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Abstract. Coated pits contain a resident membrane 
molecule(s) that binds clathrin AP-2 with high affinity. 
AP-2 binding to this site is likely to be the first step 
in coated pit assembly because this subunit functions 
as a template for the polymerization of clathrin into 
flat polygonal lattices. Integral membrane proteins in- 
volved in receptor mediated endocytosis cluster in the 
newly assembled pits as they invaginate and bud from 
the membrane. The AP-2 subunit is a multi-domain, 
molecular complex that can be separated by proteoly- 
sis into a brick-shaped core and ear-like appendage 
domains. We have used this property to identify the 
domain involved in the various stages of coated pit as- 
sembly and budding. We found that the core of AP-2 
is the domain that binds both to membranes and to 

triskelions during assembly. Triskelions are perfectly 
capable of forming lattices on the membrane bound 
cores. Clathrin lattices bound only to core domains 
were also able to invaginate normally. Limited proteol- 
ysis was also useful for further characterizing the 
AP-2 binding site. Elastase treatment of the inside 
membrane surface released a peptide fraction that is 
able to bind AP-2 in solution and prevent it from in- 
teracting with membranes. Affinity purification of 
binding activity yielded a collection of peptides that 
was dominated by a 45-kD species. This is the candi- 
date peptide for containing the AP-2-binding site. 
Therefore, the appendage domain does not directly 
participate in any of the assembly or invagination 
events required for coated pit function. 

C 
LATHRIN-COated pits at the surface of cells are com- 
posed of two subunits (18, 19): the triskelion and the 
clathrin AP complex (Assembly Protein; (12), Adap- 

ter Protein; (23, 25). The overlapping legs of the triskelions 
form the walls of each polygon in the clathrin lattice (12, 25). 
The location of the AP subunits between the lattice and the 
membrane (35) suggests that they attach the clathrin lattice 
to the membrane. The AP-2 subunit is a multi-protein com- 
plex that consists of two 100-kD proteins (termed o~ and fl 
adaptin) (25), one 16-kD protein and one 50-kD protein (2, 
24). Each type of subunit can be selectively removed from 
clathrin coated membranes: the triskelions by high pH and 
both the triskelions and the APs by high salt (12). These two 
treatments allow one to study how the two sets of subunits 
interact with each other and with resident components of the 
membrane (18, 19, 36). 

The clathrin lattice most likely is the molecular device that 
shapes the coated pit into a coated vesicle because selective 
removal of triskelions prevents coated pit invagination (17). 
The conversion of hexagons into pentagons within the lattice 
occurs during the change in curvature of coated pits (9), but 
there is no evidence that polygon rearrangement is the force- 
generating mechanism for invagination. 

One function of the AP-2 subunit may be to control the 
clustering of membrane receptors that enter cells by coated 
pits (5, 23, 25). It may also anchor the lattice to the mem- 
brane (18), The subunit has the capability of performing 

more than one task because it structurally contains multiple 
domains. EM has shown that the subunit is composed of a 
brick-shaped core with two ear-like appendages extending 
from one end (11). Elastase will remove the appendages 
without degrading the proteins in the core (38). The append- 
ages released by elastase correspond to the 30-kD COOH 
terminus of both the tx and/3 adaptin (I1, 38). 

Several years ago we introduced a method for preparing 
plasma membranes that is ideal for studying the assembly 
and function of coated pits in vitro (20). We have shown that 
the plasma membrane-associated clathrin AP, AP-2 (29, 31), 
binds to a high affinity site in coated pits (19). The Golgi- 
associated clathrin AP, AP-1, seems to bind much less tightly 
to the plasma membrane (19), which suggests that AP-2 
binding is specific. The binding site shares some of the prop- 
erties of an integral membrane protein; for example, it is 
resistant to high salt but sensitive to proteases (19). 

This preparation of coated pits offers a unique opportunity 
to build on the knowledge gained from studying coated vesi- 
cle assembly in vitro and to identify the components re- 
quired for coated pit assembly and function (12). We have 
used limited proteolysis and column chromatography to pre- 
pare purified cores and appendages from AP-2. We found 
that AP-2 binding to membranes, clathrin lattice formation, 
and invagination are all under the control of the core domain 
within the subunit. We also found that elastase releases AP-2 
binding activity from the membrane and that this activity is 
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in a peptide fraction with a dominant peptide species of 45 
kD. This result suggests that plasma membranes contain an 
integral membrane protein that functions as an AP-2 recep- 
tor during coated pit assembly. 

Materials and Methods 

Materials 
Immulon I Removawell 96-well plates (011-010-6301) were purchased from 
Dynatech Laboratories, Inc. (Alexandria, VA). Human plasma fibronectin 
was obtained from the New York Blood Center (New York). Elastase 
(LSO6363) was from Worthington Biomedical Corp. (Freehold, NJ). Di- 
isopropyl flurophosphate (DFP) I was from Sigma Chemical Company 
(DO879) (St. Louis, MO). Biotlnylated horse anti-mouse IgG (BA-2000) 
was from Vector Laboratories, Inc. (Buriingame, CA). 125I-labeled strep 
tavidin (sp act 40 ttCi/mg, IM-236) was purchased from Amersham Corp. 
(Arlington Heights, IL). Glutaruldehyde-activated silica gel was purchased 
from Boehringer Mannlmim Biochemicals (Indianapolis, IN). mAbs against 
the 180-kD clathrin heavy chain (X-22, IgG isotype) and against the car- 
boxyl-terminal domain (Frances Brodsky, personal communication) of the 
100 kD, a component of AP-2 (AP.6, IgG isotype) were prepared in mice 
as p~viously described (7) and kindly provided by Dr. Frances Brodsky. 
A mAb egninst the amino termil~ domain (F, obinsun, M., personal com- 
munication) of the 100 kD, ~ component of AP-2 (BI-M6, lgG2a isotype) 
was prepared in mice as previously de~'ibed (29) and generously provided 
by Dr. Margaret Robinson. [3SS]methionine (Trans 3ss-label) was from 
ICN Biomedical, Inc. (Irvine, CA). All other reagents were analytical grade 
and obtained as previously described (18-20). 

Methods 
BUFFERS AND CELL CULTURE MEDIUM 

Cell Attachment Medium. 20 mM Hepes-buffered (pH 7.4) MEM with 
Earles salts and without NaHCO3 (330-1435; Gibco Laboratories, Grand 
Island, NY). 

Cell Culture Medgum. DME (320--1885; Gibco Laboratories) buffered 
with 20 mM Hepes (pH 7.4), and supplemented with 2 mM L-glutamiue, 
10% (vol/vol) FBS, 100 units/nil penicillin, and 100 ~g/ml streptomycin. 

Protmse Inhibitor Cocktail. 10 ~M leupeptin, 1 mM l,lO-orthophenan- 
throline, 0.5 mM benzamidine, 2 ttg/ml soybean trypsin inhibitor, 0.5 mM 
PMSF. 

Soulcaffon Buffer. 20 mM Mes (pH 6.2), 2.5 mM EGTA, 2.5 mM 
MgCI2, 100 mM KCI, 1 ram DTT, protease inhibitor cocktail. 

CytmM Bgl~r. 20ram Hepes (pH 7.2), 68 mM KC1, 4 mM Mg acetate, 
1 mM DTT, protease inhibitor cocktail 

T r i s - S t ~  Buffer. cytosol buffer contnining 0.6 M Tris (pH 7.2, 
4~ pmtease inhibitor cocktail. 

Tap,v-Str~gB~g Buffer. 20 mM Taps (pH 9.0), 1 mM DTT, protease in- 
hibitor cocktail. 

Cell Culture 
Cultured fibroblasts were derived from a skin biopsy obtained from a nor- 
mal human subject. Cells were grown in monolayer and set up for experi- 
ments according to a standard format (8). On day 0, 7 x 104 cells were 
seeded into each Petri dish O00 x 15 ram) containin~ 10 ml DME sup- 
plemented with I00 Ulml penicillin, I00/~g/ml streptomycin, and 10% 
(vul/vol) CS. Fresh medium of the same composition was added on day 3. 
On day 5 of cell growth, each monolayer received 8 mi DME supplemented 
with penicillin, streptomycin, 5/~g/ml selenium, 5 ~tg/mi insulin, 5/tg/ml 
transferrin, and 10% (vol/vol) human lipoprotein-de~icient serum. Ceils 
were used for all binding experiments on day 7 of cell growth. SV-40 trans- 
formed human fibroblasts (SV-589 cells) were grown as a monolayer (100- 
mm-diam dishes) in cell ottlttlre medium as previously described (20). Cells 
were harvested in log phase of 8mwth and used to prepare elastnse frag- 
ments (see below). 

1. Abbrevia~ons used in this paper: BCA, bicinchoninic acid; DFP, di- 
isoprowl fluomphosphate. 

Preparation of Coat Proteins 
Clathrin and associated proteins were extracted from isolated bovine-coated 
vesicles with 0.6 M Tris and either used directly or used to purify clathrin 
triskefions and clathrin AP subunits by gel filtration (Superose 6) as previ- 
ously described (18). The AP-I and AP-2 subunits were separated by 
hydroxyapatite chromatography as described (24). 

To prepare AP-2 cores and appendages, purified AP-2 (2--4 mg/ml) was 
dialyzed into cytosol buffer without protease inhibitors and 400/zl of this 
solution was treated with 1 ~tg/ml elastase at 4~ for 45 rain. The reaction 
was stopped by adding DFP to a final concentration of 1.0 raM. The solution 
was loaded onto a 1 x 24 cm Sephacryl S-200 SF column and chro- 
matographed with cytosol buffer containing the protease inhibitors PMSF 
and leupeptin. Fractions containing the appendages and the cores of the pro- 
teolysed AP-2 were identified by SDS-PAGE. Virtually complete removal 
of both the c~ and the ~ appendage domains was achieved by these treat- 
ments. 

AP-2 Binding Assay 
Immulon I removawells were coated with I mg/rul poly-L-lysine for 60 rain 
at 37~ followed by 1 ~g/ml fibrouectin for 60 rain at 37~ Normal human 
fibroblasts were harvested during log-phase growth, washed in serum-free 
cell attachment medium and 250,000 cells were added to each well. The 
ceils were allowed to spread for 90 min at 37~ without serum and then 
10% FIgS was added to each well for an additional 15 rain. The plates were 
placed on ice and all subsequent treatments were carried out at 4~ Wells 
that did not contain cells were used as a control in all experiments. After 
60 vain, the wells were washed with sonication buffer, attached to the bot- 
tom of a buffer reservoir containin~ 700 ml of sonication buffer, and then 
sonicated at constant energy (15 joules) using a 3-mm-microtip step probe 
(Vibra Cell VC60; Sonics and Materials, Danbury, CT) positioned 2 nun 
above the top of each well. The wells were washed with sonication buffer 
and used for experiments as described below. In some experiments AP-2 
binding was assessed by incubating membranes with unfractlonated coat 
proteins whereas in other trials the purified AP-2 subunit was used (see 
figure legends). Wells were subsequently fixed with 3% paraformaldehyde 
and assayed for the presence of either clathrin or specific domains of the 
AP-2 subunit using an 125I-streptavidin radioimmunoassay as previously 
described (19). 

Preparation of Eiastase Fragments 
SV-40 transformed human fibroblasts (SV-589) were harvested with 
Trypsin-EDTA, washed with cell attachment medium and 400,000 cells 
were allowed to attach to the bottom of each polylysine/fibronectin-coated 
well of a 24-well culture dish. 10 to 20 24-well culture dishes were prepared 
for each experiment. The cells were incubated in a normal atmosphere at 
37~ After 90 min, 10% FBS was added to each well and the cells were 
incubated for an additional 15 rain at 37~ before being placed on ice for 
60 mill. All subsequent treatments were carried out at 4~ Each plate was 
washed twice in sonication buffer and attached to the bottom of a reservoir 
containing 700 ml of sonication buffer. The cells in each well were soni- 
cuted at constant energy (50 joules) using a 13-mm probe immersed in the 
buffer reservoir 2 mm above the top of each well. After sonication, the 
plates were washed twice in sonication buffer and then seven times in Tris- 
stripping buffer to remove clathrin and AP-2. The plates were washed seven 
times in cytosol buffer without protease inhibitors and incubated for 45 rain 
on ice with 400 p,l/well cytosol buffer containing 2 ~tg/ml elastase. Proteoly- 
sis was terminated by the addition of DFP to a final concentration of 2 mM. 
The proteolytic fragments were then harvested from each well and 20% 
glycerol was added. 10-ml aliquots were frozen in liquid nitrogen and stored 
at -80~ until use. In some experiments, the cells were incubated for 
6 h in methioniue-free DME culture medium containin~ 125 ttCi/ml 
[3sS]methionine and 10% dialyzed FBS before plating and sonication. The 
radiolabeled fragments prepared from these membranes had a specific ac- 
tivity of 400,000 to 600,000 cpm/mg protein. Elastase fTngments 
from the outside membmue of flbroblasts were treated identically except 
that the cells were not sonicated. 

A~nity Purification of Elastase Fragments 
Purified APs were dialyzed at 4~ overnight against Ca 2+, Mg2+-free PBS 
(pH 6.5) cuntainino 1.0 M NaCI (coupling buffer). 4 ml of the AP solution 
(0.87 mg/ml) was mixed by gentle rocking with 0.5 grams glutaraldehyde- 
activated silica overnight at 4~ The AP-coupled silica was placed in a 5-ml 
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column and washed with coupling buffer until no protein eluted from the 
column. The remaining free aldehyde groups were quenched with coupling 
buffer containing 0.3 M ethanolamine. The column was then washed with 
cytosol buffer containing 1.0 mM DFT and 0.6 M Tris, pH 7.2, and then 
equilibrated in cytosol buffer without Tris before use. 95% of the protein 
was coupled to the column. Either unlabeled or 35S-labeled elastase frag- 
ments prepared as described above were thawed and fresh DFP (1 raM) was 
added before pouring over the AP-2-silica column. The flow-through was 
recirculated over the column for two hours at 0.5 ml/min and then the 
column was washed extensively with cytosol buffer. The bound protein was 
then eluted with 5.0 rrd ofcytosol buffer containing 0.6 M Tris, pH 7.2. Frac- 
tions (0.5 rid) were collected and dialyzed into cytosol buffer containing 1.0 
mM DFP before testing in competition binding assays. A portion of each 
35S-labeled sample was precipitated with ethanol and prepared for SDS- 
PAGE. The gels were impregnated with 22 % PPO in DMSO and fluo- 
rographed using pre-flashed x-ray film. 

Other Methods 

SDS-PAGE was carried out according to the method of Laemmli (16). Pro- 
tein determinations were made using the micro bicinchoninic acid (BCA) 
assay (33). Rapid-freeze, deep-etch microscopy was carried out as previ- 
ously described (18). 

Results 

The Core o f  AP-2 Links  Triskelions to the Membrane 

The domain within the AP-2 subunit that interacts with the 
high affinity binding site on the membrane should compete 
for the binding of  intact AP-2 to isolated plasma membranes. 
We used elastase and column chromatography to purify 
AP-2 appendages and cores. We then mixed different con- 
centrations of  each domain with a constant amount of  intact 
AP-2 subunits and incubated the membranes in the presence 
of  the mixture (Fig. 1). The cores abolished the binding of  
AP-2 to the membrane in a concentration dependent manner 
(Fig. 1, o) but the appendages had no effect on binding (Fig. 
1, o). In other trials, we used a core specific mAb (29) to 
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Figure 1. The core of AP-2 binds to the membrane binding site. 
AP-2 was treated with elastase and the appendages were separated 
from the cores by gel filtration. The indicated amount of either the 
appendages (o) or the cores (e) was added to each well containing 
sonicated membranes. While keeping the volume constant, a con- 
stant amount of AP-2 was added to each well and the mixture was 
incubated at 4~ for 30 rain. The amount of bound AP-2 was mea- 
sured using monoclonal AP.6 as described in Materials and Meth- 
ods. The amount of AP-2 on the membrane before (u) and after 
(A) the membranes were treated with Tris is indicated on the ordi- 
nate. All values are the average of duplicate measurements. 
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Figure 2. Elastase removes the appendages from endogenous AP-2 
on isolated membranes but does not release either the cores or 
clathrin (,4) and does not affect the ability of purified triskelions to 
rebind (B). (.4) Isolated membranes were prepared and either not 
treated (Untreated), washed with high pH buffer (Taps), treated 
with 1/~g/ml of elastase for 30 rain at 4~ (Elastase), or treated 
with elastase followed by washing with high pH buffer (Elastase + 
Taps). Membranes were fixed and then processed to measure the 
presence of either the AP-2 appendages with monoclonal AP.6 ([]) 
The clathrin heavy chain with monoclonal 3[-22 (B), or the AP-2 
cores with monoclonal B1M6 (ms) as described. (B) In the same ex- 
periment, membranes that had been treated with elastase and 
stripped of clathrin were incubated with increasing amounts of puri- 
fied triskelion (e) for 30 rain at 4~ The membranes were then 
fixed and assayed for the presence of clathrin heavy chain using 
mAb X-22. The amount of clathrin on the membrane before (a) 
and after (&) the high pH treatment is indicated on the ordinate. 
Half maximal binding was calculated to be 12 riM. Clathrin did not 
bind to membranes that had been stripped of elastase-treated AP-2 
before incubation with 100/~g/ml of purified triskelions for 30 rain 
at 4~ (n, ordinate). All values are the average of duplicate mea- 
surements. 

confirm that the isolated core binds to the membrane with 
about the same affinity as the whole AP-2 (data not shown). 

We used the same approach to determine if the core also 
contains the triskelion binding site. We prepared membranes 
and treated them with a concentration of  elastase that re- 
moves both the o~ and the/~ appendages from purified coat 
proteins (32) but does not effect the AP-2 binding site (19). 
Domain specific antibodies showed that these membranes 
had normal levels of  the AP-2 cores (Fig. 2 A; elastase, n) 
and triskelion subunits (Fig. 2 A; elastase, m) hut lacked the 
appendages (Fig. 2 A; elastase, []). We then washed 
elastase-treated membranes with high pH to remove both the 
appendages (Fig. 2 A; Elastase + Taps, []) and the clathrin 
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(Fig. 2 A; Elastase + Taps, -), but not the core (Fig. 2 A; 
Elastase + Taps, []). These membranes supported normal 
triskelion binding (Fig. 2 B). Binding was saturable with 
half maximal occupancy occurring at a triskelion concentra- 
tion of 12 • 10 -9 M. Binding did not occur if the elastase- 
treated AP-2 core was removed from the membrane before 
the addition of triskelions (Fig. 2 B, D on the ordinate). 

The previous experiment showed that high affinity binding 
of triskelions is not dependent on the AP-2 appendages (Fig. 
2). We next used rapid-freeze, deep-etch microscopy to de- 
termine if normal lattices form after triskelions bind to 
elastase-treated, pH-stripped membranes (Fig. 2, Elastase 
+ Taps). We prepared four different sets of membranes: un- 
treated (Fig. 3 A); stripped of clathrin with high pH (Fig. 3 
B); stripped and incubated in the presence of triskelions 
(Fig. 3 C); or elastase treated, stripped, and incubated in the 
presence of triskelions (Fig. 3 D). Intact AP-2 supported lat- 
tice assembly (compare Fig. 3, B, C) but the lattices were 
generally smaller than native lattices (compare Fig. 3, A with 
C). Elastase-treated AP-2 also supported lattice assembly 
(Fig. 3 D), although we consistently found that triskelions 
tended to form much more rounded lattices on these mem- 
branes. 

Keen and co-workers (12, 13) previously showed that the 
appendage domain is essential for AP-stimulated assembly 
of cages. Cage formation is analogous to the rounding of a 
coated pit into a vesicle. Therefore, we used the purified 
membranes to see if elastase removal of the appendage do- 
main affected coated pit invagination (Fig. 4). Initially all of 
the pits were flat (Fig. 4 A). Digestion at 4"C with elastase 
had little effect on the organization of the polygons (Fig. 4 
B), although we noted that the lattices tended to have more 
curvature. All of the elastase-treated lattices became deeply 
invaginated (Fig. 4 C) after warming the membranes to 
37~ 

Membrane Binding Site Is Released by Elastase 

All that we know about the AP-2 binding site is that it is de- 
stroyed by elastase and that it is in coated pits (19). Several 
studies have suggested that clathrin coat proteins can bind to 
lipid vesicles (6, 28, 34), which raises the possibility that 
the AP-2 binding site might be a lipid. Therefore, we per- 
formed further tests to determine the macromolecular nature 
of the binding site. We started by determining whether or not 
elastase released a molecule that retained the ability to bind 
AP-2. We treated the cytoplasmic surface (inside) and the 
environmental surface (outside) of human fibroblast mem- 
branes with 0.5 M Tris to remove any AP-2 and clathrin be- 

Figure 3. Re.assembly of clathrin lattices on untreated membranes 
(A-C) or membranes that had been treated with elastase (D). 
Membranes were isolated on coverslips as described. One set was 
either fixed immediately (A), stripped of elathrin with a high pH 
buffer (B) or stripped and incubated in the presence of 20 t~g/ml 
of triskelions for 1 h at 4"C (C). Another set (D) was first treated 
with elastase as described in Fig. 2 to remove the AP-2 appendage 
domain, stripped of elathrin and then incubated in the presence of 
20/~g/ml purified triskelions for 1 h at 40C. All samples were then 
fixed and processed for rapid-freeze, deep-etch microscopy as de- 
scribed. Arrows (B) indicate the location of coated pits that have 
been stripped of clathrin. Bar, 0.5/~m. 
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Figure 5. The effect of elastase fragments prepared from either the 
inside (o) or the outside (o) membrane surface on AP-2 binding. 
Elastase fragraents were prepared as described. Keeping the vol- 
ume of the incubation mixture constant (100 ~1), varying amounts 
of either outside (o) or inside (o) fragments were added to purified 
AP-2 (10 ~g/ml) and incubated for 10 rain at 4~ Membranes were 
then stripped of AP-2 and clathrin and incubated with this mixture 
for 30 min at 4~ At the end of the incubation, the samples were 
fixed and processed for the detection of membrane bound AP-2 
using monoclonal AP.6 (1 #g/ml) as described. The amount of AP-2 
on the membrane before (i) and after (A) the membranes were 
treated with Tris is indicated on the ordinate. All values are the 
average of duplicate measurements. 

fore incubating them in the presence of 2/zg/ml of elastase. 
We added protease inhibitors to each fraction, mixed differ- 
ent amounts of each fraction with a constant amount of coat 
proteins (containing both AP-2 and clathrin) and incubated 
the mixture for 10 rain at 4~ Finally, we removed AP-2 and 
clathrin from isolated membranes and incubated these 
stripped membranes in the presence of the mixture for 30 
rain at 4~ Fig. 5 shows that the addition of increasing 
amounts of inside fragments to the mixture caused a progres- 
sive inhibition of AP-2 binding to the membranes (Fig. 5, o). 
By contrast, the same concentrations of outside fragments 
did not affect binding (Fig. 5, o). 

These results suggest that elastase releases a polypeptide 
capable of interacting with AP-2 in solution. To see if AP-2 
would bind directly to the fragment, we prepared inside and 
outside elastase fragments and dried different amounts to the 
bottom of individual wells of a 96-well plate. We used gel 
electrophoresis to determine that the two preparations con- 
tained numerous peptides (data not shown). We then in- 
cubated each well in the presence of 10 ~,g/mi of coat pro- 
teins (Fig. 6). AP-2 did not bind to wells containing even the 
highest concentration of outside fragments (Fig. 6, o). By 
contrast, inside fragments did support binding (Fig. 6, o) 
and the amount of AP-2 that bound was proportional to the 
concentration of fragments added to the well. AP-2 bound 
to wells that received as little as 100 rig of inside elastase 
fragments. 

Figure 4. Effect of elastase on clathrin coated pit invagination. 
Membranes were prepared as described and either not treated (A), 
incubated in the presence of I ~,g/ml of elastase for 30 rain at 4~ 
(B), or incubated in the presence of elastase and then warmed to 
37~ for 3 min (C). The samples were then fixed and processed 
for rapid-freeze, deep-etch microscopy as described. Bar, 0.25 #m. 
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Figure 6. Binding of AP-2 to wells that contain varying amounts 
of either inside fragments (�9 or outside fragments (o). Elastase 
fragments were prepared as described and the indicated amount was 
dried onto the surface of individual wells of a 96-well plate. Each 
well was then incubated with 10 ~g/ml of purified AP-2 for 30 min 
at 4~ fixed, and processed to detect AP-2 binding using monoclo- 
pal AP.6 (1 #g/ml) as described. All values are the average of dupli- 
cate measurements. 

Elastase fragments also bound to immobilized AP-2. We 
prepared an affinity column to isolate the elastase fragments 
by attaching bovine brain APs (a mixture of AP-2 and the 
Golgi specific AP, AP-1) to glutaraldehyde-activated silica 
gel. We passed the elastase fragments from the cytoplasmic 
membrane surface over the column and washed extensively 
until there was no more protein in the flow through (Fig. 7, 
B, e). The addition of 0.6 M Tris-HCl immediately released 
additional protein from the column (Fig. 7, C, �9 We col- 
lected each fraction and tested it for AP-2 binding activity 
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Figure 7. Affinity purification of an elastase fragment that contains 
the AP-2 binding site. Elastase fragments from the inside surface 
of the plasma membrane were prepared as described. 5 ml of this 
preparation was applied to an AP affinity column by repeated circu- 
lation. The flow-through was collected (A) and then the column was 
washed (B) until the absorbance at 280 m (e) declined to zero. 
0.6 M Tris was added (C) to release any proteins that had bound 
to the AP-2 and 0.5-ml fractions were collected. Each fraction was 
then tested for its ability to inhibit AP-2 binding to the inside sur- 
face of the plasma membrane (o). Specific inhibitory activity in 
the starting material is shown on the right ordinate (�9 Specific 
inhibitory activity equals the amount of binding in the absence of 
the fraction minus the amount of binding in the presence of the frac- 
tion per milligram of protein. All values are the average of duplicate 
measurements. 

Figure 8. Identification of the AP-2 binding fragment. Elastase 
fragments were prepared from cells that had been grown in the pres- 
ence of [35S]methionine. The radiolabeled fragments were applied 
to an AP affinity column as described in Fig. 7. The column was 
washed, 0.6 M Tris-HCl was added, and the eluate was collected 
in six fractions. The starting material (start), the wash fraction 
(wash), and each eluate fraction (1-6) was tested for its ability to 
inhibit AP-2 binding to purified membranes (A) and analyzed by 
SDS-PAGE (B). The amount of AP-2 on the membrane before (m) 
and after (A) the membranes were treated with Tris is indicated on 
the ordinate (A). All values are the average of duplicate measure- 
ments. 

using the competition assay (Fig. 7, o). The starting mate- 
rial had a modest amount of specific inhibitory activity (Fig. 
7, A), but there was not any activity in the initial washes 
from the column. By contrast, the Tris eluate fractions (Fig. 
7 C) contained significant inhibitory activity. The fraction 
with the highest specific activity had 30-fold more binding 
activity than the starting material. 

We wanted to determine the molecular weight range of the 
peptides that bound to AP-2. Therefore, we radiolabeled 
elastase fragments from fibroblasts by growing the cells for 
6 h in the presence of [35S]methionine. We then applied 
fragments to the AP column. We eluted specifically bound 
fragment(s) with 0.6 M Tris and collected 0.5-ml fractions. 
The competition assay was used to assay each fraction for 
AP-2 binding (Fig. 8 A). The fractions were also analyzed 
by gel electrophoresis (Fig. 8 B). The first fraction off the 
column had multiple protein bands (Fig. 8 B, lane/).  In suc- 
ceeding fractions (lanes 2 to 4), many bands disappeared un- 
til a band of •45 kD was the dominant species on the gel 
(Fig. 8 B, lanes 3-5). We found a correspondence between 
the presence of this band and the ability of the fraction to in- 
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hibit AP-2 binding to membranes (Fig. 8 A). Fraction 1 (Fig. 
8 A, column/) had more inhibitory activity compared to the 
starting material (Fig. 8 A, start) and fractions 2-4 had com- 
parable amounts of activity (Fig. 8 A, columns 2-4) even 
though there were fewer bands on the gel (Fig. 8 B, lane 
2-4). As the intensity of the band declined in fraction 5 and 
6, there was also a decline in the ability of the fraction to in- 
hibit AP-2 binding (compare Fig. 8 B, lanes 5 and 6 with Fig. 
8 A, columns 5 and 6). 

Discussion 

Different Functions for the Core and the 
Appendage Domains 
Ordinarily investigators study the interaction between AP-2 
and clathrin using clathrin in solution, clathrin immobilized 
on a support or clathfin assembled into cages (12). Keen and 
co-workers (13, 37, 38) have used these techniques to show 
that the core of AP-2 will not promote clathrin cage assembly 
but is able to bind to intact clathrin t.rimers. There appear 
to be two binding sites for the core of AP-2 on the triskelion 
legs (21, 27): one on the terminal domain and one near the 
hub region. In contrast to these studies, Schroder and Un- 
gewickell (32) found that in a tartrate buffer system only in- 
tact APs would bind to clathrin. They concluded from their 
studies that tartrate had its affect by preventing the APs from 
aggregating. 

The primary interaction between these two subunits ordi- 
narily occurs within the cell during coated pit formation. We 
designed the in vitro assay used in the current study to mimic 
the conditions that favor these interactions (18, 20). When we 
treated membranes with elastase concentrations that are 
known to remove both the ot and the B appendages from 
purified coated vesicle APs (32), clathrin coated pit assem- 
bly appeared to be unimpaired. We can not rule out the pos- 
sibility that these conditions did not completely remove both 
appendages from the membrane bound APs. Nevertheless 
the affinity of interaction between clathrin and the bound, 
elastase treated AP-2 was unaltered (compare Fig. 2 B with 
Fig. 3 in reference 19). Furthermore, the bound triskelions 
formed into lattices that were normal in appearance. 

Rapid-freeze, deep-etch images have previously shown 
that triskelions make contact with solid surfaces through the 
terminal portion of each leg (14) and that this is the region 
that interacts with APs in solution (11). Murphy et al. (21) 
recently showed that this region of the leg binds to the AP 
core domain. We propose that coated pit lattice assembly re- 
quires the high affinivy binding of the triskelion terminal re- 
gion to the core of AP-2. Possibly B-adaptin contains the 
binding site for clathrin (1). 

The core is also the domain that mediates AP-2 binding 
to the inner membrane surface. Elastase treatment of intact 
coated pits removed the appendages without releasing the 
AP-2 core from the membrane, which indicates that the ap- 
pendage does not have a high affinity for the binding site 
(Fig. 2 A). What is more important is that only the purified 
cores inhibited AP-2 binding to membranes (Fig. I). The 
AP-2 domain that binds to the membrane could reside in the 
non-proteolysed, amino terminal portion of either ~ or 
adaptin. 

We conclude that all of the major interactions that occur 

between the membrane and clathrin during assembly of coat- 
ed pits are mediated by the AP-2 core domain. This leaves 
the appendage domain available to carry out other key reac- 
tions necessary for coated pit function. One activity may be 
to cluster receptors that enter cells by receptor mediated en- 
docytosis (3) while another may be to control the shape of 
the lattice. 

Molecular evidence has suggested a role for the appendage 
domain in the adaptive ability of the AP-2 complex to recog- 
nize the cytoplasmic tails of multiple receptors that enter 
cells by coated pits (15, 26, 30). On the other hand, Beltzer 
and Spies (5) have found that the amino terminal domain of 
B-adaptin, which is present in the AP-2 core, binds a fusion 
protein that contains the cytoplasmic tail of the asialogly- 
coprotein receptor. Therefore, the exact role of the append- 
ages in receptor clustering is not known. 

Elastase treatment did not prevent coated pits from round- 
ing up at 37~ In fact, there seemed to be a tendency for 
elastase by itself to cause coated pits to change shape. We 
observed this in the shape change experiments (Fig. 4 B) and 
in the reassembly trials (Fig. 3 D). This raises the possibility 
that the appendage domain plays an active rote in keeping the 
lattice in a planar configuration during assembly. This mac 
be important for the proper clustering of receptors before 
budding and for the ordered addition of clathrin trimers into 
the forming polygonal lattice. 

The AP-2 Receptor 
The protein fragments released by elastase from the inside 
surface of the plasma membrane contain the high affinity, 
AP-2 binding site. The predominant band in the affinity- 
purified fraction has an apparent molecular weight of 45,000. 
This peptide is a candidate for containing the AP-2 binding 
site. Most likely the peptide or peptides that have the binding 
activity are derived from integral membrane proteins that 
are essential for coated pit assembly. Therefore, AP-2 seems 
not to be binding with high affinity to a specific class of 
plasma membrane lipids. 

The isolation of peptide fragments, released specifically 
from the inside surface of membranes, that have AP-2 bind- 
ing activity raises the possibility that plasma membranes 
contain an AP-2 receptor. The major function of this recep- 
tor would be to bind the core of the AP-2 and initiate coated 
pit assembly. The appendage domain, on the other hand, 
would be available to interact with membrane proteins that 
contain a reverse-turn, three-dimensional conformation in 
their cytoplasmic tall (4) and cause them to cluster before 
coated pit budding (3). This model agrees with rapid-freeze, 
deep-etch microscopy studies that show coated pit assembly 
precedes membrane receptor clustering (10). A hierarchical 
arrangement of domains within the AP-2 subunit gives each 
cell type the flexibility of controlling the uptake of a specific 
ligand without affecting the whole endocytic process (22). 
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