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Background: Alzheimer’s disease (AD) is a common neurodegenerative disease.
The pathogenesis is complex and has not been clearly elucidated, and there is no
effective treatment. Recent studies have demonstrated that DNA methylation is closely
associated with the pathogenesis of AD, which sheds light on investigating potential
biomarkers for the diagnosis of early AD and related possible therapeutic approaches.

Methods: Alzheimer’s disease patients samples and healthy controls samples were
collected from two datasets in the GEO database. Using LIMMA software package
in R language to find differentially expressed genes (DEGs). Afterward, DEGs have
been subjected to enrichment analysis of GO and KEGG pathways. The PPI networks
and Hub genes were created and visualized based on the STRING database and
Cytoscape. ROC curves were further constructed to analyze the accuracy of these
genes for AD diagnosis.

Results: Analysis of the GSE109887 and GSE97760 datasets showed 477 significant
DEGs. GO and KEGG enrichment analysis showed terms related to biological processes
related to these genes. The top ten Hub genes were found on the basis of the PPI
network using the CytoHubba plugin, and the AUC areas of these top ranked genes
were all greater than 0.7, showing satisfactory diagnostic accuracy.

Conclusion: The study identified the top 10 Hub genes associated with AD-related
DNA methylation, of which RPSA, RPS23, and RPLP0 have high diagnostic accuracy
and excellent AD biomarker potential.

Keywords: Alzheimer’s disease, differentially expressed genes (DEGs), hub genes, DNA methylation,
bioinformatics

INTRODUCTION

Alzheimer’s disease is an age-related neurodegenerative disease that deteriorates with age and over
time and often occurs in the elderly over 65 years. Currently, there are more than 55 million AD
patients worldwide, and this number continues to grow, which represents a challenge to public
health (Gauthier et al., 2021). According to data published by the World Health Organization
(WHO) in 2020, AD and other dementias are the seventh greatest cause of mortality globally and
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one of the most socially costly chronic diseases (World
Health Organization, 2021). As AD worsens, patients experience
memory loss, mood swings, and even loss of self-care ability
(Burns and Iliffe, 2009). It is predicted that the average life
expectancy of patients with AD ranges from 3 to 9 years from
diagnosis to further disease worsening (Querfurth and LaFerla,
2010; Todd et al., 2013). If diagnosed and intervened in a timely
manner, the onset of AD will be delayed by 5–10 years (Ma
et al., 2019). In the global pandemic of coronavirus disease 2019
(COVID-19), AD patients were reported to be more susceptible
to coronavirus invasion (Mok et al., 2020), and for AD patients
who have been infected with COVID-19, their mortality rate is
significantly higher than that of healthy elderly (Hardan et al.,
2021). Thus, the diagnosis of early AD can provide good help for
both patient care and prognosis as well as global public health.
Cognitive testing, magnetic resonance imaging (MRI), positron
emission tomography (PET), and detection of cerebrospinal fluid
(CSF) biomarkers are currently used clinically to diagnose AD,
but according to ALZHEIMER’S DISEASE INTERNATIONAL
(ADI) data, more than 75% of AD patients worldwide are not
diagnosed, with 90% of patients in low and intermediate income
(Nakamura et al., 2018; Sun et al., 2018; Gauthier et al., 2021;
World Health Organization, 2021). Similarly, more than 77%
of clinicians in an ADI and WHO survey intended to use new
blood tests to improve the diagnostic accuracy of AD in clinical
practice (Gauthier et al., 2021). Due to the ease of availability,
high specificity, and economic advantages of blood marker
performance, that is currently of great practical significance for
exploring blood biomarkers for the diagnosis of AD.

In recent years, increasing studies have focused on AD-
related DNA methylation, one of the key mechanisms of
epigenetic research, which alters the expression of genes at the
transcriptional level through the upregulation, downregulation,
or silencing of genes without changing the DNA sequence
(Mishra and Li, 2020; Sharma et al., 2020). DNA methylation
regulates neuronal differentiation early in central nervous system
development, whereas DNA methylation levels in the cerebral
cortex change dynamically throughout life (Mohn et al., 2008).
With the progression of aging, the degree of DNA methylation
differences increases and can affect the function of learning
and memory (Sharma et al., 2020; Li et al., 2021). Based on
the specificity of different brain regions, neurons can express
hypermethylation or hypomethylation at different sites during
AD pathogenesis (Sharma et al., 2020). Hypomethylation of APP
can lead to enhanced aggregation of amyloid plaques which is an
important factor in AD pathogenesis (Gasparoni et al., 2018).

In addition to age, genes and family genetic history are also
non-modifiable risk factors for AD. For AD cases other than
early-onset familial AD (FEOAD), 70% of these risks can be
attributed to genetic factors (Gatz et al., 2006; Ballard et al.,
2011). Due to the continuous development and application of
microarray and next-generation sequencing technology (NGS),
genetic data-based research is growing, providing strong support
for deciphering disease-related genetic factors (Mishra and Li,
2020). Some of these studies have achieved meaningful results
for the diagnosis, prognosis and genetic analysis of AD based
on genetic data. As early as 1993, Genome-wide association

studies (GWAS) revealed APOE ε4 as the most important genetic
risk factor for AD (Freudenberg-Hua et al., 2018). More recent
risk gene loci including ABCA7, ACE, ADAM10, and ADAM17
have also been reported (Pimenova et al., 2018). Similarly, NGS
also identified risk genes associated with AD pathogenesis such
as NOTCH3, TREM2, and ARSA (Patel et al., 2019). Some
studies on methylation of these genes have demonstrated a
close relationship with the development of AD. In AD patients,
hypomethylation at the TREM2 intron 1 CpG site results in
higher expression of TREM2 mRNA in leukocytes than in healthy
controls (Ozaki et al., 2017). Although CpG methylation in
ABCA7 may have less of an impact on brain ABCA7 mRNA
expression (Yu et al., 2015), the CpG islands of ABCA7 exhibit
significant hypomethylation compared to healthy human brains
(Humphries et al., 2015). In addition, 19 CpG island sites in the
ABCA7 locus have been shown to be positively correlated with
pathological AD diagnosis (Yu et al., 2015), including 12 CpG
sites associated with Aβ content and 18 CpG sites associated
with Tau tangle tightness (De Roeck et al., 2019). These results
provide evidence that AD pathogenesis may involve methylation
of associated risk genes. Since DNA methylation levels are more
stable than mRNA levels (Paziewska et al., 2014), studies based
on blood DNA methylation levels may provide insights into
important biological pathways in AD development.

Therefore, in our study, differentially expressed genes (DEGs)
correlated with DNA methylation in AD were analyzed in order
to find blood biomarkers that can be used to diagnose early AD
with potential therapeutic targets. The gene expression profiling
data for GSE109887 and GSE97760 were obtained from the
Gene Expression Omnibus (GEO) database. To elucidate the
pathomechanism of AD-related DNA methylation, DEGs were
subjected to enrichment analysis of the Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.
We also used DEGs for constructing coexpression networks to
obtain Hub genes with DNA methylation associated with AD,
hoping to provide new directions and strategies for the diagnose
and therapy of AD.

MATERIALS AND METHODS

Collection of Gene Expression Profiling
Data
Gene Expression Omnibus is a public genetic and genomic data
source that accepts array- and sequence-based data submissions,
and enables users to search and download experimental gene
expression profiles (Edgar et al., 2002). GSE109887, a dataset
containing data on DNA methylation and hydroxymethylation
levels in the blood and middle temporal gyrus (MTG) regions of
the brain in AD patients, was used to obtain DNA methylation
levels of DEGs. The differential expression levels of DNA
methylation vary in different brain regions and show an increase
throughout the brain region with aging. Compared with other
brain regions, the MTG shows a more significant difference in
DNA methylation level (Coppieters et al., 2014). And according
to research on AD patients AD-related pathological changes
appeared first in the MTG regions (Ray and Zhang, 2010). In
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FIGURE 1 | Volcano plots of DEGs in the GSE109887 datasets. The abscissa indicates fold change (Log2FC). The ordinate indicates –log10 (p value). Red dots
indicate upregulated genes. Green dots indicate downregulated genes. Gray dots indicate non-significant genes.

FIGURE 2 | Cluster dendrogram of genes in the GSE109887 datasets. Gene dissimilarity based on 1-TOM. Different colors represent different modules of gene
clustering.

addition, the trend of differential DNA methylation levels in
MTG regions of the brain was reported to be similar to that in
blood (Lardenoije et al., 2019). To further investigate the effects of
DNA methylation on the expression of genes, GSE97760 dataset
was used to obtain the expression levels of DEGs in the blood
of AD patients and normal controls, which then was used to
compare the DNA methylation levels of DEGs obtained from the
GSE109887 dataset.

The GSE109887 dataset was examined using the GPL10904
(Illumina HumanHT-12 V4.0 expression beadchip) platform
and contained 78 samples derived from the MTG of the
brain, of which 32 samples were derived from healthy
individuals and 46 samples were derived from AD patients.
The GSE97760 dataset was tested using the GPL16699
(Agilent-039494 SurePrint G3 Human GEv2 8 × 60K
Microarray 039381) platform and contained 19 blood
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FIGURE 3 | Overlapping genes in WGCNA versus DEGs were analyzed with
Venn. Orange circle represents genes in WGCNA. Blue circle represents
differential genes.

samples, 10 samples from healthy individuals and 9 samples
from AD patients.

Data Processing and Identification of
Differentially Expressed Genes
Limma (linear models for microarray data, doi:
10.1093/nar/gkv00), is a generalized linear model-based
differential expression screening method. We used the R package
Limma (version 3.40.6) to perform differential analysis of
downloaded expression profile datasets to obtain differential
genes between normal and AD groups. Specifically, we first
set the P value threshold to 0.01, | log2FC | to 1.25, then log2
transform the data, further using Bayes’ function to compute
moderated t-statistics, moderated F-statistic, and log-odds of
differential empirical Bayes moderation values of the standard
common toward expression errors, and finally obtain the
differential significance of each gene.

Weighted Gene Coexpression Network
Analysis
Weighted gene coexpression network analysis can identify gene
sets with highly synergistic changes to recognize potential
biomarker genes or therapeutic targets based on the correlation of
phenotypes of gene sets (Wisniewski et al., 2013). Specifically, we
calculated the Median Absolute Deviation (MAD) for each gene
separately based on the previously downloaded gene expression
profiling data and then eliminated the top 95% of the genes
with the smallest MAD. Scale-free co-expression networks were
further constructed by removing outlying genes and samples
using the Good Samples expression method of the R software
package WGCNA. Afterward, we analyzed all genes using
Pearson’s correlation matrix and average linkage. The power
function amn = | Cmn | ˆβ (set the soft threshold β to 6) is
used to transform the adjacency matrix into a topological overlap
matrix (TOM), and the corresponding difference (1-TOM) is

calculated. To classify genes with similar expression profiles as
gene modules, we performed hierarchical clustering based on the
difference metric of TOM with at least 30 genes per module of the
gene dendrogram. To further analyze the modules, we calculated
the difference of module eigengenes, merging modules with a
distance less than 0.25.

Enrichment Analysis of Differentially
Expressed Genes
We performed enrichment analysis using the R package
clusterProfiler (version 4.2.1) to obtain results for gene set
enrichment. P-values less than 0.05 were judged to be
statistically significant. The obtained results have been visualized
using R and Enrichr.

Protein-Protein Interaction Network
Analysis of Differentially Expressed
Genes
We created the PPI network through the STRING database
(Szklarczyk et al., 2021). Specifically, the results obtained in
the STRING database used a total score greater than 0.4 as a
requirement to obtain AD-related DNA methylation key genes.
The final results have been visualized using Cytoscape software
(version 3.7.0) (Shannon et al., 2003).

Acquisition of Hub Genes
We used the plugin CytoHubba in Cytoscape to find the key genes
in the PPI network (Shannon et al., 2003). Since the degree value
of a protein correlates with the importance of a gene and proteins
with higher degrees values are more likely to be key proteins
(Chin et al., 2014), the algorithm of Degree was employed in our
study to assess those genes. Obtained the top ten ranked genes as
hub genes using the Degree algorithm.

Establishment and Analysis of the
Receiver Operating Characteristic Curve
We constructed receiver operating characteristic (ROC) curves
based on the pROC package in R software and further assessed
the value of Hub genes in the GSE109887 dataset for the early
diagnosis of AD by calculating the area under the ROC curve
(AUC). The Hub gene was considered to have good diagnostic
accuracy when the AUC value was greater than 0.6. The results
were visualized using the ggplot package.

RESULTS

Differentially Expressed Genes
In this study, we compared two datasets, GSE109887 and
GSE97760, and analyzed differentially expressed genes in a total
of 42 normal control samples and 55 AD patient samples using
the Limma package in R software. In the GSE109887 dataset,
according to the set criteria (P < 0.01, | log2FC| = 1.25),
we obtained 7,736 DEGs, including 4,230 upregulated DEGs
and 3,506 downregulated DEGs (Figure 1). By using WGCNA
analysis, we obtained two enriched modules containing 194
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FIGURE 4 | By analyzing two datasets, GSE97760 and GSE109887, a cluster heatmap of the top 10 DEGs between AD and normal controls was obtained.
(A) Expression levels of DEGs. (B) DNA methylation of DEGs.

TABLE 1 | Differential expression level and DNA methylation level of the top 10 DEGs.

Up-regulated genes Description LogFC (DNA methylation) LogFC (expression level)

RPL36AL Ribosomal protein L36a like 8.12 −1.15

COX7C Cytochrome Coxidase subunit 7C 7.19 −3.93

LDHB Lactate dehydrogenase B 4.41 −1.74

RPS26 Ribosomal protein S26 4.13 −1.58

RPL11 Ribosomal protein L11 3.95 −1.94

Down-regulated genes Description LogFC (DNA methylation) LogFC (expression level)

SELL Selectin L −6.71 7.96

SHISA4 Shisa family member 4 −6.56 8.42

MBOAT7 Membrane bound O-Acyltransferase domain containing 7 −6.41 8.69

PPIF Peptidylprolyl isomerase F −6.38 7.91

MKNK2 MAPK interacting serine/threonine kinase 2 −6.36 8.42

LogFC, log2 fold change.

upregulated genes and 628 downregulated genes (Figure 2),
which were intersected with DEGs after limma analysis,
respectively, to obtain the final 477 DEGs (including 131
upregulated genes and 346 downregulated genes) (Figure 3).
In addition, we analyzed the expression levels of the top 10
DEGs in the blood of the GSE97760 dataset. Figures 4A,B are
the cluster analysis of the top 10 DEGs (differential expression
level and DNA methylation level, respectively). Table 1 lists the
basic information of the differential expression level and DNA
methylation level of the top 10 DEGs.

Gene Ontology and Pathway Enrichment
Analysis of Differentially Expressed
Genes
Gene Ontology (GO) consists of three aspects in the biological
field: molecular function, cellular composition, and biological
process (Ashburner et al., 2000; Gene Ontology Consortium,
2021). The Kyoto Encyclopedia of Genes and Genomes (KEGG)
is a database that understands the advanced functions and
utilities of biological systems (Kanehisa et al., 2022). Mastering

the potential biological functions of genes can help to explore
the role of DEGs in the pathogenesis of AD. Based on
this, we performed enrichment analysis of DEGs in DNA
methylation associated with AD. The results of GO analysis
are presented in Table 2, which shows that these DEGs are
significantly enriched in functions related to ribosomes and
cytoplasm, involving biological processes including cytoplasmic
translation, T cell activation, proliferation and cell-cell adhesion
of leukocytes, and ribosomal biological processes (Figures 5A,B).
KEGG pathway enrichment analysis indicated that these
genes were significantly enriched in Coronavirus disease-
COVID-19, Ribosome, Pathways of neurodegeneration-multiple
diseases, Alzheimer’s disease, and Epstein-Barr virus infection
(Figure 5C). Table 3 presents information on these pathways.

The Protein-Protein Interaction Network
and Hub Genes Analysis
We built a PPI network through the STRING database, and
in addition to the nodes with interrupted networks, Figure 6A
presents 308 nodes and 3,244 edges in the PPI network,
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TABLE 2 | The Gene Ontology (GO) terms for the DEGs.

GO ID GO term Counts p value q value

GOTERM_BP

GO:0002181 Cytoplasmic translation 39 5.45E-31 1.72E-27

GO:0042255 Ribosome assembly 14 5.01E-11 7.90E-08

GO:0048002 Antigen processing and presentation of peptide antigen 13 8.26E-10 7.55E-07

GO:0042110 T cell activation 35 1.14E-09 7.55E-07

GO:0007159 Leukocyte cell-cell adhesion 30 1.20E-09 7.55E-07

GO:0042254 Ribosome biogenesis 26 3.46E-09 1.82E-06

GO:0002474 Antigen processing and presentation of peptide antigen via MHC class I 9 5.75E-09 2.59E-06

GO:0002478 Antigen processing and presentation of exogenous peptide antigen 10 7.14E-09 2.82E-06

GO:0070661 Leukocyte proliferation 26 1.25E-08 4.00E-06

GO:0019882 Antigen processing and presentation 15 1.27E-08 4.00E-06

GOTERM_CC

GO:0022626 Cytosolic ribosome 36 6.17E-34 2.08E-31

GO:0044391 Ribosomal subunit 38 1.67E-26 2.82E-24

GO:0005840 Ribosome 40 9.57E-24 1.07E-21

GO:0101002 Ficolin-1-rich granule 32 1.03E-19 8.70E-18

GO:0022627 Cytosolic small ribosomal subunit 17 7.42E-18 5.00E-16

GO:0022625 Cytosolic large ribosomal subunit 19 9.27E-18 5.21E-16

GO:0034774 Secretory granule lumen 36 1.09E-15 5.23E-14

GO:0060205 Cytoplasmic vesicle lumen 36 1.46E-15 6.14E-14

GO:0031983 Vesicle lumen 36 1.77E-15 6.62E-14

GO:0015934 Large ribosomal subunit 21 5.20E-14 1.75E-12

GOTERM_MF

GO:0003735 Structural constituent of ribosome 39 1.31E-26 7.13E-24

GO:0044389 Ubiquitin-like protein ligase binding 27 6.26E-09 1.71E-06

GO:0031625 Ubiquitin protein ligase binding 24 1.26E-07 2.30E-05

GO:0045182 Translation regulator activity 15 9.19E-07 0.000125311

GO:0008135 Translation factor activity, RNA binding 11 3.73E-06 0.000406315

GO:0090079 Translation regulator activity, nucleic acid binding 12 7.76E-06 0.000705088

GO:0042605 Peptide antigen binding 7 1.60E-05 0.001248783

GO:0019843 rRNA binding 9 2.62E-05 0.00178531

GO:0140375 Immune receptor activity 13 3.14E-05 0.001905303

GO:0050786 RAGE receptor binding 4 5.36E-05 0.002923918

BP, biological process; CC, cellular composition; MF, molecular function.

where edges indicate interactions among genes. The top 10
Hub genes (RPL5, RPLP0, RPS15A, RPS18, RPS23, RPS27A,
RPS29, RPS3, RPS6, and RPSA) were obtained based on Degree
algorithm in CytoHubba (Figure 6B). Afterward we obtained
the differential expression of these Hub genes without DNA
methylation modification from the GSE97760 dataset and found
that the expression of these genes was downregulated, contrary
to the level of DNA methylation. Information about these Hub
genes is listed in Table 4.

Receiver Operating Characteristic Curve
Analysis
We performed ROC curve analysis to validate the accuracy of
Hub gene for the early diagnosis of AD. The closer the value of
AUC is to 1, representing a greater diagnostic value. Our results
showed that the top ten genes all had good diagnostic value. As
shown in Figures 7A,B, the maximum AUC was 0.848 and the

minimum AUC was 0.776. Among them, the AUC of RPS23,
RPSA, and RPLP0 was greater than 0.8, indicating that these
three genes may play a good accuracy in the early diagnosis of
AD pathogenesis.

DISCUSSION

Over the past century, people have not stopped exploring AD.
Many hypotheses have attempted to elucidate the pathogenesis
of AD, such as oxidative stress, neuronal excitotoxicity, and
tau hyperphosphorylation (Ju and Tam, 2022). In recent years,
it has been demonstrated that epigenetic mechanisms play a
significant part in the formation and development of memory
during growth under physiological and pathological conditions,
and are likely to participate in the pathogenesis and progression
of AD (Sananbenesi and Fischer, 2009; Fischer et al., 2010; Day
and Sweatt, 2011). DNA methylation, as one of the epigenetically
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FIGURE 5 | GO enrichment and KEGG pathway. (A,B) GO enrichment analysis of DEGs. (C) KEGG pathway analysis of DEGs.

Frontiers in Aging Neuroscience | www.frontiersin.org 7 May 2022 | Volume 14 | Article 884367

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/aging-neuroscience#articles


fnagi-14-884367 May 3, 2022 Time: 19:25 # 8

Chen et al. DEGs of DNA Methylation in Alzheimer’s Disease

TABLE 3 | The KEGG pathway for the DEGs.

ID Pathway Counts p value q value

hsa05171 Coronavirus disease –
COVID-19

40 1.64E-18 1.84E-16

hsa03010 Ribosome 37 5.98E-22 1.34E-19

hsa05022 Pathways of
neurodegeneration –
multiple diseases

25 1.36E-02 0.086856153

hsa05010 Alzheimer’s disease 24 1.83E-03 0.025655536

hsa05169 Epstein-Barr virus infection 21 2.74E-06 0.000153521

hsa04145 Phagosome 20 1.07E-07 7.98E-06

hsa05163 Human cytomegalovirus
infection

20 4.84E-05 0.001550828

hsa04144 Endocytosis 20 2.19E-04 0.004909197

hsa05131 Shigellosis 19 4.90E-04 0.009980422

hsa05020 Prion disease 19 1.63E-03 0.024347382

important mechanisms, has been demonstrated to have a place
in AD pathogenesis (Mohn et al., 2008; Qazi et al., 2018;
Sharma et al., 2020), and genes and proteins associated with
DNA methylation are potential biomarkers in AD (Qazi et al.,
2018). However, the specific mechanisms underlying need to be
further explored.

DNA methylation is the process of adding a methyl group
to DNA mediated by DNA methyltransferases (DNMTs). The
process does not involve changes in DNA sequence, but rather
influences DNA activity and work ability (Coppedè, 2021). It is
required for neuronal differentiation, embryonic development
and regulation of gene expression levels, and is also involved
in regulation of biological processes such as brain development
and memory formation (Jones, 2012). Impairment of DNA
methylation has already been shown to have a relationship with
neural development and neurodegenerative diseases, in studies
in primates and rodents, lack of dietary B-vitamins or excessive
exposure to metals (lead) early in development can affect DNA
methylation levels in vivo, resulting in changes in Aβ peptide
gene expression associated with the pathogenesis of AD, such
as BACE1, PSEN1, and APP genes (Fuso et al., 2005, 2011;
Bihaqi et al., 2011). Impaired expression and activity of enzymes
involved in DNA methylation and demethylation can also be
detected in the brains of these animals (Fuso et al., 2011).
Alterations in genes associated with DNA methylation and Aβ

can also be detected in the brains of AD patients after death
(Wang et al., 2008). This is consistent with a previous study
concluding that alterations in DNA methylation is one of the
causes of decreased neural function in the brain during aging (Liu
et al., 2009). Reduced DNA methylation levels in mitochondria-
associated regions can also be detected in peripheral blood of
patients with delayed AD (De Jager et al., 2014). A study has
shown that increased DNA methylation levels of the brain-
derived neurotrophic factor (BDNF) promoter result in reduced
BDNF mRNA protein expression and add a higher risk of AD
development (Xie et al., 2017). In terms of AD treatment, some
progress and success has been made in adding DNA methyl
donors (folic acid and vitamin B12) to the diet of AD patients
(Durga et al., 2007; Haan et al., 2007).

Based on the close link between DNA methylation and the
development of AD, we downloaded datasets related to DNA
methylation from the GEO data repository for bioinformatics
analysis to obtain key genes implicated in AD pathogenesis.
In our work, the DEGs in the GSE109887 dataset were first
screened and additionally the expression of these DEGs when
not DNA methylated was analyzed from the GSE97760 dataset.
Afterward, these genes were subjected to GO and KEGG
enrichment analysis. The results of GO enrichment analysis
showed that cytoplasmic translation, ribosome production and
assembly, and ubiquitination of proteins were engaged in the
production and progression of AD. This is in line with prior
studies indicating that DNA methylation plays an essential role
in the advancement of AD. This indicates that the results of our
biological information analysis are acceptable.

In our work, the top 10 DEGs of DNA methylation associated
with AD were selected: RPL5, RPLP0, RPS15A, RPS18, RPS23,
RPS27A, RPS29, RPS3, RPS6, and RPSA. Through the analysis
results of the ROC curve, RPS23, RPSA, and RPLP0 all had very
excellent diagnostic accuracy.

A recent experiment analyzing cell and molecular markers in
donor brain samples by a combination of Fluoro deoxy glucose
positron emission tomography (FDG-PET) and Allen Human
Brain Atlas revealed that genes related to cytoplasmic ribosomes
including RPLP0 showed high enrichment (Patel et al., 2020).
Notably, studies on the synthesis of ribosomes and proteins
in the cytosol have been demonstrated many years ago to be
associated with mild cognitive impairment and AD pathogenesis
(Albert et al., 2011). These results are in high agreement with our
analysis of DEGs that the top ranked Hub genes have surprisingly
high correlations with ribosomal proteins and indicate that
ribosomal protein genes associated with DNA methylation may
be a new risk locus for AD. Ribosomes, as organelles that regulate
intracellular protein biosynthesis and translation, are closely
related to cell development and the lifespan of organisms (Nosrati
et al., 2014). There is no doubt that AD itself, as a disease with Tau
protein hyperphosphorylation and Aβ misfolding, is inseparable
from abnormalities in intracellular biological processes related to
protein synthesis and DNA transcription.

Additionally, we analyzed the expression levels of Hub genes
by GSE97760 dataset (Table 4), consistent with previous findings
that differential expression of DNA methylation can affect
gene activity and is usually associated with repression of gene
expression (Coppieters et al., 2014). RPS23 is a highly conserved
component of the 40S subunit in eukaryotes (Ma et al., 2020).
It is involved in physiological and pathological processes such as
tumorigenesis, immune signaling and growth and development
(Zhou et al., 2015). Disturbed protein balance is a key factor
leading to aging and age-related diseases, and translation is one
of its key determinants (Hipp et al., 2019). And one of the most
important roles of RPS23 is to maintain the fidelity of protein
translational synthesis. Recently, studies have been conducted to
explore how the fidelity of protein synthesis can be regulated
to prolong the life span of organisms starting from RPS23
(Martinez-Miguel et al., 2021). Like genes encoding ribosomal
proteins, RPS23 has multiple processed pseudogenes dispersed
in the genome, of which closely related to AD is the RPS23RG
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FIGURE 6 | (A) The PPI network of DEGs in AD. There are a total of 308 nodes and 3,244 edges. Nodes represent proteins and edges represent interactions
between proteins. (B) The top 10 hub genes with higher degree screened from a PPI network according to the Degree algorithm. Darker color indicates degree. PPI,
protein-protein interaction; DEGs, differentially expressed genes.
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TABLE 4 | The information of top 10 hub genes.

No. Name Full name Degree
score

AUC LogFC (DNA
methylation)

LogFC
(expression level)

Brief function

1 RPS27A Ribosomal
protein
S27A

142 0.756 3.14 −2.81 Monomeric ubiquitin-ribosome fusion gene involved in
encoding a fusion protein. It can promote the development of
neurodegenerative diseases including AD (Khayer et al., 2020)

2 RPS3 Ribosomal
protein S3

102 0.777 1.53 −2.18 It is involved in composing the eukaryotic ribosomal 40S
subunit, regulating the initiation of ribosome maturation and
translation with the eukaryotic initiation factors elF2 and elF3,
and is involved in apoptosis (Kim et al., 2018)

3 RPL5 Ribosomal
protein L5

98 0.779 2.41 −1.94 It is involved in encoding ribosomal proteins that catalyze
protein synthesis and consists of a small 40S subunit and a
large 60S subunit (Safran et al., 2010)

4 RPS18 Ribosomal
protein S18

98 0.797 1.37 −1.89 It encodes a ribosomal protein that is a component of the
40S subunit (Safran et al., 2010)

5 RPS29 Ribosomal
protein S29

96 0.776 1.43 −1.58 It encodes a ribosomal protein that is a component of the
40S subunit and a member of the S14P family of ribosomal
proteins (Safran et al., 2010)

6 RPLP0 Ribosomal
protein LP0

96 0.848 1.54 −1.65 An acidic ribosomal protein. It is involved in ERS and
autophagy. It is associated with pathological Tau in AD (Ban
et al., 2014; Artero-Castro et al., 2015; Evans et al., 2019)

7 RPSA Ribosomal
protein SA

96 0.831 1.43 −1.25 Components of the 40S ribosomal subunit. Also known as
37/67 kDa high-affinity laminin receptor. May contribute to AD
by regulating the process of apoptosis (Da Costa Dias et al.,
2013; Jovanovic et al., 2015)

8 RPS15A Ribosomal
protein
S15A

96 0.776 2.44 −1.21 One of the subunits of the 40S ribosomal protein. It promotes
glioma development (Zhang et al., 2016)

9 RPS6 Ribosomal
protein S6

96 0.779 1.48 −0.90 It encodes a cytoplasmic ribosomal protein, which is a
component of the 40S subunit. It is a major substrate of
protein kinases in the ribosome (Safran et al., 2010)

10 RPS23 Ribosomal
protein S23

94 0.814 2.90 −0.44 Highly conserved component of the 40S subunit in
eukaryotes. To maintain the fidelity of protein translational
synthesis. The RPS23RG family of pseudogenes generated
by inversion is involved in the development of AD (Zhang
et al., 2009; Huang et al., 2010; Zhou et al., 2015; Hipp et al.,
2019; Zhao et al., 2019; Ma et al., 2020; Martinez-Miguel
et al., 2021)

AUC, area under the curve; logFC, log2 fold change.

family produced by the inversion of RPS23 (Huang et al., 2010).
It has been shown that RPS23RG1 and RPS23RG2 can interact
with adenylyl cyclase and upregulate cAMP levels, which further
increases PKA activity, thereby limiting the activity of GSK-3,
reducing Aβ production and tau hyperphosphorylation to resist
the development of AD (Zhang et al., 2009; Hipp et al., 2019).
Among them, RPS23RG1 has also been shown to be a gene
essential for maintaining synaptic integrity and resisting AD-
related cognitive deficits (Zhao et al., 2019). In our study, it
was found that the DNA methylation level of RPS23 was highly
upregulated in AD patients, which may downregulate the gene
expression (Table 4). Based on the important function of RPS23
and our results, we hypothesized that the expression of RPS23
can be downregulated by DNA methylation and thus participate
in the development of AD.

RPSA is a non-integrin laminin receptor, also known as
37/67 kDa high-affinity laminin receptor precursor/laminin
receptor (LRP/LR; Jovanovic et al., 2015). Studies have shown
that knockdown of RPSA can lead to neurodegenerative

diseases through apoptosis (Lowe and Lin, 2000), which is
consistent with our findings that the expression of RPSA in
AD patients was downregulated through DNA methylation
(Table 4). While some other studies have pointed out new
insights of RPSA in AD. Da Costa Dias et al. (2013) found
that RPSA co-localizes with Aβ42 on the cell surface, and
can physically bind to peptides that synthesize Aβ42, and
low activity of RPSA can lead to enhanced Aβ42 toxicity.
Research on targeting RPSA for prion diseases has been
reported (Jovanovic et al., 2015), and the development of
RPSA-targeted drugs can provide a new perspective for the
treatment of AD.

RPLP0 is an acidic ribosomal protein capable of mediating
cell cycle arrest and apoptosis induced by phospholipase A
and acyltransferase 4 (PLAAT4; Ban et al., 2014). It has
been shown that RPLP0 can interact with PLAAT4, and a
significant reduction in cell survival has been observed in
cells that overexpress PLAAT4 or knockdown RPLP0 (Wang
et al., 2019). RPLP0 was essential for maintaining ribosome
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FIGURE 7 | ROC curves for the top ten hub genes. The abscissa represents the FPR and the ordinate represents the TPR. The value of the AUC represents the
accuracy of the diagnostic value, with values closer to 1 indicating better accuracy. ROC, operating receiver characteristic; FPR, false positive rate; TPR, true positive
rate; AUC, area under the curve. (A) RPL5, RPLP0, RPS15A, RPS18, and RPS23. (B) RPS27A, RPS29, RPS3, RPS6, and RPSA.

activity (Remacha et al., 1995), and downregulation of RPLP0
mRNA can mediate Endoplasmic reticulum stress response to
induce abnormal autophagy (Artero-Castro et al., 2015). In
K369I tau transgenic mice and rTg4510 tau transgenic mice, it
was found that tau hyperphosphorylation resulted in decreased
expression of RPLP0 (Evans et al., 2019). Similarly, in our
study, the upregulated DNA methylation level of RPLP0 in AD
patients could lead to a decrease in the expression level of
genes (Table 4).

Although our study found some genes with DNA methylation
associated with AD development, and on this basis, the accuracy
of Hub gene for the early diagnosis of AD was analyzed. However,
the conclusions of our study still have some deficiencies. All
of our research results are based on GEO public database and
already published data, and due to sample size and platform
limitations, further biological or clinical experiments are needed
to confirm our conclusions in the future. But, in general, these
hub genes provide new insights and directions for explaining
AD pathogenesis and may become potential biomarkers and
targeted therapies for accurate diagnosis and therapy of early AD
in the near future.

CONCLUSION

In summary, our study identified the top 10 hub genes associated
with AD-related DNA methylation. These findings indicate that
these genes may have participated in the pathological process of
AD. Among them, RPS23, RPSA, and RPLP0 have high diagnostic
accuracy and excellent AD biomarker potential, which is worthy
of further attention and research.
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