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Abstract

Motivation: Following many successful applications to image data, deep learning is now also increasingly consid-
ered for omics data. In particular, generative deep learning not only provides competitive prediction performance,
but also allows for uncovering structure by generating synthetic samples. However, exploration and visualization is
not as straightforward as with image applications.

Results: We demonstrate how log-linear models, fitted to the generated, synthetic data can be used to extract pat-
terns from omics data, learned by deep generative techniques. Specifically, interactions between latent representa-
tions learned by the approaches and generated synthetic data are used to determine sets of joint patterns. Distances
of patterns with respect to the distribution of latent representations are then visualized in low-dimensional coordin-
ate systems, e.g. for monitoring training progress. This is illustrated with simulated data and subsequently with cor-
tical single-cell gene expression data. Using different kinds of deep generative techniques, specifically variational
autoencoders and deep Boltzmann machines, the proposed approach highlights how the techniques uncover under-
lying structure. It facilitates the real-world use of such generative deep learning techniques to gain biological
insights from omics data.

Availability and implementation: The code for the approach as well as an accompanying Jupyter notebook, which
illustrates the application of our approach, is available via the GitHub repository: https://github.com/ssehztirom/
Exploring-generative-deep-learning-for-omics-data-by-using-log-linear-models.

Contact: hess@imbi.uni-freiburg.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

High-dimensional omics data, like gene expression data, are now
collected in large amounts under controlled conditions, e.g. single-
cell data from mouse models, or derived from patients in clinical set-
tings. Frequently, the goal is to better understand the heterogeneity
of the data in terms of subpopulations that differ in the activity of
molecular networks. In contrast to standard supervised approaches
such as regularized regression or random forests, generative deep
learning approaches, building e.g. on variational autoencoders
(VAEs) (Kingma and Welling, 2013; Rezende et al., 2014) learn a
usually low-dimensional latent representation of the observed varia-
bles in an unsupervised manner. This latent representation can then
be visually inspected and be used to assess the similarity of potential
subpopulations. In fact, the performance of generative deep
approaches in learning latent representations that allow for better
capturing the underlying structure has been demonstrated in various
studies (Ding et al., 2018; Eraslan et al., 2019; Lopez et al., 2018).

Since these generative approaches learn the joint distribution of
observed and latent variables, they allow synthetic observations to
be generated with a similar structure as observed in the empirical

data. For this reason, deep generative models are very useful, e.g.
imputing missing values, which has been demonstrated for gene ex-
pression by Wang et al. (2018).

However, while deep learning approaches allow for the uncover-
ing of hidden patterns in opaque and complex data, the models are
themselves complex and opaque, which does not easily allow
researchers to infer how learned latent representations relate to the
observed variables. This is considered a large challenge which must
be solved to unleash the full potential of deep learning to better
understand biological networks (Camacho et al., 2018).

For applications with image data, several approaches have been
proposed to investigate how observed variables relate to latent rep-
resentations learned by a deep architecture (Montavon et al., 2018).
Recently, approaches which combine deep learning with causal in-
ference (Harradon et al., 2018) also in combination with generative
models (Besserve et al., 2018) have been proposed.

Still, there are several difficulties associated with transferring
these approaches to omics data. First, image data possess a spatial
structure with strong local correlations and second, interpretation of
image data is facilitated by the presence of clearly defined
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hierarchical concepts of the relationship of objects. For instance, a
face is composed of a nose, a mouth and eyes, while eyes have lids.
Thus, the individual variable (pixel) is usually of little importance
compared to the composition of pixels into objects. In omics data
however, the individual observed variable (gene) might be of great
importance, and we are rather interested in identifying patterns
observed in a small number of ‘essential’ observed variables. The ex-
traction of these patterns is particularly relevant in unsupervised
learning settings for several reasons. First, patterns, reflecting the es-
sential structure, which is differentiated in the subpopulations of the
empirical data, can be potentially useful for e.g. investigating cell
differentiation processes in single-cell data. Second, identified pat-
terns can serve as substitutes for external labels in judging the qual-
ity of models in the unsupervised setting, where prediction
performance as a primary criterion for judging model quality is not
available.

Here, we propose an approach (Fig. 1a) that extracts patterns
from synthetic samples and corresponding latent representations
learned by a deep generative approach such as VAEs or deep
Boltzmann machines (DBMs) (Salakhutdinov and Hinton, 2009).
Our approach is based on a rather simple, easily interpretable exter-
nal model that allows one to infer the connections of latent represen-
tations with observed variables (features), and consequently adds to
their explainability. Specifically, we train log-linear models on syn-
thetic data, sampled from the trained generative models, to identify
groups of features that are jointly associated with the states of latent
variables. To obtain a low-dimensional representation of patterns
seen in these groups of features, latent state information is again
used (Fig. 1b). This allows us, for example, to monitor the training
progress.

In the following, we provide a brief description of a generative
deep learning framework, which encompasses VAEs and DBMs, be-
fore introducing the proposed approach of applying log-linear mod-
els to extract patterns from synthetic data generated from the deep

models. We suggest a stepwise approach to fit the log-linear models
to build up sets of features, which represent the most important
structure in the data. An approach for visualizing the relationship
between groups of synthetic data, each group carrying a unique pat-
tern, is proposed. The aforementioned approaches are illustrated
with artificial data, mimicking cell differentiation processes and real
single-cell gene expression data. Finally, we provide some remarks
on limitations and potential generalization to other settings. Basic
usage of the proposed approach is illustrated in an accompanying
Jupyter notebook.

2 Materials and methods

2.1 Generative deep learning
A generative approach, in the present setting, is an approach that
given some training dataset, i.e. the empirical distribution, can gen-
erate synthetic observations that should exhibit the most important
structural properties observed in the empirical distribution.

More formally, training is based on n observations xi ¼
ðxi1; . . . ; xipÞ0; i ¼ 1; . . . ;n; each described by p features. After train-
ing on these original observations, a generative approach can gener-
ate synthetic observations xsyn

i ¼ ðxsyn
i1 ; . . . ;xsyn

ip Þ
0; i ¼ 1; . . . ; nsyn. The

deep generative approaches that will be considered in this article
also learn a latent representation for which values
usyn

i ¼ ðusyn
i1 ; . . . ; usyn

ir Þ
0; i ¼ 1; . . . ;nsyn, often corresponding to the

states of hidden nodes in the deep network, can be obtained for each
synthetic observation. This latent representation is characterized by
a number of latent variables that is typically smaller than the num-
ber p of features (Fig. 1a).

We now briefly describe how the two specific deep generative
approaches that we will consider in the following, deep Boltzmann
machines (DBMs) and variational autoencoders (VAEs), fit into this
framework (for a visualization, see Supplementary Fig. S1).

DBMs are Markov random fields that consist of a visible layer
which contains variables that represent the states observed for the p
features in the n observations, and at least one latent layer contain-
ing at least one latent variable u. In our scenario, the features can
have two or more states and the frequency of states is Bernoulli or
Softmax distributed. Latent variables have two states whose fre-
quency is Bernoulli distributed. DBMs learn the joint distribution
P(x) of the training data x, using Gibbs sampling to infer the expect-
ation for the states of observed and latent variables unconditional
on the training data. DBMs are energy-based models. During train-
ing, the weights which connect observed and latent variables are set
to retrieve a low energy for frequently observed patterns.
Consequently, in a trained DBM, the states of the latent variables
are associated with patterns in the features, i.e. in the training data.
In our approach, we focus on the variables in the visible layer and
the variables in the highest hidden layer.

The objective in training VAEs is to retrieve a usually lower-
dimensional latent representation u, drawn from distribution P(u),
conditional on the training data x that emerges from the higher-
dimensional observed empirical distribution P(x). To facilitate
learning, a standard normal distribution (z) is used as a prior for
P(u). During training, the mean l and standard deviation r of the
normal distribution are learned. Usually a deep neural net, the en-
coder, is used to transform the training data, observed from P(x),
into the lower-dimensional space of P(u). Here, we dichotomize
samples drawn from P(u) at the median to retrieve binary, categoric-
al data. We model joint patterns between the latent variables in u
and the variables in the output layer, representing a transformation
of a sample from P(u) into the space of P(x).

2.2 Log-linear models
The aim in the following is to identify a subset containing q of the p
features that are jointly associated with the latent variables (Fig. 1a).
Specifically, joint patterns between the features in the synthetic data
xsyn

i ; i ¼ 1; . . . ;nsyn and their corresponding latent representation
usyn

i ; i ¼ 1; . . . ;nsyn, are investigated. We assume the states of the la-
tent variables and the features to be sampled from a discrete

Fig. 1. Extraction of patterns from omics data (a) and identification of the similarity

of these patterns (b). (a) Generative models learn low-dimensional latent representa-

tions (U) of high-dimensional categorical data (X) which in this example harbor

two subpopulations. These subpopulations differ in multivariate patterns (Pattern1

and Pattern2) in a set (Q) of three features. We sample synthetic data (Xsyn) and the

corresponding latent representations (Usyn) from trained models. We apply log-lin-

ear models to the synthetic data to infer the set Q of features in X which are jointly

correlated with the latent variables in U. (b) Having obtained Q (which contains the

features q1, q2 and q3 in this example) the dissimilarity of synthetic data, that differ

in these features is inferred. In detail, we compute the Jensen–Shannon divergence

between the distributions (P1, P2) of combinations of states of the here two latent

variables in U, obtained for the synthetic data with a common pattern in Q
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distribution. Consequently, we observe at least two levels (l) for all
variables/features. This implies that the features and the latent varia-
bles have to be on a binary or categorical scale. If values of latent
representations are continuous, they need to be categorized before-
hand. This applies to the VAE as used in our study since in the VAE,
the states of latent variables are drawn from a multivariate normal
distribution. We model the joint patterns between features and one
or many latent variables based on the frequency of the combinations
of states of the features and the latent variables in the synthetic data.
The resulting contingency table is then analyzed using log-linear
models.

We fit the log-linear models using a stepwise approach to build
up a subset, comprising q of the p features that are jointly associated
with the latent variables. Given a set of q� features that has already
been identified to be correlated with a latent variable u (omitting in-
dices for simplicity), the addition of the feature with index j to the
set is evaluated by the log-linear model

logðmlu ;l1 ...l�q ;lj Þ ¼ lþ kU
lu
þ k

Xð1Þ
l1
þ � � � þ k

Xðq�Þ
l�q
þ k

Xj

lj

þ � � �
þkUXð1Þ ���Xðq�Þ :

(1)

mlu ;l1 ...l�q ;lj indicates the expected frequency in the contingency table
for level lu of the latent variable, levels l1; . . . ; l�q of the features al-
ready in the set, and level lj of the feature that is a candidate for add-
ition. The parameter l specifies the baseline frequency, i.e. it
normalizes for the overall number of counts in the table. The param-
eters kU

lu
specify the main effects of the respective levels of the latent

variable, i.e. the marginal frequency for level lu of the latent vari-
able. k

Xð1Þ
l1

; . . . ; k
Xðq�Þ
l�q

and k
Xj

lj
specify main effects of the levels of fea-

tures, i.e. their marginal frequency in the table. kUXð1Þ ���Xðq�Þ

represents the highest-order interaction between the latent variable
and all features, except j. Lower-order interactions between the la-
tent variable and all features, except j are represented by � � �.

By comparing the fit of the above model to the full model, i.e. a
model that includes all interaction terms between the state of the la-
tent variable, all features already in the group and the change in the
candidate feature j, we can evaluate whether knowledge of the state
of the latent variable is needed to explain changes in the candidate
feature in the context of the group. In other words whether the la-
tent variable, the candidate and the already selected observed varia-
bles form joint patterns. Specifically, the difference in the G2

goodness-of-fit statistic between these two models is considered. If
there are several latent variables, the maximum of the differences is
used. This is calculated for all features not yet in the set, and the fea-
ture with the largest difference is added. Starting from a set of size
zero, this is repeated until a set of the desired size is reached.

If alternatively a significance test for each addition is desired, a
permutation approach could be used to obtain a null distribution,
where each feature is permuted separately to remove joint patterns.
For each permutation, the whole process described above, i.e. fitting
a generative model and log-linear modeling, would be performed, to
obtain a valid null distribution that does not overlook potential
overfitting in the analyses in the original data. The algorithm then
starts with the best pair of features in the set to initially improve
over the null distribution.

2.3 Low-dimensional latent representation of patterns
After having identified a set of q features that are particularly corre-
lated with the latent variables, it is first of interest to retrieve the
most frequent different combinations of discrete states observed for
the q features, i.e. different patterns. Since the synthetic data are cat-
egorical, either as directly obtained from the generative model, or
due to categorization, the most frequent patterns can be determined
by simply counting the number of synthetic samples, carrying a spe-
cific pattern. In addition, it will be of interest to infer whether differ-
ent patterns are in fact related to distinct subpopulations of samples
in the synthetic data obtained from a deep generative approach, as
this will point toward distinct subpopulations in the original data.

To investigate the relationship between synthetic data that are
grouped based on their pattern in the q features, a distance measure
is needed to infer the dissimilarity between these groups. For visual-
ization purposes, the distances might then be mapped onto a two-
dimensional space. Instead of determining dissimilarity at the fea-
ture level, we suggest using the latent representation, to extract what
the generative model considers as similar or as dissimilar (Fig. 1b).
Using the latent representations is beneficial because of usually
reduced dimensionality and generally improved linear separability.

As multiple samples will share a distinct pattern, there will be
several combinations of values for the latent variables for each pat-
tern, i.e. there is a distribution over the states of latent variables for
each pattern. We suggest quantifying the dissimilarity between the
distributions of latent variables corresponding to the patterns by the
Jensen–Shannon divergence

DJSðP1 k P2Þ ¼
1

2
DKLðP1 kMÞ þ 1

2
DKLðP2 kMÞ (2)

with

M ¼ 1

2
P1 þ P2Þ:ð (3)

P1 and P2 representing the frequencies of observed latent vari-
able configurations for two patterns and DKL denoting the
Kullback–Leibler divergence

DKLðP1 k P2Þ ¼
X
u2U

P1ðuÞ log
P1ðuÞ
P2ðuÞ

� �
: (4)

Here, u is an example of the observed configurations U of latent var-
iables, and P1ðuÞ and P2ðuÞ are the frequencies of the latent variable
pattern u in two populations of samples which differ in the pattern
in the q features extracted from the p features using the log-linear
models. From equations (3) and (4), we see that the Jensen–Shannon
divergence represents a symmetric version of the Kullback–Leibler
divergence.

Having obtained a matrix of dissimilarities between groups of
synthetic data carrying a common pattern, a low-dimensional repre-
sentation can be obtained by e.g. multidimensional scaling (Kruskal,
1964).

2.4 Training and evaluation of VAEs and DBMs
Our proposed method is intended to work with different deep gen-
erative architectures. We here demonstrate the usage with DBMs
and VAEs. Since the focus is on the development of a method which
extracts the structure learned by a generative approach, we aim to
keep the architectures as simple as possible. Thus, we use the typical
parameter settings for the two deep architectures. Since we are mod-
eling binary data, we use the sigmoid function as activation function
for the nodes modeling the observed variables. For the latent varia-
bles, we use the activation functions which were used in the original
publications. In the following, we describe the details of the models.
More details on the configurations used are shown in
Supplementary Tables S1–S5.

We train standard VAEs as described by Kingma and Welling
(2013) to model Bernoulli distributed data. The VAEs learn a latent
representation u containing 5–20 variables. We use a model archi-
tecture comprising one hidden layer in both the encoder and decoder
network, while the number of latent variables in both hidden layers
equals the number of features (Supplementary Fig. S1). Except for
the terminal layer of the decoder network, where the activations of
nodes are modeled to be Bernoulli distributed, we use the Tangens
hyperbolicus as activation function. Parameters are optimized using
the ADAM optimizer with a learning rate of 0.0001.

The DBMs used consist of visible and latent variables whose ac-
tivation is Bernoulli distributed, arranged in one visible and two hid-
den layers (Supplementary Fig. S1). The number of nodes in the first
hidden layer equals the number of modeled features, while we per-
form a reduction in the second hidden layer. These numbers were
selected based on recommendations by Hinton (2012). We train
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DBMs as described in Hess et al. (2017). In brief, we pursue a two-
step training procedure, where layerwise pretraining, serving to ini-
tialize the weights between two adjacent layers to meaningful val-
ues, is followed by jointly fine-tuning the weights, while allowing
for top-down feedback from deeper layers. For both steps, we use a
learning rate of 0.001.

For the single-cell gene expression data, we tune the number of
epochs for the VAE and the DBM training, which in case of the
DBM are partitioned into pretraining epochs and fine-tuning
epochs. Since the training of VAEs and DBMs relies on start values,
i.e. initializations, for the weights which are randomly set, we also
tune the start values of the model weights by evaluating ten different
initializations of the model weights for different training epochs. For
better comparability of the results from VAE and DBM, we tune the
number of optimal training epochs and initialization of model
parameters based on the distance between synthetic data and test
data as inferred through a multivariate measure of the similarity of
two distributions. The purpose here is to have an external metric
which can be easily evaluated for both architectures. Specifically, we
use the Cramér statistic (Baringhaus and Franz, 2004), calculated
based on the five principal components of the synthetic data and the
test data and which we aim to minimize.

VAEs and DBMs are implemented in Julia (Bezanson et al.,
2017), using the Flux package (Innes, 2018) for VAEs and the
BoltzmannMachines package (Lenz et al., 2019) for DBMs.

2.5 Processing of RNA-Seq data
We normalize RNA-Seq data for sequencing depth using DESeq
(Anders and Huber, 2010). We then dichotomize the expression
data at the median.

2.6 Annotating synthetic data by patterns
We infer the capability of the log-linear modeling approach to ex-
tract relevant patterns from the trained generative models by anno-
tating synthetic data sampled from the model with labels from
empirical observations (Supplementary Fig. S2). Using the log-linear
modeling approach, we extract the q relevant features as described
in Section 2.2. We then transfer the label (yj) of an empirical obser-
vation (xj) to a synthetic observation (xsyn

j ) sampled from the genera-
tive model based on the similarity in the extracted pattern in the q
variables. Specifically, we use a binary similarity criterion where the
label is only assigned in the case of a perfect match

xj;ð1;...;qÞ ¼ xsyn
j;ð1;...;qÞ: (5)

If there is no match, we randomly assign a label to the sampled
synthetic observation. We then visually and quantitatively examine
the distance between synthetic data carrying a specific label and the
empirical observation from which the label has been transferred.
Specifically, we investigate the first two principal components com-
puted for a joint dataset of standardized synthetic data and empiric-
al data. In our application, the empirical observations are gene
expression vectors obtained from single cells, while the labels indi-
cate the cell type. To quantitatively judge the quality of assigning
the samples to clusters, we use an internal clustering index, specific-
ally the Davies–Bouldin index (DBi) (Davies and Bouldin, 1979).
The DBi is defined as the ratio of the spread within a cluster and the
distance between clusters. Consequently, a lower DBi indicates a
better clustering. We compute the DBi using the R package
‘clusterCrit’ (Desgraupes, 2018).

2.7 Non-negative matrix factorization
For comparison with the log-linear modeling approach, we extract
the most information carrying variables with non-negative matrix
factorization (NMF) (Lee and Seung, 1999). NMF factorizes a non-
negative matrix V, where n observations are arranged in columns
and p variables are arranged in rows, into two non-negative matrices
W and H. W has p rows and k columns and H has k rows and n col-
umns. k indicates the number of latent factors to be learnt.
Specifically, we aim at minimizing the error of reconstructing V by

the product of W and H. By selecting k so that
k � pþ k � n < n � p, data compression can be achieved. By requir-
ing both the W and the H matrix to contain only non-negative
entries, we achieve sparseness of W, meaning that the observed vari-
ables are not densely connected with the latent factors. Since W indi-
cates, how strongly observed variables, here genes, are connected
with the latent factors, i.e. how important they are for the recon-
struction, we choose the genes with the highest entries in the W ma-
trix. Specifically, for each row in W, we select the highest loading of
the respective gene on any of the k learnt latent factors, and then
pick the rows, i.e. the genes, with the highest maximum loadings.
There are two main versions of the NMF algorithm which aim at
minimizing two different objectives (Lee and Seung, 2001). One
aims at minimizing the Euclidean distance between the original data
and the reconstructed version, while the other aims at minimizing
the Kullback–Leibler divergence. In fact, we use the algorithm,
based on the Kullback–Leibler divergence, as described in Brunet
et al. (2004). Compared to the algorithm that builds on the
Euclidean distance, it has been demonstrated to deliver better per-
formance with gene expression data (Brunet et al., 2004). Since
NMF is iteratively fit, requiring (random) start values, we evaluate
ten different random initializations. We also vary the number of la-
tent factors (k) from 1 to 10. From the resulting 100 factorizations,
we then select the best factorization based on the DBi. We perform
the factorizations with the R implementation NMF (Gaujoux and
Seoighe, 2010).

3 Applications

We demonstrate the ability of our approach to uncover structure in
omics data learned by generative models such as VAEs or DBMs
based on artificial and real single-cell gene expression data. We use
the aforementioned log-linear models to (i) select features, represent-
ing the essential signal in the data, (ii) identify subpopulations in the
data, characterized by specific patterns in the selected features and
(iii) investigate the relation of the identified subpopulations based
on their low-dimensional latent representations. We show how the
extraction and investigation of patterns can guide the tuning of
hyperparameters such as the number of training epochs or can aid in
understanding the structure of real high-dimensional gene expres-
sion data.

3.1 Artificial data
3.1.1 Simulation design

The structure of our artificial dataset is inspired by single-cell gene
expression data characterizing different cell types or distinct stages
of a cell during a differentiation process. Some sets of genes are ex-
clusively expressed within a cell type, while some genes are highly
expressed across different cell types. In the following, we will speak
of ‘genes’ when we refer to the features.

Specifically, we create a stair-like structure, where the hypothet-
ical genes characterizing a specific cell type are arranged in blocks
with some overlap between genes. These overlapping genes repre-
sent genes with high expression shared between two cell types.
Interpreting the data structure as a representation of a cell differenti-
ation process, each stage is thus characterized by the abundance of
specific genes. The overlap of some genes between one stage and the
following stage models a smooth transition between one stage in cell
development and the next. In our dataset, we discriminate between
10 distinct cell types or stages based on the expression of 32 genes:
each cell type is characterized by high expression of 5 genes and the
sets of genes overlap by 2 genes. For instance, the first 5 genes are
highly expressed in the first cell type, while genes 4 and 5 are also
highly expressed in the second cell type, together with genes 6, 7 and
8. In the third cell type, genes 7 and 8 are still highly expressed, as
well as genes 9, 10 and 11, and so on, resulting in a stair-like struc-
ture (Fig. 2).

We model gene expression as Bernoulli distributed binary varia-
bles. Among the genes generally highly expressed within a cell stage,
the presence of a gene in the observations belonging to that cell type
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is encoded as 1 drawn from a Bernoulli distribution with probability
P¼0.6 and absence is encoded as 0. To account for technical and
biological noise, we model a gene to be present in any other cell
stage with probability 0.1. Furthermore, we add 18 genes which
purely represent noise and are again modeled to be present accord-
ing to a Bernoulli distribution with P¼0.1.

3.1.2 Feature and pattern extraction

In this section, we demonstrate the capability of the log-linear mod-
eling approach to extract relevant data features and the correspond-
ing typical value combinations of those features over the course of
training epochs. For demonstration purposes, we carry out this task
with a VAE, but we have found the results to also generalize to the
training process of a DBM.

Following the modeling scheme described earlier, we create
1000 artificial observations, train a VAE for 1000 epochs and apply
log-linear modeling every 5 training epochs on a set of 10 000 syn-
thetic data samples to build a set of 7 genes most strongly correlated
with the latent states. We then extract the 10 most frequent patterns
exhibited by those genes and investigate how the extracted patterns
vary over the course of training (Fig. 3).

At the beginning of the training process, mostly noise genes are
included in the set of selected genes, indicating that the VAE has not
yet learned to identify the genes that characterize the specific cell
stages (and potentially overlaps). After about 20 training epochs,
however, the genes from within a cell stage, specifically from the
overlaps become the features most strongly correlated with the la-
tent variables, i.e. the VAE builds its latent representation of the
data such that it focuses specifically on the genes governing the dif-
ferentiation process. After around 30 epochs, the VAE relies mostly,
and after 75 epochs almost exclusively, on overlap genes. This indi-
cates that the VAE identifies the essential structure in the data, since
overlap genes occur more frequently in the data than the genes ex-
clusively abundant in one cell type. Often, the two genes that jointly
form an overlap tend to be selected in pairs.

As the VAE learns to focus on the overlap genes, the stair-like
structure of the input data becomes more clearly visible in the most
frequently generated patterns (see the patterns obtained at epoch 75
in Fig. 3). This implies that the VAE gradually learns the typical
value combinations of the overlap genes found in the training data.
There, only genes from one overlap or two neighboring overlaps are
highly expressed within a simulated cell stage while genes from the
other overlaps are weakly expressed. Each of the most frequent pat-
terns thus describes the state of genes characteristic for one or two
specific cell stages: either one or two genes from one overlap or two
genes from two neighboring overlaps are selected.

The aforementioned behavior is robust to the initialization of the
model weights although the sets of genes, corresponding patterns
and the number of epochs after which stable states are observed

during the training process might vary. This suggests that by our
modeling approach, we can uncover local optima of the loss func-
tion and to some extent also assess training variability. Finally, by
looking at how selected genes and their value patterns change over
time, we gain insight into the development of the VAE internal rep-
resentation of the data and can monitor the training process. In par-
ticular, these analyses allow the researcher to inspect the quality of
the model fit over different training epochs.

3.1.3 Dissimilarity of uncovered patterns

In the previous section, we identified the genes which represent the
essential structure in the data and their typical patterns, representing
the subpopulations, i.e. different cell stages or types found in the
data. Here, we use the latent representation of frequent patterns
derived over the course of training, i.e. at different states in the train-
ing process, to visualize how the dissimilarity of the identified pat-
terns changes as training progresses. On the one hand, this allows
one to monitor the training process by investigating the concordance
of observed genes with their latent representations, e.g. for tuning
the number of training epochs. On the other hand, it provides a ro-
bust distance measure to study the relation between the identified
subpopulations.

Here, we use the same stair-like structure as before, i.e. simulat-
ing expression of 32 genes discriminating 10 cell stages, but we in-
crease the number of noise genes to 168 and the number of
observations to 5000. Consequently, we model the expression of
200 genes in 5000 simulated cells.

On this dataset, we train a DBM for 2, 20, 50, 100 and 200
epochs, respectively, and at each state select 4 features. To compare
these five states, we have to make sure that all features, selected at
the five states, are considered. Consequently we form the union of
the features selected at the five states. In this example, this results in
a total of 11 features that are further investigated. We then extract
the 10 most frequent patterns observed in the 11 features for each
state, i.e. each investigated training epoch. To compare the distance
of the most frequent patterns at all five states during training, we
again form the union of the, in this example, five sets of the most
frequently observed patterns obtained at a specific state, resulting in
a total of 12 patterns (a scheme of how unions of features and pat-
terns are formed can be found in the Supplementary Fig. S3). These
12 binary patterns comprise 11 selected genes; in each pattern, there
is at most one gene with value 1 while all other genes have value 0.
For each of the investigated epochs, i.e. different model states, we

Fig. 2. Examples of simulated single cell expression data. The values of the first 32

genes characterize 10 different cell stages (black boxes), where each stage is charac-

terized by high expression (dark color) of 5 genes while subsequent stages overlap

(green) by 2 genes. The black boxes encircle the characterizing genes of one cell

stage. For example, observations 1–5 represent one cell type that is characterized by

high expression of genes 1–5
Fig. 3. Features selected by the VAE over the course of training and patterns in the

selected features. The 10 most frequent patterns in the selected 7 features after train-

ing for a given number of epochs are shown. Orange ¼ genes characterizing the cell

stages, green ¼ genes expressed in two adjacent cell stages. Bright color ¼ feature

not selected, medium color ¼ feature selected, value ‘0’, dark color ¼ feature

selected, value ‘1’
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then obtain a two-dimensional representation of the common pat-
terns as described earlier (Fig. 4).

At the beginning of training, all patterns are clustered together,
indicating that the DBM has not yet learned a latent representation
of the dataset characteristics. As the training process continues,
however, the patterns become arranged in a more structured way.
Specifically, the patterns form a spiral-like structure after 20 epochs.
The spiral starts at the center of the plot with the pattern consisting
only of 0 s. As we trace the patterns with a value 1 generated in the
first, second, third features and so on, we observe their representa-
tions spiraling outward in a counter-clockwise direction from the
center. Moving outward along the spiral thus reflects the gradual
change in highly expressed genes from the first to the last gene in the
selected set. At higher epochs, we observe a similar spiral-like struc-
ture, while the rotation of the spiral changes from counter-clockwise
to clockwise (epoch 50) and back (epoch 200, shown in the supple-
mentary Jupyter notebook).

Repeating the entire process 100 times to confirm the robustness
of our method and findings, we stably observed the aforemenioned
pattern representation in a circular or spiral-like shape after only 5–
10 training epochs, and then maintained in an overall stable way, as
is shown in Figure 4. We also frequently observe the aforementioned
change in rotation and moderate shifts in the arrangements of pat-
terns despite the general structure of the representation being stably
maintained. Taken together, the extraction of patterns and further
inferring the dissimilarity between patterns based on their latent rep-
resentations allows us to monitor how the DBM learns the inherent
characteristics of the input data. This information can e.g. be used
to tune the number of epochs in the absence of an external criterion.
In addition, the visualization of the internal representation of the
DBM in two-dimensional space also serves to assess its modifica-
tions and overall stability during the course of training.

3.1.4 Scalability

To investigate the performance of the method with respect to the
number of features to be modeled, we increased the number of noise
variables from 168 to 368 and 968 resulting in additional datasets
with 500 and 1000 features and 5000 training examples. After train-
ing a DBM on these larger datasets, we observed that we could still
extract relevant structure, reflected in the selection of a large num-
ber of information carrying variables (Supplementary Figs S4 and
S5). However, compared with the smaller number of features, the
method selected a greater number of (up to 4) noise variables.

3.1.5 Runtime

We benchmarked the speed of our implementation in extracting var-
iables from synthetic data. We varied the total amount of features in
the data and the number of features to be selected by the log-linear

models. Taken together, the method scales better than linearly with
the number of input variables and approximately exponentially with
the number of information carrying variables to be selected
(Supplementary Table S6).

3.2 Single-cell gene expression data
As the log-linear models were found to be capable of extracting pat-
terns that characterize distinct subpopulations in simulated data, we
test here whether the approach can extract biologically meaningful
signals from real single-cell RNA-Seq data. To answer this question,
we investigate expression in 1525 single cells extracted from the cor-
tex of mice (Tasic et al., 2016) (Supplementary Fig. S6).

These cells are characterized by the differential abundance of
105 cell type-specific marker genes based on which different sub-
types of neurons and non-neural cells can be differentiated. Our
question is whether our approach can extract the genes from the
joint set of marker genes which best discriminate between the cell
types. In analogy to the simulation experiment, since we removed
the non-neural cells prior to training, the non-neural marker genes
serve as noise variables which should not be selected by a well-
trained deep generative model. Before training, we dichotomized the
expression data at the median.

3.2.1 Selected marker genes

We train VAEs and DBMs on 63.2% of the expression data
described earlier and evaluate the generative models on the remain-
der of the data for selecting the optimal number of epochs as
described in ‘Training and evaluation of VAEs and DBMs’. We use
the same architecture as described in Section 2, but here the encoder
network of the VAE comprises two hidden layers with 105 nodes in
the first and 52 nodes in the second layer (see Supplementary Tables
S3 and S4 for the architectures of VAEs and DBMs, respectively).

After training the DBMs and VAEs until convergence, we use
log-linear models to select the features, i.e. the genes representing
the essential structure in the data that has been learned by the
model. For both the VAE and DBM, we allow the approach to select
12 genes based on 10 000 examples of synthetic data sampled from
the generative model for observed and the associated latent varia-
bles. Eight of the 12 selected genes, namely Calb2, Car4, Cdh13,
Penk, Pvalb, Rorb, Sst and Vip are selected based on generated data
from both the VAE and DBM, indicating that both approaches have
learned similar structure in the data. We further monitor the selec-
tion of genes over the course of training in the VAE and the DBM
(Fig. 5).

During the first epochs, a large proportion of the selected genes
are non-neural marker genes. This indicates that the VAE and DBM
had not learned the structure in the data yet, since there are no non-
neural cells in the training data and correspondingly the expression
of these genes should follow no pattern. From epoch 20 onwards,
mostly GABAergic and Glutamatergic marker genes are selected. Of
those, the genes Pvalb, Sst and Vip are of interest since their

Fig. 4. Dissimilarity of frequent patterns over the course of DBM training. Each plot

corresponds to the states of the DBM after being trained for the specified number of

epochs. Each object corresponds to a pattern observed in the selected 11 genes.

Dashes indicate a 0 and vertical bars a 1 observed for a selected feature. Extracted

patterns above the plots are numbered according to the objects depicted on the dis-

similarity plots. Bright color ¼ feature not selected, medium color ¼ feature

selected, value ‘0’, dark color ¼ feature selected, value ‘1’

Fig. 5. Genes, extracted during the training of VAEs and DBMs. Genes were selected

based on synthetic observations and the corresponding latent representation drawn

from trained VAEs and DBMs using log-linear models. Each square represents a

gene (horizontal) at a specific epoch (vertical). Squares are color coded according to

the gene class. Bright colors indicate non-selected genes and dark colors indicate

selected genes. The genes Pvalb, Sst and Vip are highlighted. Due to the different

procedures used for training VAEs and DBMs, absolute numbers of training epochs

are not directly comparable between both architectures
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expression is an important marker which is known to discriminate
three large subgroups of GABAergic neurons. This indicates that
both models learned the essential structure of the data.

3.2.2 Relation of patterns in the selected genes to Sub populations in

the data

To test whether patterns in the selected genes allow one to discrim-
inate between sub populations in the data, we annotate generated
synthetic data with the cell type label of empirically observed ex-
pression data based on the pattern in the selected genes (see Section
2.6 and Supplementary Fig. S2).

After annotating the synthetic data with labels from the empiric-
ally observed data, we investigate whether synthetic data, annotated
with a given cell type label, are similar overall to the empirical
observations of cell types from which the label has been transferred
(Fig. 6). By visually inspecting the similarity, we observe that the
synthetic data annotated with a certain label is in fact found in close
proximity to cells of a certain type from which the label has been
transferred.

We also observe that we can discriminate between a larger num-
ber of different cell types, when increasing the number of selected
genes used for annotation (Fig. 6, from ‘4 genes’ to ‘12 genes’). This
indicates that all selected genes are informative for the discrimin-
ation between cell types. Overall these results indicate, that the log-
linear approach was capable of extracting those genes which con-
tribute most to the structure in the data since pattern in the genes
allow for discriminating between different cell types.

To confirm that the annotation of synthetic data is robust to
variation in the selected genes, i.e. that the data is less well anno-
tated using a random selection of marker genes, we visually investi-
gate the sample labeling based on sets of randomly selected genes. In
addition, we investigate the clustering performance using an internal
clustering evaluation metric, specifically the DBi. For 100 randomly
selected sets of 8 genes, we always observed worse concordance be-
tween synthetic data carrying a specific label and the cell type from
which the label has been transferred as compared with the genes
selected by the log-linear models. Correspondingly, the DBi was al-
ways higher for the random subsets, indicating worse clustering.
This applied to both the VAE and the DBM (examples shown in
Supplementary Figs S7 and S8).

3.2.3 Robustness of obtained patterns against dichotomization and

model initialization

We dichotomized the quantitative gene expression data at the me-
dian before training the deep generative models. Thus our results

might be affected by the cut-point used for dichotomization.
Consequently, using DBMs as an example, we tested how different
cut-points affect performance. We split the training data at cut-
points ranging from the first to the ninth decile (Supplementary Fig.
S9) and for each cut-point trained 10 DBMs with different random
initializations of the parameters. Based on samples from the DBMs,
we then extracted the essential variables using log-linear models and
inspected the clustering. We obtained generally similar clustering
results at each cut-point as revealed by visual inspection
(Supplementary Fig. S10). In terms of the DBi, the best results were
obtained when splitting at the third quantile, while the median split
resulted in the worst performance (Supplementary Table S7).

3.2.4 Comparison with NMF

To illustrate the potential benefit of using deep models such as
DBMs in combination with log-linear models to extract the essential
structure from omics data such as single-cell RNA-Seq data and to
obtain a performance reference, we also used an established, non-
deep technique, specifically NMF. NMF has been demonstrated to
be able to extract the information carrying genes from RNA-Seq
data (Zhu et al., 2017). Deep variants of NMF have been proposed
as well, e.g. in Yu et al. (2018). As we did not want to perform an
extensive comparison study, we chose a rather straightforward non-
deep version of NMF, as used in Brunet et al. (2004). Consequently,
this comparison is not meant as a benchmarking with state-of-the-
art approaches, but provides a performance context for our ap-
proach by showing results from an established technique. We learn-
ed latent factors using NMF on the training dataset also used for
DBM training. We then selected the 12 genes which are most strong-
ly connected with the latent factors learned by NMF.

Using NMF, we were able to extract nine of the genes also
selected by log-linear models applied to synthetic data sampled from
DBMs, namely Calb2, Car4, Cdh13, Parm1, Penk, Pvalb, Rorb, Sst
and Vip. Investigating the clustering of test data based on the 12
genes, we observed a more interpretable result for the genes
extracted by the DBM and log-linear models [compare
Supplementary Figures S11 (NMF) and 12 (DBM)]. This is essential-
ly due to the genes Gria3 and Enpp2, selected by NMF but not by
DBMs, which contribute to the overall structure but do not form
joint patterns with the other selected genes. By contrast, Bcl6 and
Mybpc1 selected by the DBM and log-linear models but not by
NMF, form joint patterns with Pvalb and Parm1. In addition, the
genes selected by NMF less accurately reflect the distance between
the cell types. When comparing the distance between all cells
belonging to the two major groups of cell types, specifically
GABAergic and glutamatergic cells, we observe that the genes
selected by the DBM and log-linear models reflect the expected simi-
larity of cell types slightly better (Supplementary Fig. S13). Here,
GABAergic and glutamatergic cells can be better separated when
using the genes selected by DBMs and the log-linear models. The ad-
vantage of our proposal over NMF is found to be even more pro-
nounced when investigating genes with a less sparse expression
pattern, specifically 81 neurotransmitter genes (Supplementary Fig.
S14). Here, the overlap between the genes selected by NMF and
DBM is smaller (3 of 8 selected genes). This large difference is
reflected in a considerably better clustering of glutamatergic and
GABAergic cell types when considering the genes selected by DBMs
and log-linear models (Supplementary Figs S15, S16 and S17).

4 Discussion

In this article, we demonstrate how log-linear models can be used to
identify the essential structure in omics data, learned by generative
deep models. By investigating the correlation between observed and
latent variables, patterns in the features are identified that contribute
most to the overall structure in the data. We also showed that the
distribution of the states of latent variables can be used to estimate
the similarity between synthetic data carrying a specific pattern.
Using artificial and real gene expression data, we showed how these
methods can be employed to ‘learn what the model has learned’

Fig. 6. Identification of cell populations based on extracted genes. Synthetic data

sampled from a VAE (upper row) or a DBM (lower row) are annotated with the

labels of empirically observed expression data based on pattern matching. The pat-

terns are made up from the expression values observed in 4–12 genes, selected using

log-linear models. Synthetic data drawn from each generative model, as well as ex-

pression data are jointly standardized, and principal components (PC) are computed

for the joint set. Shown are the first two PCs for the empirical expression data (left)

and 10, 000 samples (right), annotated with labels from the empirical data. Colors

refer to the cell type label. For both the VAE and the DBM, the same empirical

observations are shown. Purple ¼ Vip cells, yellow ¼ Sst cells, red ¼ Pvalb cells,

blue ¼ L4 cells, green ¼ L5b cells and gray ¼ other cells
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over the course of training, i.e. monitoring the training process, or
to compare different generative models, such as DBMs and VAEs.

Using the real single-cell gene expression data, we confirmed
that our approach can in fact can uncover biologically relevant sig-
nals, such as essential marker genes such as Vip, Sst and Pvalb which
allow for discriminating between major subpopulations of cell types
[see Tasic et al. (2016) for more information]. This means that our
approach allows for the identification of multivariate patterns in
high-dimensional data which characterize subpopulations in the
data. This, in turn, allows for an interpretation of the differentiation
of subpopulations in a holistic way, by studying the combinations of
genes that are characteristic of different subpopulations. Compared
with traditional unsupervised methods such as NMF, this property
allows for the extraction of features that may better reflect the
underlying biology. Here, we provided some context with respect to
performance by showing results from a shallow, non-deep NMF ap-
proach as used in Brunet et al. (2004). Since there are a multitude of
deep NMF approaches (e.g. Trigeorgis et al., 2017; Yu et al., 2018),
deep versions of NMF might have performed significantly better in
this comparison. However, a comprehensive comparison with such
techniques would have been beyond the scope of the present paper.
The variant of NMF considered here also has already been investi-
gated with RNA-Seq data (Zhu et al., 2017). Using Kullback–
Leibler divergence instead of Euclidian distance, we also followed
advice from the literature to improve the performance of NMF
(Brunet et al., 2004).

We demonstrated that our approach can be combined with dif-
ferent generative architectures such as VAEs and DBMs. Since we
use a rather simple model that does not rely on additional hyper-
parameters or random initializations, the method leads to robust
results.

4.1 Generalizations
Here, we focused on gene expression data but the approach is in
principle applicable to any kind of categorical omics data or data
that can be categorized without sacrificing a lot of information. We
investigated only standard VAEs and DBMs but our method is in
principle applicable to every deep generative model which allows
users to draw synthetic data from the learned joint distribution of la-
tent variables and features.

4.2 Limitations
Despite the promising results, there might be some limitations.

First, our method requires the synthetic observations and the cor-
responding latent representations to be categorical, which here for
the single-cell gene expression data and the latent variables of the
VAE is achieved by dichotomization. Naturally, this implies some
loss of information. However, we argue that modeling categorical
data has the huge benefit that potentially very complex joint distri-
butions of continuous random variables do not have to be modeled
by an external model, but rather somewhat less complex distribu-
tions can be modeled in high-dimensional contingency tables.
Without such a reduction in complexity, the external model would
potentially have to be as complex and therefore as opaque as the
generative model. Indeed, the results from the single-cell gene ex-
pression data indicate that our approach was capable of extracting
multivariate patterns that represent essential structure in the data.
We also showed that the results are robust to the cut-point used for
dichotomization. Additionally, dichotomizing the continuous latent
representations of the VAE was unlikely to have resulted in a large
loss of information since forming several categories of the normally
distributed values of the latent variables instead of dichotomization
did not improve the performance of the VAE. This supports our hy-
pothesis that the reduction in complexity allowed stable and mean-
ingful groups of features and patterns to be obtained, while
compensating for the information loss due to dichotomization.

One also might argue that in our applications, we chose arbitrary
numbers of features to be selected in the stepwise fit of the log-linear
models. Consequently, it might not be guaranteed that meaningful
features are selected. However, in both applications, we observed

that all selected features contributed to the interpretability. In the
single-cell application, for instance, we observed, that increasing the
number of selected genes led to better capturing the diversity of cells
(Fig. 6), indicating that all selected genes indeed contributed to the
essential structure in the data. We also think that this behavior will
generalize to other datasets since we aim to extract compact pat-
terns, comprising about 10 features. Given the high number of fea-
tures in high-dimensional data, one can assume that there would
hardly ever be a situation where less than 10 features contribute to
the structure, except if something has gone wrong in the experiment.
However, if an objective criterion for feature selection is desired, a
permutation-based P-value could be considered as described in
Section 2.

Modeling large contingency tables with log-linear models can be
time consuming when more than 10 features are intended to be
selected, i.e. the resulting contingency table is at least 11-dimension-
al. However, this time can be reduced by parallel computing. In add-
ition, being able to investigate joint patterns in 8–12 variables was
sufficient in all investigated applications to infer a substantial
amount of structure in the data, and larger structures cannot reason-
ably be expected to be identified given a limited number of observa-
tions. In situations with a high amount of sparsity in the data, e.g. a
high number of genes that are exclusively expressed in a small num-
ber of samples, multiple deep generative models might be trained on
partitions of the data, as described in Hess et al. (2017). Log-linear
models would then be applied to each partition, and for each parti-
tion, the essential information-carrying variables would be
extracted.

Despite the insight into the training process our method can pro-
vide, we strongly recommend to combine it with an external evalu-
ation criterion such as the log-likelihood. This step is important if
no ground truth is available, which was not the case in our applica-
tions. If no ground truth is available, using an external evaluation
criterion can help to avoid, extracting patterns from an insufficiently
trained model.

5 Conclusion

We propose a method to extract interpretable patterns from genera-
tive deep models, that represent the essential structure learned by
the model. These patterns are especially valuable for better under-
standing complex omics data. Using real gene expression data, we
demonstrate, that the approach can learn the essential, biologically
meaningful, patterns in the data. Taken together, our method allows
for an easy inspection of what a generative model has learned and is
robust to the generative architecture selected.
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