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Abstract: Cellular redox homeostasis is an essential and dynamic process that ensures the balance
between reducing and oxidizing reactions within cells and regulates a plethora of biological responses
and events. The study of these biochemical reactions has proven difficult over time, but recent
technical and methodological developments have contributed to the rapid growth of the redox field
and to our understanding of its importance in biology. The aim of this short review is to give the
reader an overall understanding of redox regulation in the areas of cellular signaling, development,
and disease, as well as to introduce some recent discoveries in those fields.
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1. Introduction

Since the evolutionary appearance of photosynthesis led to the accumulation of
oxygen in the atmosphere, life has needed to adapt to an environment wherein exposure to
oxidative reactions happens on a regular basis. Consequently, new molecular mechanisms
have been developed to regulate and maintain the balance between reducing and oxidizing
reactions. This so-called redox homeostasis not only allowed life to continue in this new
oxidizing environment but also triggered an explosion of biodiversity [1,2].

Contrary to what the name might suggest, redox homeostasis is a very dynamic
process wherein the steadiness of the redox status within cells is maintained not by having
a constant metabolism but rather by having a highly responsive system that senses changes
in redox status and realigns metabolic activities to restore redox balance. Cellular redox
biology has proven challenging to study, and the interactions between electron donors and
acceptors are far more complex and difficult to map than once thought. The systems in
charge of keeping this cellular redox balance, such as the glutathione, thioredoxin, NADPH-
regenerating systems, and their associated enzymes, have been extensively studied and
characterized. The reader is kindly referred to references [3–5] for extensive reviews on
this topic.

Redox interactions are responsible for the regulation of diverse biological processes,
including metabolism, cell death, differentiation and development, immune responses,
circadian rhythm, and others. This short review on cellular redox homeostasis provides
an overview of some of the most recent advances in our understanding of how redox
homeostasis is maintained, and what roles redox modulation plays in cellular signaling,
development, and pathology (Figure 1).
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Figure 1. Redox homeostasis plays key roles in the regulation of cell signaling, development, health, and disease. 
Examples of recent research on cellular redox homeostasis in the areas of cellular signaling, development, and 
pathology. Created with BioRender.com. TRP14: Trx-like protein of 14 kDa; Trx1: thioredoxin-1; PTP1B: protein 
tyrosine phosphatase-1B; SH: thiol; SOX: SRG-related high mobility group-box transcription factors; NAC: N-acetyl 
cysteine; NQO1: NADPH-quinone oxidase; SOD: superoxidase dismutase; IL-6: interleukin-6; ROS: reactive oxygen 
species; DHA: dehydroascorbate; Gpx3: glutathione peroxidase 3; APC: adenomatous polyposis coli protein; TrxR1: 
thioredoxin reductase; Gsr: glutathione reductase; GSH: reduced glutathione. 

 

2. Cellular Signaling 
Reactive oxygen species (ROS) are strong oxidants that include molecular oxygen 

(O2) and the sequential series of 1-electron reduction steps of O2 leading to species more 
oxidized than water, in order: superoxide radical (●O2−), hydrogen peroxide (H2O2), and 
hydroxyl radical (HO●). These are generated in aerobic organisms primarily as a collateral 
result of utilizing oxygen as the final electron acceptor in the electron transport chain 
(ETC) to produce energy [6] or as a result of other metabolic processes, including glycol-
ysis or β-oxidation of fatty acids. However, in other cases, ROS can be deliberately gener-
ated by the regulated activities of NADPH oxidoreductases [7]. ROS can act as secondary 
messengers by, for example, reversibly oxidizing cysteine residues in proteins, resulting 
in their activation or inactivation [8]. They can also alter DNA and often transit cellular 
membranes via aquaporins or other channels [9–11]. 

ROS are well-known regulators of signaling cascades by, for instance, inhibiting 
phosphatases or inhibiting antioxidant proteins normally bound to kinases [12]. Highly 
reactive cysteine residues in the active sites of protein tyrosine phosphatases (PTPs) are 

Figure 1. Redox homeostasis plays key roles in the regulation of cell signaling, development, health, and disease. Examples
of recent research on cellular redox homeostasis in the areas of cellular signaling, development, and pathology. Created with
BioRender.com. TRP14: Trx-like protein of 14 kDa; Trx1: thioredoxin-1; PTP1B: protein tyrosine phosphatase-1B; SH: thiol;
SOX: SRG-related high mobility group-box transcription factors; NAC: N-acetyl cysteine; NQO1: NADPH-quinone oxidase;
SOD: superoxidase dismutase; IL-6: interleukin-6; ROS: reactive oxygen species; DHA: dehydroascorbate; Gpx3: glutathione
peroxidase 3; APC: adenomatous polyposis coli protein; TrxR1: thioredoxin reductase; Gsr: glutathione reductase; GSH:
reduced glutathione.

2. Cellular Signaling

Reactive oxygen species (ROS) are strong oxidants that include molecular oxygen
(O2) and the sequential series of 1-electron reduction steps of O2 leading to species more
oxidized than water, in order: superoxide radical (•O2−), hydrogen peroxide (H2O2), and
hydroxyl radical (HO•). These are generated in aerobic organisms primarily as a collateral
result of utilizing oxygen as the final electron acceptor in the electron transport chain (ETC)
to produce energy [6] or as a result of other metabolic processes, including glycolysis or
β-oxidation of fatty acids. However, in other cases, ROS can be deliberately generated
by the regulated activities of NADPH oxidoreductases [7]. ROS can act as secondary
messengers by, for example, reversibly oxidizing cysteine residues in proteins, resulting
in their activation or inactivation [8]. They can also alter DNA and often transit cellular
membranes via aquaporins or other channels [9–11].

ROS are well-known regulators of signaling cascades by, for instance, inhibiting phos-
phatases or inhibiting antioxidant proteins normally bound to kinases [12]. Highly reactive
cysteine residues in the active sites of protein tyrosine phosphatases (PTPs) are sensitive to
oxidative inhibition by hydrogen peroxide (H2O2). Moreover, recent studies have shown
that some protein-cysteine residues might be even more susceptible to inactivation by
persulfides or polysulfides as compared to by H2O2, resulting in a cysteine-persulfide (Cys–
SSH) or cysteine-polysulfide (Cys–SnSH), and that this is a relatively abundant modification
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of native proteins in cell cultures and in mouse liver [13]. Reaction of a cysteine-thiol (-SH)
with H2O2 forms an unstable sulfenic acid (–SOH) residue that usually will spontaneously
react with another vicinal thiol to form a disulfide (-S-S-). Per/poly-persulfidation of a
cysteine-thiol also forms a disulfide bond (Cys–S–SH). In either case, the disulfide bond is
readily reversible by disulfide-reductase enzymes of the thioredoxin (Trx) or glutaredoxin
(Grx) families [13]. In the presence of higher concentrations of H2O2, a cysteine-thiol can
overoxidize to sulfinic- (–SO2H) or sulfonic (–SO3H)-acid species, which cannot be reduced
by disulfide reductases [14]. However, if a cysteine is first modified by per/polysufidation,
subsequent overoxidation by high concentrations of H2O2 will result in the formation of a
cysteine-per/polysufinic (Cys–SnSO2H) or -sulfonic acid (Cys–SnSO3H), which each, in
addition to the terminal overoxidized sulfur, retain a disulfide linkage involving the proxi-
mal cysteine sulfur residue. Importantly, this disulfide linkage remains a good substrate
for Trx and Grx disulfide reductases [13], allowing this type of overoxidation to be re-
paired. Indeed, it has been suggested that cells might retain a pool of some critical enzymes
with their active site cysteine residue in a per/polysulfidated state specifically to facilitate
recovery from oxidative insults [13]. In a very recent advance to our understanding of
redox regulation within cells, a study presented by Dagnell et al. shows that regulatory
inhibition of the PTP active site cysteine by either H2O2 oxidation or per/polysulfidation
might require bicarbonate as a cofactor [15].

In order to maintain redox homeostasis in changing conditions, cells possess stress-
response systems that are sensitive to cytosolic levels of either ROS or electrophilic toxins.
Many of the downstream effector genes in these systems contain a sequence known as
the antioxidant response element (ARE), which is recognized by the transcription fac-
tor Nrf2, the master regulator of the endogenous antioxidant response. Nrf2, in turn,
is post-translationally regulated by the cytosolic Nrf2-interacting protein Keap1, which
determines whether Nrf2 will be directed to the proteasome by the E3 ubiquitin ligase Cul3
and degraded or be allowed to transit to the nucleus where it will heterodimerize with
small Maf proteins and activate ARE-containing genes [16,17]. In addition to regulating
the expression of antioxidant enzymes, Nrf2 controls the expression of enzymes more pe-
ripherally associated with maintaining redox homeostasis. This includes downregulating
anabolic enzymes that would compete with the redox systems for NADPH, upregulating
exporters that might help eliminate electrophilic toxins from the cell, and modulating
enzymes involved in controlling heme metabolism and iron homeostasis [18]. In addition
to iron, other trace metals such as selenium (Se), copper (Cu), and zinc (Zn) are essential to
the function of antioxidant enzymes [19]. Recently, it has been shown that Zn-dependent
modulation of Nrf2 regulates the cellular levels of some of these trace metals. Interestingly,
in cell culture models, N-acetylcysteine (NAC), a commonly prescribed antioxidant with
metal-chelating properties, inhibited Zn-induced activation of Nrf2 by depleting cellular
pools of Zn and Cu. However, in mouse models, the effects of NAC administration showed
tissue-specific effects, with Cu, Zn, and Nrf2 target gene activity decreasing in the liver and
spleen, yet conversely increasing in the duodenum [20].

3. Development

To understand the impact of redox regulation during development, special attention
needs to be paid to redox spatiotemporal interactions. For instance, in plants, the fine
interplay between phytohormones, redox signaling, and cell metabolism enables the
dynamic regulation of cell growth and division [21]. Differences in cytosolic and nuclear
ROS levels control apical root growth through the renewal and differentiation of stem
cells [22]. ROS also act as a positive signal to promote root hair growth and control the
germination of seeds [23]. In contrast, primary root development is regulated majorly by
reduced glutathione (GSH) [24]. Both the GSH and the thioredoxin system control bud
dormancy, burst, and flowering [25].

In mammals, there is a change from ATP production by oxidative phosphorylation
to ATP production by glycolysis during the transition to blastocyst stage, which might
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reflect a shift to a more reduced state [26]. Additionally, decreased levels of GSH appear
to increase during oocyte maturation and are also associated with favorable outcomes in
fertilization and in vitro embryonic development [27]. In contrast, constant activation of
the antioxidant transcription factor Nrf2 in mice is postnatally lethal [28]. However, an-
tioxidant supplementation has been shown to rescue newborn lethality in mice presenting
lung maturation defects and respiratory insufficiency [29]. Adding to our understanding
of the roles of redox modulation in development, Lee and colleagues [30] have shown the
importance of the antioxidant enzyme glutathione peroxidase-3 (GPx3) in posterior verte-
brate embryogenesis in frogs, expanding the pool of data demonstrating the implication of
redox processes in segmentation and organogenesis.

4. Disease

The involvement of ROS and reactive nitrogen species (RNS) in various human dis-
eases is well established, yet their exact contribution to the development of the different
pathogenies is far from elucidated. In fact, the literature often presents them as a double-
edged sword with both beneficial and deleterious effects [4]. For instance, the production of
ROS during inflammatory responses plays a critical role in microbial defense, yet excessive
or inappropriately regulated ROS production can also damage tissue. Indeed, sustained
ROS production has been reported in a number of inflammatory diseases, with consequent
exhaustion of antioxidant systems [31,32]. Clinical interventions with antioxidant supple-
mentation to compensate for excessive ROS production in renal disease have proven more
difficult than expected, with highly variable results depending on the compound used and
stage of the disease [33]. Recently, promising preclinical results have been reported by
using dehydroascorbate (DHA) as a modulator of the Nrf2 response to dampen oxidative
damage in a model of acute pancreatitis [34], but these findings are yet to be translated
to clinical settings. Interestingly, another report (29) highlights the caveat of antioxidant
treatments sometimes exacerbating oxidative stress-induced pathologies. In this study, the
researchers used a mouse model of acute spontaneous liver failure associated with hepatic
reductase system deficiency to show that ascorbate supplementation, despite diminishing
DNA damage and oxidative stress markers, also dramatically depleted hepatic GSH levels
and significantly increased the probability of acute liver failure [35]. This counterintuitive
notion of antioxidants worsening oxidative stress-related pathologies has been similarly
shown in the context of arthritis, wherein a gene polymorphism associated with a reduced
oxidative burst response was linked to an autoimmune mechanism [36].

ROS-damaging effects are often associated with age-related disorders, such as neu-
rodegenerative disorders, and cancer [4]. Even there, however, and perhaps more notably
in the latter, clinical interventions aiming to compensate for excessive oxidative damage
by dietary supplementation of antioxidants have had mixed effects [37–42]. To further
complicate the picture, there is a lack of consensus in preclinical data. However, an in-
creasing number of studies show that antioxidants can benefit the progression of cancer in
endogenous models of cancer [43–48]. In fact, loss-of-function mutations in Keap1 resulting
in constitutive Nrf2 activation have been observed in a substantial portion of lung cancer
patients [49,50] and validated as driver mutations in mouse models of cancer [51,52], show-
ing that tumor cells find ways to hijack the endogenous antioxidant systems. In a study
conducted by Zou and colleagues, a mouse model of familial colorectal cancer was used in
conjunction with dietary supplementation of either NAC or vitamin E, which revealed that
antioxidant supplementation in ApcMin/+ mice enhanced parameters of intestinal tumor
progression without affecting tumor initiation [47].

One plausible reason for the disappointing effects of dietary interventions with an-
tioxidants could be that the antioxidants used were not reaching one of the major sites of
ROS production in the cells, the mitochondria [53]. Hence, new strategies aiming to design
redox compounds that would target the mitochondria have emerged [54]. Interestingly,
these mitochondria-targeted compounds have shown promising results in some areas of
disease, such as cardiovascular and neurodegenerative disorders [55–59]. Nevertheless,
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some studies show that, in different preclinical tumor models, these drugs can have diverse
and often unexpected impacts on cancers [60–63]. For instance, a recent report using MitoQ
and MitoTEMPO, two independent mitochondria-targeted antioxidants in endogenous
mouse models of malignant melanoma and lung cancer, as well as in a panel of human
cancer cell lines, showed no signs of antitumorigenic effects [60].

5. Conclusions

It is our hope that this short review on cellular redox homeostasis by presenting some
of the latest advances on the topic, will give the reader an up-to-date overview of the
field and highlight both the complexity and the importance of redox regulation in health
and disease.
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