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Gestational diabetes mellitus (GDM) refers to the condition which shows abnormal glucose metabolism that occurs during
pregnancy, while normal glucose metabolism before pregnancy. In the present study, a novel analytical procedure was used to
explore the key molecule of gestational diabetes mellitus. First, the weighted pathway model was carried out subsequently to
eliminate the gene-overlapping effects among pathways. Second, we assessed the enriched pathways by a combination of Fisher’s
t-test and the Mann–Whitney U test. We carried out the functional principal component analysis by estimating F values of genes
to identify the hub genes in the enriched pathways. Results showed that a total of 4 differential pathways were enriched. *e key
pathway was considered as the insulin secretion pathway. F values of each gene in the key pathway were calculated. *ree hub
molecules were identified as hub differentially methylated genes, namely, CAMK2B, ADCYAP1, and KCNN2. In addition, by
further comparing the gene expression data in a validation cohort, one key molecule was obtained, ADCYAP1. *erefore,
ADCYAP1 may serve as a potential target for the treatment of GDM.

1. Introduction

Gestational diabetes mellitus (GDM) is the most common
medical complication of pregnancy, characterized by glucose
intolerance which did not occur before pregnancy but be-
comes clinically apparent in the late stage of fetation [1].
Glucose metabolism in most GDM patients returns to
normal after delivery, but there is an increased chance of
developing type 2 diabetes, metabolic syndrome, and ce-
rebrovascular disease in the future [2]. High blood sugar in
the womb environment is also very unfavorable to the fetus,
increasing the risk of macrosomia and premature delivery
and abortion rates, fetal growth restriction (FGR), confer-
ring a predisposition for obesity, neonatal respiratory dis-
tress syndrome, cardiovascular complications, and neonatal
hypoglycemia [1].*e complication caused by GDM is more
complicated and harmful to both mothers and their child.

In view of the serious consequences of GDM, more and
more researchers are committed to the study of the dynamic
changes in pathogenesis andmolecular mechanism of GDM.

*e occurrence of GDM is related to the formation of insulin
resistance in patients. It has been reported that the placenta
secretes large amounts of anti-insulin hormones during
pregnancy [3]. Inflammatory factors such as C-reactive
protein, tumor necrosis factor, serum proteins, interleukin,
and other chronic inflammatory reactions were involved in
the occurrence of GDM [4, 5]. Analysis of gene methylation
data could help us to reveal the relationship between
methylation and disease [6]. Epigenome analyses showed
that the occurrence of GDM is closely related to changes in
gene methylation and expression, especially in the human
leukocyte antigens [1]. Several recent reports have described
that gene methylation and its expression profile are altered
in GDM [7–9]. Research studies showed that distinctive
high-level expression changes of genes are associated with
their lower promoter methylation prior to the onset of GDM
[8]. Although associations between GDM and changes to the
epigenomic and genomic profiles for genes have been
studied, the molecular landscape changes for pathway level
during the GDM are still substantially unknown. It has been
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elucidated recently that activation of mammalian target of
rapamycin (mTOR) pathway upregulated functions of in-
sulin secretion and pancreatic β-cells proliferation. Diverse
regulation of the mTOR pathway is involved in functions of
pancreatic β-cells as well as the development of the obstetric
complications studied [10].

Currently, researchers use a dynamically modified
pipeline, named FUNNEL-GSEA, to analyze the biological
mechanisms of gene sets. *is kind of model combined the
functional principal component analysis and an elastic net
regression model [11, 12]. Different from the classic re-
gression analysis, which is a predictive modeling technique
that studies the relationship between dependent and in-
dependent variables, those techniques were often used for
both predictive analysis and causal inference among vari-
ables [13]. *ere are two advances in the methods currently
available. First, designed comparisons or regression analyses
were not only applied to the comparison between control
and experimental groups but also effectively exploited in-
dividual information in the group of transcriptomic mea-
surements. *erefore, in this model, one could assess the
differences in gene changes among different individuals or
time points. Second, it overcomes the problem that over-
lapping genes, which refers to genes that exist in multiple
pathways, play multiple roles in hypothesis testing, where
the weight coefficients are overestimated [14].

In our research, we first applied the preweight pathway
model to find the enriched signaling pathways of GDMusing
DNA methylation profiles. Second, we used functional
principal component analysis (FPCA) to identify hub genes
in the significantly changed pathways. Finally, the gene
expression of key molecular pathways in GDM was further
tested in an independent cohort.

2. Methods

2.1. Data Recruitment and Preprocess. DNA methylation
data for GDM were deposited in the Gene Expression
Omnibus database at GSE70453. A total of 82 sample data
were divided into two groups, namely, cases with gestational
diabetes and controls without gestational diabetes. *e
GDM cases contained 41 samples (GDM), and the matched
pregnancies (control) contained 41 samples.

A total of 10 GDM patients’ tissues and 10 age- and body
mass index-matched normal tissues for further validation
were obtained from the Department of Obstetrics, First
People’s Hospital of Jining between June 2016 and June 2017.
*e decidua basalis placental samplingmethods were used as
Binder et al. [1]. *e umbilical cord was immediately frozen
in liquid nitrogen and stored at − 80°C after delivery. *is
study was reviewed and approved by the Ethics Committee
of First People’s Hospital of Jining (Shandong, China).

2.2. Screening for Differentially Methylated Genes. Microarray
data contain 473,864 CpG of methylation sites. CpG sites
were eliminated when they met the following three types of
probes: (1) distance from CpG to single-nucleotide poly-
morphism (SNP) is less than or equal to 2; (2)

minimum equipotential frequency (MAF) less than 0.05;
and (3) cross-hybridized probes and probes on sex chro-
mosomes. A total of 426,693 CpGs were kept for further
study. In this paper, β values represented percentage
methylation changes ranging between 0 and 1. Mean β
values of GDM and normal population were calculated,
respectively. We took the mean value of all the related
CpGs as the methylation level of a gene since differentially
methylated probes may functionally implicate more distal
genes. Differentially methylated CpGs were identified at the
threshold of p< 0.01 and then kept for further study.

2.3. Estimating the Weights of Genes in Each Pathway.
Genes that present in multiple pathways case the “over-
lapping problems” which were often overestimated in the
enrichment analysis [13]. We basically used the FUNNEL-
GSEA model with some modifications to deal with our
methylation data [15, 16]. We used the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway as our database [17].
*e weights of the overlapping genes can be obtained by

wi,k �
1

􏽐k∈ki
βk

i

, (1)

where ki is all the pathways which contain gene k. β is the
vector of gene coefficients, which is set as 1 here. *erefore,
the weights of the overlapped genes would be estimated. *e
model above would decompose an overlapping gene be-
tween gene sets and eliminate the effects of overlapping
genes [14].

2.4. Assessment of Significant Enriched Pathways. Pathway
analysis was used to find out significant pathways of the
GDM. In this study, Fisher’s exact test and the Mann–
Whitney U (MWU) test were carried out to select enriched
pathways. *e Mann–Whitney U (MWU) test is a rank-
based nonparametric test that usually is used in a com-
petitive gene set enrichment analysis.*eMWU test utilized
the gene weight value to test whether the weight of this gene
is significantly greater than other genes of the differential
pathway (background genes) [18]. Combined with Fisher’s
exact test, the final p value was calculated as

Pi �
������������
PMWU × PFisher

2
􏽰

, (2)

where Pi is the final p value of a pathway i, while PMWU and
PFisher represent the p values calculated from the MWU test
and Fisher’s exact test, respectively. *e list of differential
methylated genes was assessed as gene list, while the whole
genome was set as the background. Pathways with p< 0.05
and gene count >1 were extracted and were considered as
enriched pathways.

2.5. Estimating the F-Statistics of Genes in the Enriched
Pathways Using the FPCA Model. In this model, each gene
gets an F value [14]. *e mean methylation of each gene is
subtracted, and FPCA is adopted across all the centered
methylation values. Each gene methylation value is calcu-
lated according to the following functions:
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􏽣Xi (t) � 􏽢μi + 􏽘
L

l�1

􏽣ξil
􏽣Φl(t). (3)

In the above formula, 􏽣ξil is the FPC score which could
quantify how much 􏽣Xi (t) can be explained by 􏽣Φl(t). 􏽢μi

represents the temporal sample average expression, and
􏽣Φl(t) represents the lth eigenfunction.

We net use functional F-statistics to summarize the gene
pattern information for each gene.

Fi �
RSS0i − RSS1i
RSS1i + δ

, (4)

where RSS0i is the residual sum of squares of null hypotheses,
RSS1i represents the residual sum of squares of alternative
hypotheses, δ could be considered as a “signal-to-noise”
ratio, and Fi revealed the importance of genes [19]. Genes
with higher F value indicate higher importance.

2.6. Identification of Gene Expression of Hub Genes Using
Fresh-Frozen Umbilical Cord Tissue by Reverse Transcription-
Quantitative Polymerase Chain Reaction (RT-qPCR).
Total RNA was extracted from cells or tissues using TRIzol
(Invitrogen; *ermo Fisher Scientific, Inc., Waltham, MA,
USA). cDNA synthesis was performed at 37°C for 15min
and then 85°C for 5 sec using reverse transcriptase (Applied
Biosystems; *ermo Fisher Scientific, Inc.) following the
manufacturer protocol. qPCR was conducted with the ABI
7500 system (Applied Biosystems;*ermo Fisher Scientific,
Inc.) using SYBR-Green (Takara Biotechnology Co., Ltd.,
Jinan, China). PCR was performed for 25 cycles of 10 sec at
98°C, 10 sec at 55°C, and 20 sec at 72°C. *e primer se-
quences used were as follows: CAMK2B: forward, 5′-
TACGAGGATATTGGCAAGGG-3′ and reverse, 5′-GCT
TCT GGT GAT AGT GTG C-3′; ADCYAP1: forward, 5′-
ATC CTT AAC GAG GCC TAC C-3′ and reverse, 5′-CAT
TTG TTT CCG GTAGCGG-3′; KCNN2: forward, 5′-CCA
GGA ACT GTA CTC TTG GT-3′ and reverse, 5′-
ATCATGGTACCTTTCACAAGC-3′; GAPDH: forward,
5′-ACA CCC ACT CCT CCA CCT TT-3′ and reverse, 5′-
TTA CTC CTT GGA GGC CAT GT-3′. mRNA expression
levels were normalized using GAPDH. Fold changes were
counted using the 2-ΔΔCt method.

3. Results

3.1. Identification of Differentially Methylated Genes.
With the threshold of p< 0.01, a total of 2310 differentially
methylated CpGs (covering 1520 genes) were obtained.
Among the 2310 methylated CpGs, 851 of the CpGs were
down-methylated and 1459 of the CpGs were up-meth-
ylated in the GDM group. Figure 1(a) shows the volcanic
map of differentially methylated CpGs. According to the
threshold, 2310 differentially methylated CpGs initially
extracted were subjected to further filtering to obtain the
high differentially methylated CpGs. CpGs meeting S≥ 0.1
were retained, resulting in 87 differentially methylated
CpGs covered 87 genes. *e top 10 differentially methyl-
ated CpGs are shown in Figure 1(b).

3.2. Screening for Significantly Enriched Pathways Using a
Preweighted Pathway Database. Given a gene associated
with multiple gene sets, we assume that the overlapping
genes are activated by all gene sets to which they belong.
Estimated weights were assigned as 1/n, where n is the
number of gene sets that this gene is associated with.
Pathway enrichment analysis of GDM was conducted on
the basis of the KEGG pathway database. A total of 286
pathways covered 6893 genes were obtained. Figure 2(a)
shows the distribution of weights of all pathway genes,
while Figure 2(b) shows the distribution of sum weights of
all pathways and Figure 2(c) shows the weights of genes in
the 4 enriched pathways. Based on the preweighted
pathway database, 4 differential pathways were yielded.
Table 1 shows the differential signaling pathways in as-
cending order based on the final p value.

After Fisher’s exact test and the Mann–Whitney
U (MWU) test, 4 members of the pathway are shown in
Table 1: olfactory transduction, prostate cancer, insulin
secretion, and amphetamine addiction. *ese 4 signaling
pathways may play important roles in the occurrence of
GDM. *e insulin secretion pathway was considered as the
most important pathway and kept for further identification
of key molecules in this pathway since it has been widely
approved to be associated with GDM [3, 20, 21]. *e insulin
secretion pathway here contained 16 differentially methyl-
ated genes. Figure 3 shows the heatmap of DNAmethylation
level of genes in the insulin secretion pathway.

3.3. FPCA Analysis of Expression Profile for Hub Genes in the
Enriched Pathways. *e FPCA model was used to identify
hub genes in the enriched pathways. FPCA could effectively
utilize the time series information and overcome the tradi-
tional control design deficiencies [14]. Each gene got an F
value. Higher F value indicated a higher activation in their
pathways. Figure 4(a) shows the distribution of the F value of
all pathway genes. Figure 4(b) shows the F value of all genes in
the insulin secretion pathway. Genes and their F values were
listed in descending order. *e top 3 genes (CAMK2B,
ADCYAP1, and KCNN2) with high F values in the insulin
secretion pathway were selected for further validation.

3.4. Validation of the Gene Expression of Hub Genes. To
investigate the relationship between the methylation and
the gene expression of hub genes in GDM, the additional
cohort was used to identify the expressions of hub genes in
GDM. *e expression profiles of GDM and normal control
groups of our cohort were used. By assessing the RNA
expression data of hub genes, significant changes between
GDM and normal control groups were found in the gene
expression of ADCYAP1. *e expression levels of
CAMK2B, ADCYAP1, and KCNN2 between GDM and
normal control groups are shown in Figure 5.

4. Discussion

GDM refers to a varying degree of impaired glucose tol-
erance occurring for the first time during pregnancy,
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excluding patients who were with diabetes previous to
gestation but were first diagnosed during pregnancy [1]. In
China, the incidence of GDM is about 5%–7%, and there is
an increasing trend [22]. According to the results of tra-
ditional research methods, the etiology of GDM is closely
related to insulin resistance. In recent years, with the de-
velopment of molecular genetics, molecular immunology,
and bioinformatics, more and more studies have shown that
many factors such as life style, β-cell dysfunction, in-
flammatory factors, and adipokines are involved in the
development of GDM [23–25].

Epigenetics refers to heritable changes in gene function
that occurs under the condition of not changing the DNA
sequence, including DNA methylation, genomic imprinting,
maternal effects, gene silencing, and RNA editing [26]. As one
of the important epigenetic phenomena, DNA methylation
plays an important regulatory role in the gene expression.
DNA methylation is closely related to the occurrence and
development of many diseases, such as type 2 diabetes [27],
autoimmune diseases, and various cancers [28, 29].

In this study, GDM pathogenesis was analyzed using
bioinformatics, including KEGG enrichment method,
functional principal component analysis (FPCA), elastic
net regression, and the Mann–Whitney U test. According
to this new analytical procedure, four signaling pathways
for olfactory transduction, prostate cancer, insulin secre-
tion, and amphetamine addiction were found out. *ere
were some genes involved in the enriched pathways which
were related to GDM. Herein, one differentially methylated

key molecule was identified: adenylate cyclase activating
polypeptide 1 (ADCYAP1). ADCYAP1 gene encodes a
pituitary adenylate cyclase activating polypeptide
(PACAP). PACAP is a secreted proprotein with the ability
to activate adenylyl cyclase, which is a membrane-bound
enzyme that converts ATP to cAMP. ADCY3 is one of the
adenylate cyclases that participates in the insulin secretion
pathway and also identified as a key molecule/gene by our
analysis. *ose results provide a novel insight into GDM
diagnosis and therapy. Numerous studies demonstrate that
PACAP and adenylyl cyclase have a potential role in islet
physiology and as a basis for development of islet-pro-
moting therapy in diabetes [30–32]. Adenylyl cyclase is an
effector in the G protein-coupled system [33], and its
enzymatic activity is under the control of several hormones,
including insulin [34, 35]. PACAP and adenylyl cyclase
were capable of influencing pancreatic islet function by
stimulating pancreatic beta cells to secrete insulin and
glucagon [36]. For the clinical treatment of type 2 diabetes,
PACAP and adenylyl cyclase were also thought to be ef-
fective due to stimulation of insulin secretion [37] and
increased proliferation and differentiation of β cells [38]. In
addition, PACAP is also a neurotransmitter and a member
of the vasoactive intestinal peptide/secretin/glucagon
peptide superfamily. PACAP shows highly potent neuro-
protective and general cytoprotective effects [39]. PACAP
is also protective in diabetes-induced pathologies, like
retinopathy and nephropathy [40–42]. Consistent with
those studies, our results showed that several signal
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transduction pathways, such as olfactory transduction
pathway, were enriched as well.

*ere are limitations present in our study. Un-
fortunately, the methylation data along with the expression

data for samples were unprovided. Further study will be
directly tested for the most significant CpGs that impact
upon each hub gene since multiple CpGs could impact the
same gene.

Table 1: Significant enriched pathways of GDM.

Pathway name Fisher’s exact test MWU test Final p value Count Total
hsa04740: olfactory transduction 0.0014 0.126083253 0.0013 11 408
hsa05215: prostate cancer 0.0043 0.164116273 0.0026 19 89
hsa04911: insulin secretion 0.0008 0.094356684 0.0091 16 86
hsa05031: amphetamine addiction 0.0001 0.49776561 0.0092 15 68
Count: number of genes in a pathway. Total: total number of genes in a pathway.
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5. Conclusions

Based on the analytical results of the present study, there was
significant ADCYAP1 methylation and gene expression
differences between GDM and normal control groups. GDM
was associated with insulin resistance and insulin-signaling
system may require ADCYAP1 participation [43]. We
speculate that ADCYAP1 may be related to the GDM, and
more experimental data were needed to support our
prediction.

Data Availability

*e datasets used and analyzed during the current study are
available from the corresponding author on reasonable
request.
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