruit Cockayne Syndrome Protein B (CSB) and RAD52 proteins,
but not the canonical HR proteins BRCA1 and BRCA2, to sites of reactive oxygen species
(ROS)-induced DNA damage [242]. The formation of R-loops at break sites is dependent
upon Drosha, an RNase III enzyme in the microRNA (miRNA) biogenesis apparatus [243].
DNMT2 is predominantly located in the cytoplasm and mitochondria, where it contributes
to m5C in tRNAs, consequently affecting protein translation [244–246]. Little is known
about the role of DNMT2 in regulating chromatin structure and R-loop formation. A recent
report showed that DNMT2 (Figure 3B) is recruited to DNA damage sites, where it deposits
m5C onto the DNA damage-associated mRNAs and contributes to R-loop formation. The
m5C and DNMT2-mediated R-loops facilitate the homologous recombination (HR) and
DNA repair of DSBs [247].

Loss of TRDMT1 in cancer cells confers sensitivity to PARP inhibitors in vitro and
in vivo, suggesting that transcription-coupled RNA modifications may serve as DNA dam-
age markers to regulate DNA repair [247]. METTL8 was previously reported to contribute
m3C in mRNA, while METTL2 and METTL6 contribute m3C in tRNAs [248]. Recently,
METTL8 was found to form a large SUMOylated nuclear RNA-binding protein complex
that is associated with R-loops, and knockout of METTL8 resulted in reduction of m3C
and R-loops in the nucleolus [249]. The nucleolar-enriched SUMOylated METTL8 complex
regulates R-loop formation and promotes tumorigenesis [249]. Retention of R-loops at their
transcription sites of nascent RNAs is an important and intrinsic part of chromatin structure
in human cells, and R-loop dysregulation is associated with DNA damage, transcription
elongation defects, hyper-recombination and genome instability [105,250].

6.4. RNA Editing in Chromatin Remodeling
6.4.1. A-To-I Editing and ADAR-Mediated Heterochromatin and Gene Silencing

A-to-I editing is one of the most abundant RNA modifications in mammalian cells and
is catalyzed by ADAR family proteins ADAR1 and ADAR2 (Figure 3A). A-to-I editing oc-
curs most frequently in non-coding RNAs within repetitive elements in the genome, mainly
Alu repeats [251–253], and has a critical role in immune regulation [69,254], and alternative
splicing [67]. Vigilin is the largest protein in the KH domain-containing RNA-binding
protein family [255]. Vigilin binds to promiscuously A-to-I-edited RNAs, predominantly in
inverted Alu repeats, and is involved in the formation of heterochromatin [256], which is
marked with the repressive chromatin marker H3K9me3 by histone H3-specific methyl-
transferase SUV39H1 [257,258]. Mechanistically, vigilin binds to A-to-I-edited RNAs in
a complex that contains ADAR1, as well as RNA helicase A and Ku86/70 [259]. The
C-terminal domain of human vigilin interacts with SUV39H1 and recruits it to the A-to-
I-edited RNAs, leading to formation of heterochromatin and gene silencing [259]. This
suggests a mechanistic link between DNA-repair machinery and the A-to-I RNA editing
complex. Interestingly, the levels of global A-to-I editing and m6A in mammalian cells
were shown to be negatively correlated, and depletion of m6A modification increases the
association of m6A-depleted transcripts with ADAR enzymes, resulting in upregulated
A-to-I editing on the same m6A-depleted transcripts [72,260].

6.4.2. C-To-U Editing and Associated RMPs in Chromatin Remodeling and
Gene Regulation

C-to-U editing is carried out by the APOBECs family proteins (Figure 3B). APOBECs
function to restrict retroviruses and retrotransposons [261], and have been identified as a
prominent source of mutations in cancers [262]. APOBEC3B (A3B) was shown to regulate
expression of the estrogen receptor α (ERα)-target gene by causing C-to-U deamination
at ER binding regions [263]. Further, transient cytidine deamination by A3B promotes
chromatin modification and remodeling at regulatory regions of ER target genes that
increase ER expression levels, and elevated A3B expression is associated with poor patient
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survival in ER+ breast cancer [263]. However, more studies are needed to understand
the role of C-to-U editing and the APOBECs in regulation of chromatin structure and
gene expression.

7. Implications of RNA Epigenetics in Human Diseases

The advent of new genome-wide sequencing technologies has uncovered abnormal
RNA modifications and their associated RMPs in a variety of human diseases. Here we
will briefly summarize the recent progress surrounding the roles of some major RNA mod-
ifications and their associated RMPs in four major disease categories: neuronal disorders,
metabolic disorders, immune disorders/infections and cancer/leukemia (Table 2).

7.1. RNA Epigenetics in Neural Disorders

7.1.1. m6A and Its RMPs

m6A is highly enriched in neural tissue and plays an important role in neurogenesis
and neuronal disorders [264–267] (Table 1). Knockout of METTL3 or METTL14 prolongs the
cell cycle of embryonic neural stem cells (NSCs)/radial glia cells (RGCs) and inhibits prolif-
eration of NSCs/RGCs, resulting in delay of cortical neurogenesis into postnatal stages in
embryonic mouse brains [268,269]. The effects of m6A and its writers on NSC self-renewal
and neurogenesis have been linked to histone modifications [270,271]. METTL3/METTL14
and the reader protein YTHDF1 are also important for maintaining the stemness of adult
neural stem cells (aESCs) and axon regeneration in adult mice [272]. The m6A eraser
protein FTO also plays a critical role in regulation of the proliferation and differentiation of
adult neural stem cells (aESCs) [273,274].

Recent studies show that m6A and its RMPs, specifically METTL3, YTHDF1 and
FTO, play an important role in regulation of stress responses, formation of hippocampal
memories, and development of neuropsychiatric diseases [275–277]. Furthermore, the
FTO-induced hypo-m6A levels have been shown to activate the TSC1-mTOR-Tau signaling
pathway and increased apoptosis of dopaminergic neurons, which contributes to the patho-
genesis of Alzheimer’s disease (AD) and Parkinson’s disease (PD), respectively [278–280].

7.1.2. RNA Editing and Its RMPs

RNA editing can alter codons and/or splicing sites in pre-mRNAs, resulting in non-
functional transcripts or proteins. Earlier studies demonstrated that knockout (KO) of
ADAR2 expression could substantially reduce the functional mRNA transcripts from the
mutated AMPA receptor gene and rescue mice from mutations-induced lethality [281,282].
More recent studies demonstrate that A-to-I and C-to-U RNA editing enzymes can affect
the development and function of neurons and neurotransmitters through modulating
mRNA abundance and miRNA binding of neuronal development-related genes and neuro-
transmitters in neurons [283–285] (Table 2).

7.1.3. RNA 2’-O-Methylation (Nm) and Its RMPs

Nm is one of the most abundant RNA modifications [17]. Recently, the Nm writer
proteins FTSJ1 and CMTR1 have been shown to be involved in intellectual disability and
neural development through methylation in tRNA and the 5’ cap of pre-mRNA in neurons,
respectively [286–289] (Table 2).

7.1.4. m5C and Its RMPs

Eukaryotic m5C and its RMPs regulate the function of three RNA species: rRNA,
tRNA and mRNA [55]. m5C and its writer proteins, NSUNs, are involved in early mouse
embryogenesis, especially neurogenesis [290], and the embryonic NSCs of mouse brains
shows a distinct m5C pattern in mRNA [53]. NSUN2, a major m5C writer protein, is
highly expressed in early neuroepithelial progenitors of the developing human brain, and
loss of NSUN2-mediated tRNA:m5C impairs differentiation and motility of NES cells
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in mouse models [291]. Mutations in the NSUN2 gene cause aberrant tRNA:m5C and
autosomal-recessive intellectual disability, called Dubowitz syndrome [292–296] (Table 2).

7.2. RNA Epigenetics in Metabolic Disorders

m6A and Its RMPs

Recent studies show that m6A and its RMPs play a critical role in Type 2 Diabetes
(T2D) pathogenesis, and ablation of m6A levels by targeting METTL3 or METTL14 in
mouse models recapitulates human T2D by inhibiting the Insulin/IGF1-AKT-PDX1 path-
way in pancreatic β-cells, resulting in cell-cycle arrest and impaired glucose-stimulated
insulin secretion (GSIS) [297]. METTL14 deletion in β-cells of adult mice results in glu-
cose intolerance [298,299]. WTAP, coupled with METTL3 and METTL14, is increased and
distributed in the nucleus through upregulation of cyclin A2, which positively regulates
mitotic clonal expansion of adipocytes [300]. The zinc finger transcription factor ZFP217
promotes mitotic clonal expansion (MCE) of adipocytes and adipogenesis by inhibiting
CCND1 mRNA expression, which is positively and negatively regulated by METTL3 and
YTHDF2, respectively [301] (Table 2).

FTO is well-known to promote adipogenesis, and inactivation of the gene encoding
FTO protects mice from obesity [302]. The underlying mechanism has been linked to
IRX3, a member of the Iroquois homeobox protein family [303]. FTO-induced adipogenesis
is achieved by MCE regulation via the adipogenic isoform of RUNX1T1 [304]. Other
molecular mechanisms by which FTO promotes adipogenesis are inhibition of the Wnt/β-
catenin signaling in intramuscular preadipocytes [305] and activation of ATG5 and ATG77-
mediated autophagy and adipogenesis [306]. Finally, since FTO negatively regulates
m6A levels and positively regulates adipogenesis, FTO inhibitors may provide a novel
therapeutic strategy for metabolic diseases [307].

7.3. RNA Epigenetics in Immune Disorders and Viral Infections

7.3.1. m6A and Its RMPs

Recent studies demonstrate a critical role of m6A in the regulation of immune disorders
and infections [308,309]. The innate immune system detects the nucleic acids, i.e., DNA
and RNAs, of various pathogenic organisms via pattern-recognition receptors (PRRs).
PRRs include several endosomal members of the Toll-like receptor (TLR) family and
cytosolic sensors, such as retinoic acid inducible gene-I (RIG-I) and its homolog melanoma
differentiation associated gene 5 (MDA5), as well as RIG-I-like receptors (RLR) [310,311].
RNA modifications, such as m5C, m6A, m5U, s2U or pseudouridine (Ψ), are known to ablate
activation of dendritic cells (DCs) to inhibit innate immune system through TLRs [312].
Specifically, METTL3-mediated mRNA:m6A was recently shown to promote dendritic cell
activation [313]. METTL3 has also been shown to be involved in T cell homeostasis and
differentiation [314]. Depletion of METTL3 in naive T cells decreased m6A in the mRNAs
of SOCS family genes encoding the STAT signaling inhibitory proteins SOCS1, SOCS3 and
CISH, leading to slower mRNA decay and increased protein expression, consequently
inhibiting IL-7-mediated STAT5 activation in the Mettl3-deficient T cells [314]. Another
study showed that deletion of METTL3/m6A leads to suppression of IL-2-STAT5 signaling
pathway, which controls Treg cell functions and regulates the tumor-killing functions of
CD8 T cells [315]. Yet further studies show that METTL3 or YTHDF2 deletion leads to
an increase in type I interferon β (IFNB1) mRNA, thus suppressing the propagation of
different viruses [316].

Depletion of METTL14 showed a similar effect, stimulating accumulation of dsDNA-
or virus-induced IFNB1 mRNA and inhibition of virus reproduction. Alternatively, ALKBH5
had the opposite effect [317]. Since the viral Rev protein preferentially interacts with
methylated RRE, decreased or increased m6A levels in HIV-1 RRE due to silencing of
METTL3/METTL14 or ALKBH5, respectively, lead to reduced or increased viral RNA
export and replication suppression [318] (Table 2).
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7.3.2. RNA Editing and Its RMPs

Most A-to-I editing is predominantly located within mobile elements in non-coding
parts of the human genome [65] and plays a critical role in innate immunity and protection
against self-transcript activation [69,319]. ADAR1 knockout in neuronal progenitor cells
increases MDA5 (dsRNA sensor)-dependent spontaneous interferon production, PKR
activation, and cell death [320]. Therefore, human ADAR1 regulates sensing of self vs
non-self RNA, enabling pathogen detection and autoimmune/inflammation prevention.
Loss-of-function mutations in the ADAR1 gene cause Aicardi-Goutières syndrome, a
congenital autoimmune disease characterized by encephalopathy and IFN signature [321]
(Table 2).

7.3.3. 5′ Cap Nm and CMTR

The 5′ cap structure with m7G (cap 0) and Nm of the first residue (cap 1) is vital
for pre-mRNA processing and translation in multicellular eukaryotes and some viruses
(Figure 4). The human coronavirus mutants lacking 2’-O-methyltransferase activity induce
IFN expression in an MDA5–dependent manner, and these mutants are more sensitive
to the antiviral action of IFN [21,322]. IFIT1 (IFN-induced protein with tetratricopeptide
repeats-1) is an important effector of innate immune and antiviral response. Its antiviral
activity relies on its ability to selectively bind the viral mRNA 5’ cap that lacks Nm in order
to compete with translation initiation factor eIF4F binding to the same mRNAs, while
remaining inactive against host mRNAs with Nm at the cap 1 and 2 residues [323–326]
(Figure 4). A recent study showed that the SARS-CoV-2 nsp16 and nsp10 complex can carry
out the 5′ cap Nm on virally encoded mRNAs to mimic cellular mRNAs, thus protecting
the virus from host innate immune restriction [327]. This may provide a potential strategy
to develop coronavirus vaccines and antiviral drugs [328].

7.4. RNA Epigenetics in Cancer and Leukemia

7.4.1. m6A and Its RMPs in Cancer

Recent studies have demonstrated that RNA modifications and RMPs play a critical
role in controlling cancer cell proliferation, metastasis, immune evasion and drug resis-
tance [329–331]. m6A and its RMPs have a bi-faceted role, i.e., acting as either an oncogene
or a tumor suppressor in the pathogenesis of solid tumors and leukemia. METTL3 upregu-
lation increases translation of MYC, BCL2 and PTEN mRNAs in acute myeloid leukemia
(AML), and METTL3 loss leads to increased levels of phosphorylated AKT, promoting
differentiation of hematopoietic stem/progenitor cells (HSPCs) [332] (Table 2). METTL3, in-
dependently of METTL14, interacts with the transcription factor CEBPZ and binds the gene
promoters occupied by CEBPZ to promote m6A in the CEBPZ-targeting gene transcript,
enhancing translation and thereby promoting leukemogenesis [333].

m6A and its RMPs are essential for mRNA processing and miRNA biogenesis [334].
Upregulation of METTTL3 and m6A has been reported to promote tumorigenesis or metas-
tasis through promotion or inhibition of oncogenic or tumor suppressive miRNAs biogene-
sis, respectively, in various solid tumors, including bladder [335], lung [336], breast [337],
gastrointestinal and liver cancers [338,339], and glioblastoma [340]. However, elevated
METTL3 expression inhibits self-renewal of bladder tumor initiating cells and bladder
tumorigenesis through Notch 1 mRNA:m6A [341].

In contrast to increased m6A/METTL3 in most tumor types, decreased METTL14/m6A
has been reported to act as a tumor suppressor, and elevated METTL14 expression has been
reported in a variety of solid tumors and leukemia through various mechanisms (Table 2).
m6A was reported to be reduced in about 70% of endometrial carcinoma cases. Endome-
trial cancer is associated with a METTL14 mutation (R298P), which results in decreased
expression of the negative AKT regulator PHLPP2, increased expression of the positive
AKT regulator mTORC2 and tumor cell proliferation [342]. Increased m6A by METTL14
suppresses renal cancer cell migration and invasion through down-regulation of P2RX6
protein translation and ATP-P2RX6-Ca2+-p-ERK1/2-MMP9 signaling [343]. METTL14 can
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suppress proliferation and metastasis of colorectal cancer and liver cancer through down-
regulating oncogenic long non-coding RNA XIST and miRNAs, respectively [344,345].
METTL3 and METTL14 expression was reported to be downregulated in pediatric acute
lymphoblastic leukemia (ALL) with ETV6/RUNX1 gene rearrangement [346]. However,
paradoxically, METTL14 was reported to be highly expressed in normal hematopoietic
stem/progenitor cells (HSPCs) and AML with t (11q23), t (15;17), or t (8;21) and necessary
for development and maintenance of AML and self-renewal of leukemia stem/initiation
cells (LSCs/LICs) [347]. Mechanistically, METTL14 exerts its oncogenic role by regulating
the SPI1-METTL14-MYB/MYC signaling axis in myelopoiesis and leukemogenesis [347].

Like the m6A writer proteins METTL3 and METTL14, the m6A reader proteins
YTHDF1 and YTHDF2 can act as either an oncogene or a tumor suppressor. YTHDF1
promotes cancer cell growth through upregulation of MYC [348] (Table 2). YTHDF1 also
increases Wnt/β-catenin signaling and EIF3C-mediated mRNA translation, promoting
tumor cell growth in colon cancer and ovarian cancer, respectively [349,350]. Furthermore,
YTHDF1 inhibits neoantigen-specific immunity by binding to m6A-masked transcripts
of lysosomal proteases. This binding increases lysosomal cathepsins translation, leading
to inhibition of antigen presentation of wild-type dendritic cells and CD8+ T cell infiltra-
tion, and immune evasion by tumor cells in vivo [351]. YTHDF2 orchestrates epithelial-
mesenchymal transition/proliferation dichotomy in pancreatic cancer cells [352] through
YAP/TAZ signaling [353]. YTHDF2 regulates the lncRNA LINC00470/METTL3-mediated
degradation of the tumor suppressor PTEN mRNA, which promotes cell growth and metas-
tasis in gastric cancer [354]. YTHDC1 has been shown to promote m6A/METTL3-mediated
tumor cell growth in glioblastoma (GBM) via regulation of nonsense-mediated mRNA
decay (NMD) of serine- and arginine-rich splicing factors (SRSF) [355]. Tumor cell growth
and metastasis is mediated by YTHDC2 through increased translation of c-Jun and ATF-2
in liver cancer [356], and HIF-1α in colon cancer [357]. However, reports have also shown
that YTHDF1 and YTHDF2 can act as tumor suppressors. For example, YTHDF1 promotes
the translation of m6A-marked HINT2 mRNA, a tumor suppressor, which inhibits ocular
melanoma progression [358], and YTHDF2 suppresses cell proliferation and growth via
destabilizing the EGFR mRNA in hepatocellular carcinoma [359].

In contrast to the plethora of studies on m6A writers and readers in cancer, less is
known about the m6A demethylase, FTO. In breast cancer, FTO has been shown to enhance
the PI3K/AKT signaling pathway and degrade BNIP3 (a mitochondrial pro-apoptotic
protein) mRNA transcripts, promoting cancer cell growth [360,361]. Paradoxically, FTO
can also suppress renal cancer cell growth by reducing m6A levels in its mRNA transcripts,
which in turn increase PGC-1α expression [362].

7.4.2. Nm and Its RMPs in Cancer

Nm is one of the most common RNA modifications and plays a role in the pathogenic
processes of various human diseases [17]. Rare cases of non-small cell lung cancer (NSCLC)
harboring CMTR1-ALK fusion have been reported, and do not respond to ALK inhibitor
crizotinib [363]. Fibrillarin (FBL), the methyltransferase in the C/D box small nucleolar
RNAs (SNORDs)/small nucleolar ribonucleoprotein complexes (snoRNPs), carries out
Nm in rRNA [364]. FBL Nm promotion in rRNA increases internal ribosome entry site
(IRES)-dependent translation initiation of key cancer genes and tumorigenesis. Mean-
while, p53 acts as a safeguard of protein synthesis by regulating FBL-mediated translation
initiation [365]. Long noncoding RNA ZFAS1 was reported to promote small nucleolar
RNA-mediated Nm in rRNA via NOP58 recruitment in colorectal cancer [366]. Increased
Nm in 18S rRNA has been linked to the pathogenesis of AML [367,368]. Recently, HENMT1
was identified as the methyltransferase responsible for 3’-terminal Nm of mammalian miR-
NAs, which promotes 3’-terminal Nm in human non-small cell lung cancer (NSCLC) [369]
(Table 2).
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7.4.3. RNA Editing and Its RMPs in Cancer

A-to-I editing and ADARs are known to contribute to tumorigenesis [370]. Like m6A
and its RMPs, the roles of A-to-I editing and ADARs are also multifaceted. ADAR1 is
overexpressed in many cancer types, including lung, liver and esophageal cancers and
chronic myeloid leukemia (CML), and it acts predominantly as an oncogene. In contrast,
ADAR2 expression is reduced in glioblastoma, in which ADAR2 acts as a tumor suppres-
sor [371–373]. ADAR1 edits an intronic splicing silencer, leading to recruitment of SRSF7
and repression of exon inclusion, as well as cancer progression [374]. In antizyme inhibitor
1 (AZIN1), ADAR1-induced A-to-I editing causes the serine (S) → glycine (G) substitution
at residue 367, leading to a cytoplasmic-to-nuclear translocation and “gain-of-function”
phenotypes manifested by augmented tumor initiating potential and more aggressive
cancer cell behavior [375]. ADAR1 promotes A-to-I editing in the 3’UTRs of ATM, GINS4
and POLH mRNA transcripts, resulting in increased expression of those oncogenic proteins
and cancer cell proliferation in breast cancer [376]. Recently, ADAR1 was identified as a
critical factor contributing to drug resistance in cancer cells, and the aberrant expression of
ADAR1 promotes resistance to BET inhibitors in pancreatic cancer [377–379] (Table 2).

Table 2. Implications of common RNA modifications and RNA modifying proteins in human diseases.

Disease Categories/
Subcategories RNA Modifications & RMPs Possible Pathogenic

Mechanisms References

Neuronal Systems:
1. Neurogenesis defects &
neural degenerative disorders.
2. Memory defects
3. Psychiatric Diseases
4. Intellectual Disability

M6A:

METTL3/14

Knockout (KO) of Mettl3/14 →
↑ cell cycle and ↓ NSC
proliferation via histone
modifications

[268–271]

YTHDF1 ↑ Translation of axon
guidance protein Robo3.1 [272]

FTO
FTO regulates
Pdfra/Socs5-Stat3;
TSC1-mTOR-Tau signaling

[273,274]

RNA editing:

ADARs

Affect mRNA abundance and
miRNA binding→ regulating
development and function of
neurons and
neurotransmitters

[283,284]

Nm:

FTSJ1, CMTR1

FTSJ1 affects tRNA:Nm and
neurotransmitter
translationCMTR1 affects 5′

cap RNA: Nm and translation

[286–289]

M5C:

NSUN2 Affects tRNA:m5C and
protein translation

[291–296]

Metabolic Disorders:
1 Type 2 Diabetes (T2D)
2. Obesity

M6A:

METTL3,

↑METTL3/14/WTAP (↑
insulin-IGF1-AKT-PDX1
pathway(↑ β-cell
survival(glucose homeostasis

[297–299]

METTL14 ↑METTL3/14/WTAP (↑MCE
(↑ adipogenesis [300]

YTHDF2 YTHDF2 →↓ ZFP217-induced
MCE → ↓ adipogenesis [301]

FTO
↑ FTO→ ↑ adipogenic
RUNX1T1; ↓Wnt/β-catenin;
↑ATG5/7→ adipogenesis

[302–307]
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Table 2. Cont.

Disease Categories/
Subcategories RNA Modifications & RMPs Possible Pathogenic

Mechanisms References

Immune System:
1. Innate immunity,
autoimmune & viral infections
2. Adaptive immunity

M6A:

METTL3 ↓METTL3/14 or YTHDF2( ↑
IFNB1 mRNA

[308–318]METTL14
↓METTL3( ↓Rev-RRE
binding( ↓viral RNA export &
production

YTHDF2 ↓METTL3( ↓DC activation; ↓
IL7/2-STAT5-SOCS

A-to-I editing

ADAR1/p150

↓ADAR1→ ↑dsRNA
sensor-triggered INF
responses → autoimmune
and cell death

[319–321]

5′ cap Nm:

CMTR1
↑5′cap Nm→ ↓viral mRNA
binding by sensor Mda5 &
IFIT1→ ↓INF

[21,322–326]

Cancer & Leukemia
1. Tumorigenesis, cell
proliferation, and metastasis
2. Immune evasion and
immunotherapy
3. Drug Resistance

Cancer & Leukemia1
1. Tumorigenesis, cell
proliferation, and metastasis
2. Immune evasion and
immunotherapy
3. Drug Resistance

M6A:
METTL3
YTHDF1
YTHDF2
YTHDC1
YTHDC2
FTO

Acting as oncogene:
↑METTL3( ↑oncogenic mRNA
& miRNAs; ↑MYC;
↑Wnt/β-catenin signaling

[332–343]

↑YTHDF1( ↑EiF3C translation;
↑Wnt/β-catenin; ↓ antigen
presentation by DCs( immune
evasion

[348–352]

↑YTHDF2( ↑oncogenic
lncRNA; ↑YAP signalng;
↑YTHDC( ↑translation of
c-JUN, ATF-2, HIF-1a

[353–357]

↑ FTO( ↑ PI3K/AKT; ↓ BNIP3
mRNA [360,361]

METTL14
YTHDF1
YTHDF2
FTO

Acting as tumor suppressor:
↑METTL14 ↑ (↑tumor
suppressor
miR-375/Yes-associated
protein 1 (YAP1) pathway;
↓lncRNA XIST;
↓ERK9/MMP9 signaling;
↓oncogenic miRNAs

[339,344–347]

↑YTHDF1( ↑ tumor
suppressor HINT2;
↑YTHDF2( Destabilizing
EGFR mRNA

[358,359]

↑ FTO(↑PGC-1α signaling [362]

Nm:
Fibrillarin
HENMT1

Acting as oncogene:
↑Fibrillarin(↑
rRNA:Nm(↑translation of
oncogenic proteins

[365]

↑HENMT1(stablizing
miR-21-5p(↓programed cell
death protein 4

[369]
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Table 2. Cont.

Disease Categories/
Subcategories RNA Modifications & RMPs Possible Pathogenic

Mechanisms References

RNA editing:
ADAR1/p150
ADAR2

Acting as oncogene:
↑ADAR1(↑oncogenic
miRNAs; ↑SRSF7-mediated
intron inclusion;
“gain-of-function” mutation in
AZIN1

[371–375]

↑ADAR1(A-to-I editing in
3′UTRs of ATM, GINS4 and
POLH Mrna

[376]

↑ADAR1( ↑ resistance to BET
inhibitors & checkpoint
blockade

[377–379]

Acting as tumor suppressor:
↑ ADAR2( ↑oncogenic
miRNAs; ↑ tumor suppressor
miRNAs

[380–382]

M5C:
NSUN1
NSUN2

Acting as tumor suppressor:
↑NSUN1(↑BRD4-mediated
eRNAPII recruitment to
pre-mRNA

[127]

↑NSUN1(↑oncogenic mRNA
& miRNAs [383–388]

↑NSUN2(↑MYC-mediated
RNAPIII transcripts; ↑mRNA
stability

[389–394]

ADAR2 is essential for editing several miRNAs, such as miR-222/221 and the miR-21
precursor in vivo and in vitro, most of them oncogenic miRNAs [380]. However, its editing
activity is impaired in glioblastoma cells, and restoring its activity inhibits tumor cell
proliferation [380]. ADAR2 editing in tumor suppressor miRNAs, such as miR-589-3p and
miRNA-379-5p, leads to increased expression of these tumor suppressor miRNAs [381,382].
Together, the A-to-I editing of these miRNAs by ADAR2 leads to inhibition of glioblastoma
cell proliferation, migration and invasion (Table 2).

7.4.4. m5C and Its RMPs in Cancer

RNA:m5C is mediated by NSUN RNA methyltransferase family proteins (Figure 2B) [51].
Upregulation of RNA:m5C and its writer proteins, especially NSUN1 and NSUN2, has been
reported in a variety of solid tumors and leukemia and contributes to tumor cell proliferation,
metastasis and drug resistance [55,57,331]. However, compared to a large body of studies on
the pathophysiological function of m6A and its RMPs, much less is known about m5C and
its RMPs.

NSUN1 (aka NOL1, NOP2 and p120) is a well-known tumor proliferation associated
nucleolar protein [383,384] and its expression levels predict breast cancer disease progress
and patient survival [385]. Our recent study demonstrates that NSUN1 expression is
elevated in leukemia cells, and NSUN1 interacts with BRD4 to recruit elongating RNA
polymerase II (eRNAPII) to nascent RNA, forming an active chromatin structure and
transcription complex that mediates drug resistance in myeloid leukemia [127]. NSUN1
increases expression of oncogenic lncRNAs PVT1 and/or LINC00963 and inhibits expres-
sion of tumor suppressor miRNAs, leading to prostate cancer cell growth and metasta-
sis [386,387]. Finally, NSUN1 can also interact with RPL6 to promote gallbladder cancer
progression [388].

NSUN2 is responsible for the majority of mRNA:m5C in mammalian cells and is
upregulated in various cancer types [57,389]. NSUN2 was found to be a downstream
regulator of MYC and promotes cancer cell proliferation by RNAPIII methylation [390].
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In bladder cancer, NSUN2 is involved in pathogenesis promotion through m5C depo-
sition in the 3’ UTR of hepatoma-derived growth factor (HDGF). HDGF stabilizes the
mRNA transcripts marked with m5C, which is selectively bound by YBX1 protein [391,392].
NSUN2-induced m5C in CDK1 mRNA promotes CDK1 translation, leading to tumor cell
proliferation [392–394].

8. Conclusions and Future Directions

RNA modifications and RMPs are distributed widely in various subcellular organelles,
such as nuclear particles, ribosomes and mitochondria, and identifying the role of RNA
epigenetics in coordinating the functions of these subcellular organelles is likely to play an
important part in more accurately characterizing multiple cellular functions and disease
processes. It is increasingly clear that the role of RNA epigenetics is multifaceted and
context-dependent in chromatin remodeling and gene expression. Although great progress
has been made in elucidating the many roles of RNA epigenetics physiologically, the
detailed mechanisms by which RNA modifications and RMPs control cancer progression
and drug resistance remain largely unknown. There is still little known about how selective
hyper- or hypo-regulation of RNA modifications in various RNA species contributes to
tumor progression and therapeutic response/resistance. Great potential exists for the use
of RNA modifications and RMPs as diagnostic/prognostic tools and therapeutic targets
in future cancer therapy. However, given the large number of RNA modifications, an
enormous amount of work lies ahead to fully understand the pathophysiological function
of RNA modifications and their RMPs in cancer.
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