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Abstract: Several studies have proposed that the neutrophil–lymphocyte ratio (NLR) is one of
the various biomarkers that can be useful in assessing COVID-19 disease-related outcomes. Our
systematic review analyzes the relationship between on-admission NLR values and COVID-19
severity and mortality. Six different severity criteria were used. A search of the literature in various
databases was conducted from 1 January 2020 to 1 May 2021. We calculated the pooled standardized
mean difference (SMD) for the collected NLR values. A meta-regression analysis was performed,
looking at the length of hospitalization and other probable confounders, such as age, gender, and
comorbidities. A total of sixty-four studies were considered, which included a total of 15,683 patients.
The meta-analysis showed an SMD of 3.12 (95% CI: 2.64–3.59) in NLR values between severe and
non-severe patients. A difference of 3.93 (95% CI: 2.35–5.50) was found between survivors and non-
survivors of the disease. Upon summary receiver operating characteristics analysis, NLR showed
80.2% (95% CI: 74.0–85.2%) sensitivity and 75.8% (95% CI: 71.3–79.9%) specificity for the prediction
of severity and 78.8% (95% CI: 73.5–83.2%) sensitivity and 73.0% (95% CI: 68.4–77.1%) specificity
for mortality, and was not influenced by age, gender, or co-morbid conditions. Conclusion: On
admission, NLR predicts both severity and mortality in COVID-19 patients, and an NLR > 6.5 is
associated with significantly greater the odds of mortality.

Keywords: COVID-19; neutrophil-to-lymphocyte ratio; systematic review; COVID-19 mortality;
COVID-19 severity; COVID-19 outcomes; NLR

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a novel coronavirus
that was recognized in January 2020 [1]. Almost one month after its discovery, the disease
spread worldwide. It is also called coronavirus disease 2019 (COVID-19) by the World
Health Organization [2]. The virus has claimed over 6.19 million lives worldwide [3].

The symptoms of COVID-19 can vary. The majority of those who are infected present
with mild symptoms such as fever, myalgia, cough, shortness of breath, etc. [4,5]. However,
some cases develop severe symptoms such as pulmonary edema, acute respiratory distress
syndrome (ARDS), and multi-organ failure (MODS), leading to death [6,7]. A point of grave
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concern is a patient’s rapid progression from relatively mild to severe disease [8]. Thus, it
is prudent to identify severe cases as early as possible and provide timely interventions.

The identification and stratification of the severity and mortality of COVID-19 patients
has been performed in various ways. The most commonly used method is oxygenation-
based severity criteria, based on respiratory distress with a respiratory rate > 30/min,
oxygen saturation ≤ 93% in the resting state, or arterial blood oxygen partial pressure
(PaO2)/oxygen concentration (FiO2) ≤ 300 mmHg. However, various other criteria have
been used in different studies. These include parameters such as the need for invasive
mechanical ventilation (IMV), and various hematologic and radiological parameters.

Neutrophils are an important aspect of innate immunity. Pathogen-associated molecu-
lar patterns (PAMPs) in the virus are recognized by pattern-recognition receptors (PRRs),
which initiate the production of pro-inflammatory mediators and neutrophil chemo-
attractants. This signaling is crucial to initiate the inflammatory response and enhance
neutrophil production and recruitment [9]. Lymphocytes, on the other hand, are the prin-
cipal cells of an adaptive immune response in a viral infection. Lymphocyte levels are
considered to be negatively correlated with the degree of systemic inflammation. An
increase in systemic inflammation significantly decreases CD4+ T cells, increases CD8+
suppressor T cells and increases lymphocyte apoptosis [10].

The neutrophil-to-lymphocyte ratio (NLR) is a simple ratio of the counts of neutrophils
and lymphocytes. It is a biomarker which can reflect the inflammatory status of a patient.
Since it is a part of routine blood count analyses performed in most healthcare setups, it
is economical. NLR as a biomarker has been used in various conditions such as tumors,
pancreatitis, chronic obstructive pulmonary disease (COPD), and cardiovascular disease. It
has also been used in the prognosis of infectious diseases, such as influenza virus infection
and Middle East respiratory syndrome (MERS) [11,12].

A few systematic reviews have studied NLR’s potential as a biomarker for the stratifi-
cation of COVID-19-related disease severity and mortality [13–16]. However, these reviews
have a few shortcomings. All the above-mentioned reviews used only oxygenation-based
severity criteria, without considering various other classification criteria. Furthermore,
although previous studies have demonstrated that NLR values are also determined by race
and ethnicity, this subgroup analysis is missing in the previous reviews [17]. They also fail
to analyze other important endpoints, such as the relationship between NLR and the length
of hospitalization.

Thus, the primary objective of this review is to assess the relationship between on-
admission NLR values and COVID-19-related disease severity and mortality outcomes.
Additionally, we would also like to assess if this relationship changes based on the severity
criteria used, the region in which the study was conducted and the length of hospitalization.

2. Materials and Methods
2.1. Protocol and Registration

The review followed Preferred Reporting Items For Systematic Review And Meta-
Analysis (PRISMA) guidelines and the Cochrane Handbook [18]. The PRISMA checklist
can be found in the Supplementary Material (Table S1). Only published, peer-reviewed
original articles were eligible for inclusion. This review was registered in the PROSPERO
database (CRD42021252100).

2.2. Inclusion and Exclusion Criteria

The inclusion of articles for systematic review was based on studies with original
data. The studies had to contain information regarding the diagnostic and/or prognostic
role of NLR in COVID-19 patients with participants aged 18 years or over. The patients
in the study needed to have a confirmed COVID-19 diagnosis (diagnosed with positive
reverse transcriptase polymerase chain reaction for SARS-CoV-2, from samples from either
nasopharyngeal or oropharyngeal swab). The NLR values needed to be collected on
admission. The exclusion criteria were case reports, previous SRs/MAs, literature reviews,
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conferences and theses. Original articles without sufficient information for extraction were
also excluded. Only studies published in English were included.

2.3. Data Extraction and Risk of Bias Assessment

The literature search was conducted in PubMed, EMBASE, MEDLINE, and SCOPUS
databases for articles published between 1 January 2020 and 1 May 2021. The search used
terms synonymous with “COVID-19”, “neutrophil-to-lymphocyte ratio”, “Severity”, and
“Mortality”. A detailed search term description is listed in the Supplementary Material
(Table S2).

Management of the collated studies was performed using the COVIDENCE systematic
review software (Veritas Health Innovation, Melbourne, Australia). The results were later
exported to Microsoft Excel. There were two rounds of screening for the selection of studies.

1. Title/abstract screening: Authors CB, SA, SP, and AP independently screened all the
articles as per the pre-agreed criteria and consulted with PAM if there was disagreement.

2. Full-text screening: Articles identified in Step 1 were moved to full-text screening.
Authors SP, RKP, and AP screened all articles independently. Articles eligible for
final inclusion included a sensitivity and specificity analysis of NLR in predicting the
severity and mortality of COVID-19. PAM was consulted for clarification and if there
was disagreement between operators.

After the selection of studies, the following data were extracted:

1. The surname of first author, year and month of publication, sample size, study location,
basic demographic data—i.e., mean age, gender, and comorbidities—and outcomes,
i.e., disease severity and mortality.

2. NLR values were recorded, along with their standard deviation, and categorized
based on mild or severe cases.

3. Sensitivity, specificity, area under the curve (AUC) data, ‘cut-off’ data for each outcome.

Data items were imported in a predefined format into Microsoft Excel. The risk of bias
in the included studies was accessed for individual articles using the Newcastle-Ottawa
Scale (NOS) [19].

2.4. Synthesis of Evidence

Meta-analysis was performed using Jamovi (v1.6, The jamovi project, SYD, AUS),
Review Manager (RevMan) [Computer program]. Version 5.4, The Cochrane Collaboration,
2020 and OpenMeta analyst v10.12 [20]. For studies without normal distribution, median
and interquartile range (IQR) were converted to mean and standard deviation (SD) using
the method described by Hozo et al. [21]. Pooled standardized mean difference (SMD),
along with a 95% confidence interval (95% CI), was calculated for the mean values of NLR
between groups using Der Simonian–Laird random effect models. Studentized residuals (a
division of the residual from the regression model with its standard deviation) and Cook’s
distances were also calculated. If the values were reported as dichotomized variables, risk
ratio (RR) was calculated. Due to the different definitions of severity among studies, a
separate analysis was performed for each of the individual subgroups. The various criteria
used for severity could be grouped under the following categories: (1) based on need
for invasive mechanical ventilation (IMV); (2) based on respiratory rate and oxygenation
(pulse oximetry or arterial blood gases), i.e., respiratory rate > 30 bpm, SpO2 < 93%, and
PaO2/FiO2 ≤ 300 mmHg; (3) based on the need for intensive care unit (ICU) admission
only; (4) based on hematological parameters only; (5) based on radiological parameters
(Table S3).

Additionally, a subgroup analysis was performed to assess regional variations in
both severity and mortality outcomes according to the World Health Organization (WHO),
which divides the world into six WHO regions. A subgroup analysis was also conducted to
assess differences in the standardized mean differences in the two groups according study
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design. A meta regression analysis was also performed to observe any association between
NLR and length of hospitalization.

A bivariate regression model with random effects was used to calculate sensitivity,
specificity, and diagnostic odds ratios (DORs). Furthermore, we generated a summary
receiver operating characteristic curve (SROC) to evaluate the collective accuracy of NLR.
Meta-regression analysis was performed based on length of hospitalization and other
probable confounders, such as age, gender, and comorbidities. This analysis was presented
as bubble plots. Heterogeneity was assessed with Cochran’s Q test and I2 statistic. Further-
more, the stability of the pooled data estimates was evaluated using leave-one-out analysis.
Publication bias and small study bias were tested using funnel plots, rank correlation test,
and Egger’s test. A trim and fill analysis was conducted to correct asymmetry around the
pooled estimates. A statistically significant difference was considered if two-tailed p < 0.05.

3. Results

A total of 225 citations were identified from various peer-reviewed databases from
1 January 2020 to 1 May 2021. After study screening and eligibility selection, we found
64 studies consisting of 15,683, which met all our criteria. They were further divided into
40 studies that compared NLR values in severe and non-severe disease and 25 articles that
compared NLR in the deceased and survivors. Twenty-five articles conducted an ROC
analysis for the prognostic value of NLR to predict severe disease and nineteen articles to
predict mortality outcomes (Figure 1). Most studies were retrospective and observational.
The majority of included studies were conducted in China (n = 44). The median risk of bias
score from NOS was found to be 7 (Tables 1 and S6).

Table 1. Table depicting the baseline characteristics of the included studies.

Sl. No. Study Country Study Design Year N Outcome
Measured NOS Score

1 Abrishami A et al. [22] Iran Prospective 2021 100
Mortality

7
ROC analysis

2 Acar et al. [23] Turkey Prospective 2021 148
Mortality

7
ROC analysis

3 Asghar et al. [24] Pakistan Retrospective 2020 100

Severity

7Mortality

ROC analysis

4 Bastug A et al. [25] Turkey Retrospective 2020 191
Severity

7
ROC analysis

5 BG et al. [26] India Retrospective 2021 100
Mortality

7
ROC analysis

6 Chen F et al. [27] China Retrospective 2020 681
Mortality

7
ROC analysis

7 Chen L et al. [28] China Prospective 2020 1859 Mortality 9

8 Chen R et al. [29] China Retrospective 2020 548
Severity 9

Mortality

9 Cheng B et al. [30] China Retrospective 2020 456

severity

8Mortality

ROC analysis

10 Ding X et al. [31] China Retrospective 2020 72 Severity 8

11 Fei M et al. [32] China Retrospective 2020 72
Severity

5
ROC analysis
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Table 1. Cont.

Sl. No. Study Country Study Design Year N Outcome
Measured NOS Score

12 Fu J et al. [33] China Retrospective 2020 75
Severity

6
ROC analysis

13 Ghazanfari T et al. [34] Turkey Prospective 2021 93 ROC analysis 7

14 Gong J et al. [35] China Retrospective 2020 372
Severity

7
ROC analysis

15 Goya R L et al. [36] Spain Prospective 2020 501
Mortality

6
ROC analysis

16 Guner R et al. [37] Turkey Prospective 2020 222 Severity 6

17 Güneysu F et al. [38] Turkey Retrospective 2020 169
Mortality

7
ROC analysis

18 Hammad R et al. [39] Egypt Prospective 2021 64
Severity

7
ROC analysis

19 Hu H et al. [40] China Retrospective 2020 40
Severity

6
ROC analysis

20 Huang J et al. [41] China Retrospective 2020 299 Mortality 8

21 Kazancioglu S et al. [42] China Retrospective 2020 181 Severity 8

22 Kong M et al. [43] China Retrospective 2020 210 Severity 7

23 Li L et al. [44] China Retrospective 2020 93 Mortality 7

24 Liao D et al. [45] China Retrospective 2020 466 Severity 7

25 Lin S et al. [46] China Retrospective 2021 68
Severity

7
ROC analysis

26 Liu F et al. [47] China Retrospective 2020 134
Severity

8
ROC analysis

27 Liu J et al. [48] China Prospective 2020 115
Severity

7
ROC analysis

28 Liu YP et al. [49] China Retrospective 2020 84
Severity

8
ROC analysis

29 Liu Y [50] China Retrospective 2020 245 Mortality 7

30 Luo X et al. [51] China Retrospective 2020 298
Mortality

8
ROC analysis

31 Ok F et al. [52] Turkey Prospective 2021 139
Severity

7
ROC analysis

32 Qin C et al. [53] China Retrospective 2020 452 Severity 5

33 Ramesh J et al. [54] India Retrospective 2021 154 ROC analysis 8

34 Sanchez A et al. [55] Mexico Prospective 2020 242
Mortality

6
ROC analysis

35 Sayah W et al. [56] Algeria Prospective 2021 153
Severity

8
ROC analysis

36 Sayed A et al. [57] Saudi Arabia Retrospective 2021 951
Severity

7
ROC analysis

37 Seo J et al. [58] Korea Retrospective 2021 166 ROC analysis 7

38 Sepulchre E et al. [59] Belgium Retrospective 2020 198

Severity

7Mortality

ROC analysis
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Table 1. Cont.

Sl. No. Study Country Study Design Year N Outcome
Measured NOS Score

39 Shang W et al. [60] China Retrospective 2020 443
Severity

7
ROC analysis

40 Shi S et al. [61] China Prospective 2021 87
Severity

6
ROC analysis

41 Sun S et al. [62] China Prospective 2020 116
Severity

5
ROC analysis

42 Tatum et al. [63] USA Prospective 2020 125
Mortality

6
ROC analysis

43 Ullah [64] USA Retrospective 2020 176 Mortality 6

44 Wang C et al. [65] China Retrospective 2020 45
Severity

7
ROC analysis

45 Wang F et al. [66] China Retrospective 2020 333 Severity 8

46 Wang K et al. [67] China Retrospective 2021 38
Severity

7
ROC analysis

47 Wang W et al. [68] China Retrospective 2020 123
Severity

7
ROC analysis

48 Wang X et al. [69] China Retrospective 2020 131

Mortality

7Severity

ROC analysis

49 Wu S et al. [70] China Retrospective 2020 270
Severity

7
ROC analysis

50 Xia X et al. [71] China Retrospective 2020 63
Severity

8
ROC analysis

51 Xie G et al. [72] China Retrospective 2020 324
Severity

ROC analysis 5

52 Xie L et al. [73] China Retrospective 2020 373 Severity 5

53 Xu J et al. [74] China Retrospective 2020 76 ROC analysis 5

54 Xue G et al. [75] China Retrospective 2020 114
Severity

7
ROC analysis

55 Yan X et al. [76] China Retrospective 2020 1004
Mortality

8
ROC analysis

56 Yang AP et al. [77] China Retrospective 2020 93
Severity

7
ROC analysis

57 Yang Q et al. [78] China Retrospective 2020 226 Mortality 8

58 Yavuz B et al. [79] Turkey Retrospective 2021 113
Mortality

9
ROC analysis

59 Ye W et al. [80] China Retrospective 2020 349
Mortality

8
ROC analysis

60 Zhang N et al. [81] China Retrospective 2020 60 Mortality 6

61 Zhang S et al. [82] China Retrospective 2020 115 Mortality 7

62 Zhang Y et al. [83] China Retrospective 2020 115 Severity 7

63 Zhou Y et al. [84] China Retrospective 2020 442 Severity 7

64 Zhu Z et al. [85] China Retrospective 2020 127 Severity 5
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Figure 1. PRISMA flowchart illustrating the process by which studies were mapped out. A total of
224 records were identified, of which 64 were included in the study. * The sum of split studies does
not have to equal 64, as some studies overlap in both mortality and severity aspects.

3.1. Examination of the Relationship between NLR Values and COVID-19 Severity

A total of 40 studies, consisting of 7332 patients, were analyzed in our review. The
pooled SMD calculation was completed using the Der Simonian–Laird random effect
models, which observed a value of 3.12 (95% CI: 2.64 to 3.59) between groups, with a range
from 0.5224 to 8.4856. Even though the Q test showed a high degree of heterogenicity
(1601.7471, p < 0.0001, tau2; = 2.2841, I2; = 97.5652%), the 95% prediction interval of the
outcomes (ranging from 0.1156 to 6.1164) showed that SMD obtained from the individual
studies were generally similar to the pooled SMD estimates. A study by Chen R et al. [29] led
to a large studentized residual value (<±3.2272), making it a potential outlier. Additionally,
an analysis of Cook’s distances also showed that the same study had the probability of
being overly influential. However, removing this study from the analysis did not lead
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to a significant difference in the pooled SMD values (2.97 [2.55, 3.40]) (Figure 2). Pooled
sensitivity and specificity data were calculated from the 21 studies included for the analysis.
The sensitivity estimate was 80.2% (95% CI: 74.0–85.2), while the specificity estimate was
75.8% (95% CI 71.3–79.9). A SROC analysis was carried out, in which AUC was 0.833 while
the DOR was 13.63 (Figure 3A and Table 2).
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 Figure 2. Forest plot of 40 total studies indicates the pooled SMD calculation, which was performed
using the Der Simonian–Laird random effect models, observing a value of 3.12 (95% CI: from 2.64 to
3.59) between groups.
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Figure 3. Summary receiver operating characteristic (SROC) curve, which analyzes the pooled area
under the curve (AUC) for COVID-19-related outcomes. (A) The pooled AUC for severity studies
was 0.833. (B) The pooled AUC for mortality studies was 0.820. The ∆ stands for individual study
data points while the O stands for summary estimates.
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Table 2. Sensitivity, specificity, AUC and DOR analyses of NLR for predicting disease severity and
mortality in patients with COVID-19.

Categories No. of Studies p-Value Estimates AUC DOR

NLR for predicting disease mortality
Sensitivity

19
0.013 78.8% (95% CI: 73.5–83.2)

0.820 11.483Specificity <0.001 73.0% (95% CI: 68.4–77.1)
NLR for predicting disease severity

Sensitivity
21

<0.001 80.2% (95% CI: 74.0–85.2)
0.833 13.63Specificity <0.001 75.8% (95% CI 71.3–79.9)

Different studies used varying definitions of severity. Five definitions of severity were
used, and three studies did not define how they classified the disease as severe. A subgroup
analysis of severity observed that NLR was significantly associated with severity for each
of the definition criteria used. Even with different definitions, the effect estimates remained
in the same direction as the estimated average outcome, ranging between SMD 5.64 [0.03,
11.25] and 1.99 [0.32, 3.65]. The most common severity criteria were based on oxygen status
(21 studies, 3748 participants), which had an SMD of 2.76 [2.28, 3.24], followed by IMV
(9 studies, 1514 participants), which had an SMD of 3.05 [2.25, 3.86], which was very close
to the total estimated SMD of 3.12 [2.64, 3.59] (Figure S1A).

Subgroup analysis for COVID-19 disease severity and NLR estimates according to the
different WHO regions showed that most of the studies were conducted in the Western
Pacific Region (WPR), i.e., n = 31 with 5464 patients. This subgroup had an SMD of 3.07
[2.63, 3.52] and accounted for the highest weight (77.4%) among the subgroups. At the
time of writing this review, a limited number of studies were available from the rest of the
world, with an SMD ranging from 2.14 [0.90, 3.39] to 5.13 [2.88, 7.38] (Figure S1B).

There were minimal differences in estimated average standardized mean difference be-
tween the two subgroups when they were analyzed based on retrospective and prospective
study design (SMD: 3.10 [2.59, 3.62] vs. 3.17 [2.13, 4.21]) (Figure S10).

Compared to the non-severe group, patients with severe COVID-19 were generally
older and had a greater number of co-morbidities, such as diabetes mellitus, hypertension,
and cardiovascular disease (Figure S6).

Pooled sensitivity and specificity data were calculated from the 21 studies included in
the analysis. Sensitivity estimates were found to be 80.2% (95% CI: 74.0–85.2), while speci-
ficity estimates were 75.8% (95% CI 71.3–79.9). Summary receiver operating characteristic
(SROC) analysis was carried out, in which AUC was 0.833 while the Diagnostic Odds Ratio
was 13.63 (Table 2). The calculation of subgroup analysis at an NLR severity cut-off value
of 4.5 showed similar AUC (0.834 and 0.833) (Table 3).

Table 3. Subgroup analysis of NLR cut-offs for COVID-19 severity and mortality.

Categories No. of Studies Sensitivity Specificity AUC OR

Severity
Subgroup A (NLR cut off < 4.5) 13 81.9% 74.1% 0.834 13.032
Subgroup B (NLR cut off > 4.5) 8 80.0% 75.9% 0.833 13.511

Mortality
Subgroup A (NLR cut off < 6.5) 10 79.8% 65.6% 0.800 7.585
Subgroup B (NLR cut off > 6.5) 9 78.6% 73.4% 0.854 15.581

Meta-regression analysis was conducted to ascertain the association between NLR
values and severity in COVID-19. These were presented as bubble plots. This analysis
showed us that the NLR values of patients were not influenced by age (p = 0.893), cardio-
vascular diseases (p = 0.259), diabetes mellitus (p = 0.545) or hypertension (p = 0.104). Both
the rank correlation and Egger’s regression tests indicated potential funnel plot asymmetry
(p = 0.0287 and p = 0.0122, respectively) (Figure 4A). However, the trim and fill test did not
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impute any studies. Leave-one-out analyses demonstrated limited variations in the pooled
estimates (max = 2.944, min = 2.737).
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3.2. Examination of the Relationship between NLR Values and COVID-19 Mortality

A total of 25 studies consisting of 8351 patients were analyzed in our review. The
pooled SMD calculation was conducted using the Der Simonian–Laird random effect
models, which observed a value of 4.61 (95% CI: 2.64 to 6.58) between groups with a range
from −2.6662 to 19.0655. Even though the Q test showed a high degree of heterogenicity
(5347.8816, p < 0.0001, tau2; = 22.2171, I2; = 99.7027%), the 95% prediction interval of the
outcomes (ranging from −4.8323 to 14.0613) showed that, although the SMD obtained from
the individual studies were generally similar to the pooled SMD estimates, a few studies
may have reported a negative true outcome. A study by Yan X et al. [76] showed a large
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studentized residual value (<± 3.0521), making it a potential outlier. Additionally, analysis
of Cook’s distances also showed that the same study had the probability of being overly
influential. However, the removal of this study from the analysis did not show a significant
difference in the pooled SMD values (3.93 (95% CI: 2.35, 5.50)) (Figure 5). There were three
studies [50,63,64] with dichotomized NLR values for which we calculated relative risk. The
analysis found that there was an increased risk (RR 2.74; 95% CI 0.98–7.66) of mortality in
those with raised NLR when compared to those with normal NLR (Figure S8).
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Figure 5. Forest Plot of 22 total studies indicates the pooled SMD calculation that was performed
using the Der Simonian–Laird random effect models, observing a value of 4.61 (95% CI: 2.64 to
6.59) between groups. The squares indicate individual effect size while the diamond indicates the
summary effect size.

Pooled sensitivity and specificity data were calculated from the 19 studies included for
the analysis. The sensitivity estimate was 78.8% (95% CI: 73.5–83.2%), while the specificity
estimate was 73.0% (95% CI: 68.4–77.1%). A SROC analysis was carried out, in which AUC
was 0.820 while the DOR was 11.483 (95% CI: 7.814–16.875) (Figure 3B and Table 2). The
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calculation of subgroup analysis at an NLR cut-off value of 6.5 showed that those studied
with an NLR cut-off of > 6.5 had significantly higher odds of mortality than those with
a cut-off < 6.5 (DOR: 15.5 vs. 7.5) (Table 3). The association between NLR and mortality
in COVID-19 was also unaffected by age (p = 0.134), cardiovascular diseases (p = 0.222),
diabetes mellitus (p = 0.091), or hypertension (p = 0.986) (Figure S7). While checking for
publication bias, we found funnel plot asymmetry (p = 0.0129) (Figure 4B) but the rank
correlation test (p = 0.1439) was not significant. Furthermore, trim and fill analysis did not
impute any studies.

Subgroup analysis of COVID-19-associated mortality for NLR estimates according to
the different observed WHO regions showed that most of the studies were conducted in
the Western Pacific Region (WPR), i.e., n = 13 with 6182 patients. This subgroup had an
SMD of 6.39 [4.22, 8.57] and accounted for the highest weight (59%) among the subgroups.
A limited number of studies are available from the rest of the world with an SMD ranging
from −1.05 [−1.52, −0.57] to 6.39 [4.22, 8.57] (Figure S2). There were minimal differences
in the estimated average standardized mean difference between the two subgroups when
they were analyzed based on a retrospective and prospective study design (SMD: 4.54 [2.45,
6.63] vs. 4.85 [2.33, 7.38]) (Figure S12). A meta-analysis of the relationship between NLR and
length of hospitalization was conducted. It was found that, even though an increased NLR
value led to a longer hospital stay, this was not statistically significant (p = 0.061) (Figure 6).
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4. Discussion

In this systematic review, a meta-analysis of sixty-four studies comprising 16,205 pa-
tients, we evaluated the role of NLR on admission in the management of COVID-19 patients.
Our meta-analysis showed that lower NLR values were correlated with a lower risk of
severity and COVID-19-related mortality. NLR was found to be a consistent biomarker
for predicting both disease severity (AUC = 0.833, SEN = 80.2% and SPE = 75.8%) and
mortality (AUC = 0.820, SEN = 78.8% and SPE = 73.0%) in COVID-19. A novelty of this
study was subgroup classification based on severity criteria and region, both of which
did not yield statistically significant differences between subgroups. We also found no
significant relationship between the length of hospitalization and NLR values on admission.
Our study also showed that the relationship between NLR and COVID-19 outcomes was
independent of age and comorbidities such as diabetes mellitus, cardiovascular diseases,
and hypertension.

The severity and mortality of COVID-19 is correlated with the extensive infiltration of
neutrophils in the lung and neutrophil numbers in the peripheral blood, and the magnitude
of neutrophilia is suggestive of the intensity of inflammatory responses [86]. Additionally,
studies have shown that COVID-19 primarily affects CD4+ T and CD8+ T cells. We see that
the development of lymphopenia is largely due to its diminished CD8+ T count during the
first week of the disease [87].

NLR was first proposed as a prognostic marker in critically ill patients, as it correlated
well with Acute Physiology and Chronic Health Evaluation (APACHE II) scoring and
Sequential Organ Failure Assessment score (SOFA score) [88]. It is a marker of systemic
inflammation, which is used in conditions such as tumors, pancreatitis, chronic obstructive
pulmonary disease (COPD), and cardiovascular disease. It has also been used in the prog-
nosis of infectious diseases, such as influenza virus infection and Middle East respiratory
syndrome (MERS) [11,12].

Apart from the criteria used for COVID-19 disease stratification, there are other clini-
cal scoring systems, which include the most widely used APACHE II scoring, COVID-19
Critical Illness Prediction Tool (COVID-GRAM), SOFA score and Comorbidity, Age, Lym-
phocyte Count, Lactate Dehydrogenase score (CALL score) [89]. However, the drawback of
some of these clinical scoring systems, such as the APACHE II and COVID-GRAM, is that
they have more than ten variables, some of which rely on advanced laboratory tests such as
lactate dehydrogenase (LDH), serum electrolytes, and arterial pH. Other biomarkers, such
as interleukin-6, D-dimer levels, C-reactive protein (CRP) and Soluble urokinase plasmino-
gen activator receptor (suPAR), are expensive and inaccessible, which makes it difficult to
use in healthcare settings in Low and Low–Middle Income Countries (LICs/LMICs) with
constrained capacity and resources. Hence, simpler tools for predicting COVID-19 severity
and mortality, such as NLR, have the advantage of having a quicker turn-around and being
inexpensive [90–92].

At the time of writing this manuscript, a few other reviews have evaluated NLR as
a prognostic indicator [13–16]. This review includes almost twice the number of studies
compared to other published reviews, which increased the comprehensiveness of the
review. All the other reviews used only oxygenation-based severity criteria, while our
review used different severity criteria, and we performed subgroup analysis to analyze
SMD in the various criteria used. Criteria based on the need for IMV and respiratory rate
and oxygenation showed the closest approximation to the total estimate (Figure S1A).

The standardized mean difference in NLR values was calculated in only one other
review [14], which we observed to occur in the same direction as our study. However,
we observed that the NLR values that best predicted severity and mortality outcomes
were higher in our study. This may be because our analysis incorporated different severity
criteria and included a larger number of studies. There is no consensus on the optimal
‘cut-off’ value for NLR, to predict clinically relevant outcomes, especially for COVID-19.
In determining the optimal ‘cut-off’ value, this review of 21 studies that identified cut-
off values for NLR showed a wide range, between 2.306 [69] and 13.4 [65], in predicting
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severity, and 19 studies observed NLR values ranging from 3.2 [30] to 12.0 [55] for predicting
mortality. There may be an ethnic-demographical element to these inconsistencies, and
NLR is known to be affected by them [17]. We need more studies analyzing these cut-off
values and their relationship with these population subgroups.

A region-wise stratification of studies reporting NLR for outcomes is a novelty to this
review. One region (Western Pacific Region) contributed the largest percentage of studies
(Figures S1B and S2). We found a large variation between the various WHO regions in
terms of both severity and mortality outcomes. Previous studies have demonstrated that
NLR values are also determined by race and ethnicity [17]. Additionally, none of the studies
have adjusted for the confounding effects of factors such as tobacco smoking, which are
known to influence NLR values [93]. We need a greater number of studies from different
WHO regions to further investigate these findings.

We found that the sensitivity and specificity analysis performed by three other sys-
tematic reviews was in close approximation to our review, with an AUC ranging from
0.81 to 87, with similar NLR cut-off ranges (mortality from 6 to 6.5 and severity from 4 to
4.5) [13,15,16]. Interestingly, similar to two other reviews, our analysis also found that a
higher cut-off value of NLR (>6.5) had more than twice the odds ratio than those with a
low cut-off value (<6.5) when predicting mortality [13,16].

NLR values have been reported to vary with age, sex, and underlying comorbid
conditions, such as diabetes mellitus, cardiovascular diseases, and hypertension [17,94–96].
Although most studies in the systematic review showed a statistically significant difference
in the aforementioned factors between the groups, a meta-regression analysis illustrated
that the association between the severity and mortality of COVID-19 disease and NLR was
independent of age, sex, and underlying comorbid conditions, such as diabetes mellitus,
cardiovascular diseases, and hypertension. A similar observation was reported in two
relatively smaller systematic reviews by Simadibrata et al. and Kumar et al. [13,14].

There are a few limitations to the currently available evidence. First, most of the
included studies were conducted in a single country, i.e., China. Second, data were mostly
from retrospective studies, which were prone to confounding factors. Third, even though
trim and fill analysis did not impute any studies, we found that there was a significant
publication bias in studies assessing both severity and mortality. Fourth, there is no
information on whether this patient was previously admitted to other hospitals, and
there was limited information on the time difference between the onset of syndromes
and the NLR sample being taken. Furthermore, no data were available on vaccination
status, treatment at the time of hospital admission, or confounders such as smoking. The
comorbidities assessed in most of the studies were limited to only a few major conditions.
Conditions such as obesity, chronic pulmonary disease and variations associated with
anti-inflammatory/immunomodulating therapy were not assessed. Finally, there was
considerable heterogeneity among the included studies, which was not identifiable.

The COVID-19 pandemic is currently in its third year. There are various vaccines
available for the disease, and the vaccination rates greatly differ from place to place [97–99].
Vaccination alters immune responses in COVID-19 patients, which may hamper the utility
and/or validity of using the NLR. However, a study performed by Mediu et al., which eval-
uated NLR values in vaccinated patients, showed that there was no statistical significance
between cases and controls [100]. In the future, we need further large-scale, prospective
studies to clinically validate a more exact NLR cut-off. There is a need to conduct these
studies in various other demographics to assess ethnic and racial differences. We would
also need to account and adjust for the date of NLR collection and the duration of symp-
toms, treatment at the time of hospitalization and other potential confounders. Lastly,
the pandemic has also seen a shift in the clinical evaluation of patients with the onset of
telemedicine and remote counselling [101]. Thus, there is a need to also assess the best
markers to accommodate the changing healthcare scenario.
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5. Conclusions

NLR is a useful assessment tool to map out COVID-19-related disease severity and
mortality outcomes. Embedding NLR into routine clinical management can help clinicians
to identify potentially severe cases earlier, and facilitate risk stratification to initiate prompt
therapeutic intervention. We observed that NLR >6.5 is associated with significantly greater
the odds of mortality. There is a need for further studies that focus on obtaining a clinically
relevant cut-off value that may potentially improve clinical outcomes and reduce overall
COVID-19-related mortality.
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