
The Epigenetic Regulation of
Nonhistone Proteins by SETD7: New
Targets in Cancer
Chengyao Chiang1,2†, Heng Yang2†, Lizhi Zhu2†, Chunlan Chen2, Cheng Chen2, You Zuo1*
and Duo Zheng2*

1Southern University of Science and Technology, Yantian Hospital, Shenzhen, China, 2Guangdong Provincial Key Laboratory of
Regional Immunity and Diseases, Department of Cell Biology and Genetics, Department of Pharmacy, Shenzhen University
International Cancer Center, School of Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s
Hospital (Shenzhen Institute of Translational Medicine), Shenzhen University, Shenzhen, China

Epigenetic modifications are essential mechanism by which to ensure cell homeostasis.
One such modification is lysine methylation of nonhistone proteins by SETD7, a mono-
methyltransferase containing SET domains. SETD7 methylates over 30 proteins and is
thus involved in various classical pathways. As such, SETD7 has been implicated in both
the basic functions of normal tissues but also in several pathologies, such as cancers. In
this review, we summarize the current knowledge of SETD7 substrates, especially
transcriptional-related proteins and enzymes, and their putative roles upon SETD7-
mediated methylation. We focus on the role of SETD7 in cancers, and speculate on
the possible points of intervention and areas for future research.
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1 INTRODUCTION

The alteration of the gene expression profile in somatic cells is the main cause of human diseases.
Such alterations can be driven by DNA methylation, posttranscriptional modification (PTM) of
proteins, and noncoding RNAs (Esteller, 2007)—otherwise known as epigenetic modifications. Of
the various PTMs, phosphorylation and acetylation help to modulate kinase activity and signal
transduction. Ubiquitination and sumoylation regulate protein stability, while methylation
influences protein interactions, function, stability, activity, structure and subcellular location
(Wang et al., 2017). Many nonhistone proteins are also methylated; for example, lysine (K) can
be mono-, di- or tri-methylated, while arginine (R) can be mono- or di-methylated (Pek et al., 2012).
We are aware of around more than 50 lysine methyltransferases, 20 lysine demethylases (Han et al.,
2019) and 10 proteins arginine methyltransferases (Wu et al., 2021) that are involved in protein
methylation, either as a “writer” (adding methyl groups), a “reader” (recognizing the methyl signal),
or an “eraser” (removing methyl groups). These proteins regulate several biological processes in both
health and disease contexts.

SET domain containing lysine methyltransferase 7 (SETD7) is a 40 kDa protein containing 366
amino acids that is responsible for transferring the monomethyl group to lysine of its substrates from
cofactor S-adenosylmethionine (AdoMet) (Fick et al., 2016). Similar to most lysine
methyltransferases, the SET domain is required for catalysis, with histidine 297 the critical site
for its methyltransferase activity (Nishioka et al., 2002). The methylated lysine targeted by SETD7
usually follows after the consensus motif of [K/R]-[A/S/T] (Del Rizzo and Trievel, 2011). SETD7
contains three membrane occupation and recognition nexus (MORN) motifs in the N-terminal
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region, which likely mediate SETD7’s interaction with the plasma
membrane when the protein is not in the nucleus (Bivona et al.,
2006).

SETD7, also known as SET7/9, KIAA1717, or KMT7, was first
identified as a histone H3-lysine 4-specific (H3K4)
methyltransferase that changes the affinity between histone 3
and double-stranded DNA to regulate gene expression (Wang
et al., 2001). Since then, other have showed that SETD7 depletion
has little impact on H3K4 methylation status in certain
circumstances (Ea and Baltimore, 2009; Gaughan et al., 2011;
Lehnertz et al., 2011), implying a more critical role of SETD7 on
nonhistone proteins. SETD7 can modify many substrates,
including histones and nonhistone transcription factors,
transcriptional coactivators, hormone receptors, DNA
methyltransferases, and other histone methyltransferases. The
role of SETD7 is determined by the function of its substrates.
Indeed, more than a dozen SETD7 nonhistone substrates have
now been discovered (Keating and El-Osta, 2013).

The fates of the proteins modified by SETD7-mediated lysine
methylation are diverse. They range from nucleus to cytoplasm
and are implicated in gene transactivation, signaling transduction
and regulation of hemostasis. Here, we discuss the known SETD7
substrates and their putative roles when methylated by SETD7 in
regulation of cell cycle, apoptosis and response to external
stimulation in human cancers.

2 SETD7-MEDIATED SUBSTRATE
MODIFICATIONS AND THEIR ROLE IN
CANCER
2.1 Cell Cycle and Apoptosis Regulation
Cell cycle progression and cell apoptosis are coupled intimately.
These important decisions of cell proliferation or cell death are
likely to be controlled by more than one signal and are necessary
to ensure a proper cellular response. Some proteins can involve in
both cell division and programmed cell death, such as p53, pRb,
E2F, which are responsible for reacting cellular stresses and
regulating checkpoint-associated proteins, including CDK2
(Engeland, 2018). Basically, cell cycle is regulated by
checkpoints which link the cell cycle to apoptotic pathways
and ensure that cell cycle events toward the correct order,
otherwise initiating cell apoptosis. Data thus far, programmed
cell death and cell cycle share common molecular mechanisms,
which are modulated by SETD7 via its methyltransferase activity.

TP53 and SIRTUIN 1 (SIRT1)
TP53, a tumor suppressor regulating cell cycle and controlling cell
fate, is highly frequent loss-of-function in most of cancers, which
is facilitated to cancer progression (Blagih et al., 2020). The TP53
protein can directly binds with transcription factors, including
Sp1, TBP and NF-Y, to suppress genes expression (Liebl and
Hofmann, 2021). Additionally, TP53 influences CDK-cyclin
interaction through up-regulation of its downstream genes,
such as CDKN1A (encode p21Cip1/Waf1 protein), resulting in
down-regulation of cell cycle-associated genes (Hu et al.,
2021). On the other side, several pro-apoptotic BCL-2 family

members, including BAX, BBC3 (PUMA) and PMAIP1 (NOXA)
are activated by TP 53, which leads to cell apoptosis (Parrales and
Iwakuma, 2015). SETD7-mediated methylation of TP53 K372
potentiates apoptosis and facilitates the transcriptional initiation
of TP53-downstream genes p21Cip1/Waf1 (Chuikov et al., 2004), to
decelerate cell cycle progression. Others showed that murine
TP53 K369 is also a potential target residue for methylation
by SETD7.Methylation of this residue promotes TP53 acetylation
by Tip60 and potentiates the expression of downstream genes,
including p21Cip1/Waf1 and PUMA, in vivo (Kurash et al., 2008;
Campaner et al., 2011). Methylation-dependent TP53 activation
indicates a tumor suppressor role for SETD7 in cancer cells in
both humans and mice.

Some epigenetic modifiers of TP53 are also reported as a
substrate of SETD7, such as SIRT1 which is a nicotinamide
adenine dinucleotide-dependent deacetylase, involving in
various cell metabolic processes (Chen et al., 2021). SIRT1 is
generally considered as an oncoproteins in leukemia and prostate
cancer due to suppressing several tumor suppressors, such as
TP53, via its deacetylase activity (Yousafzai et al., 2021). However,
SIRT1-mediated regulation of TP53 is inhibited by SETD7-
dependent methylation at K233, K235, K236 and K238 on
SIRT1. However, multi-methylation does not influence SIRT1
deacetylase activity, which may induce a conformational change
of SIRT1 to avoid TP53 binding (Liu et al., 2011). In addition to
showing that SETD7 directly methylates TP53, the researchers
showed an alternative way in which the transactivation capacity
of TP53 can be enhanced during the DNA damage response.
Taken together, SETD7 serves as a tumor suppressor to enhance
TP53 activity by a novel manner through abolishment of SIRT1
and TP53 interaction.

E2 Promoter-Binding Factor 1 (E2F1) and
Retinoblastoma Tumour Suppressor Protein (pRB)
E2F1 is a transcription factor responsible for the expression of
DNA damage-induced genes, such as CCNE1 which accelerates
DNA replication and progression from the G1 to S phase of the
cell cycle (Fouad et al., 2020). E2F1 also up-regulates downstream
pro-apoptotic genes, including TP73, and activates programmed
cell death through TP53-independent manner (Udayakumar
et al., 2010). K185 on E2F1 is methylated by SETD7, which
prevents E2F1 accumulation during DNA damage and activation
of its proapoptotic target gene TP73 via destabilization E2F1 by
ubiquitination and degradation (Kontaki and Talianidis, 2010).
However, other study reveals that SETD7 and LSD1 regulate
E2F1-mediated apoptosis upon DNA damage. Methylation of
K185 on E2F1 by SETD7 leads to E2F1 stabilization and up-
regulation of proapoptotic genes TP73 and BIM, whereas,
SETD7-mediated effects are reversed by LSD1 (Xie et al.,
2011). Interestingly, other study showed a negative correlation
between E2F1 and SETD7 in vivo and in clinical specimens:
Overexpression of E2F1 leads to SETD7 downregulation and
EGFR and Snail upregulation in breast cancer cells (Montenegro
et al., 2016). In the case as regulating its substrate, SETD7 is
modulated by E2F1 either, which reveals a novel regulatory
mechanism in SETD7 expression. Additionally, the threshold
of expression of both E2F1 and SETD7 is indicated as a critical
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event to control the cell fate (Lezina et al., 2014). Since, the
controversial role of E2F1 and its fully activity might also be
determined the ubiquitinated level or types after SETD7-
mediated methylation.

pRb functions in early cell cycle control by negatively
regulating entry into S-phase by suppression of E2F1. In this
way, pRb serves as a tumor suppressor, as well as usually being
functionally inactivated in retinoblastoma, osteosarcoma, lung,
breast and hepatic cancers (Giacinti and Giordano, 2006).
Growth control by pRb is influenced by CDK

phosphorylation, in which serial phosphorylation events that
drive cell cycle transitions regulate pRb-dependent cell cycle
progression (Mandigo et al., 2022). SETD7-mediated pRb
methylation at K873 is required for pRb-dependent cell cycle
arrest, transcriptional repression and pRb-dependent
differentiation possibly by enhancing the interaction between
pRb and the heterochromatin protein HP1 (Munro et al., 2010).
The same group also demonstrated a novel mechanism in the
regulation of E2F1 transactivation in which K810 methylation on
pRb by SETD7 is essential for impeding cyclin/CDK recognition

FIGURE 1 | Roles of SETD7 in regulation of cell cycle, apoptosis and external stimulations.
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and the subsequent phosphorylation of the associated serine
residue. As a result, pRb remains in the hypophosphorylated,
growth-suppressing state (Carr et al., 2011). These data suggest
that SETD7 serves as a tumor suppressor and cooperates with
pRb in cell cycle control.

Forkhead Box O3 (FOXO3)
FOXO transcription factors have a critical role in longevity,
tumor suppression and oxidative stress-induced neuronal cell
death by regulating the expression of various target genes (Fasano
et al., 2019). Activation of FOXO3 induces cell cycle arrest and
promotes apoptosis in gastric cancer (Li M. et al., 2020), and
pancreatic cancer (Usami et al., 2020). Other study shows that
FOXO3 interacts with ERα and inhibits its transcriptional activity
to suppress breast cancer progression (Zou et al., 2008). In
addition, low expression of FOXO3 is associated with poorly
prognostic outcome in estrogen-dependent breast cancer (Yin
et al., 2020) and colorectal cancers (Bullock et al., 2013). FOXO3-
mediated transcription and oxidative stress-induced neuronal
apoptosis are negatively regulated by SETD7-dependent K270
methylation, as well as downregulating proapoptotic genes BIM
(Xie et al., 2012). Interestingly, others showed that K271 on
FOXO3 was methylated by SETD7, which decreases FOXO3
protein stability while moderately enhancing FOXO3-
dependent activation of pro-apoptotic genes, which may in
turn affect FOXO3’s ability to promote tumor suppression
(Calnan et al., 2012). The role of SETD7 in methylation of
K270 and K271 of FOXO3 is opposite and the detail
molecular mechanism is demanded more evidences to clarify.

The functions of SETD7 to its substrates and its effects in cell
cycle and apoptosis regulation was summarized in Figure 1. For
some controversial substrates, such as E2F1, FOXO3, whether
tissue-specific interacting proteins or cooperation of other
epigenetic modifications involved in SETD7-mediated
regulation are such interesting issues, which is worth for
further investigation in order to elucidate the exactly
physiological effects of SETD7-substrates axis.

2.2 Regulation of External Stimulation
The corresponding responses of cells to various stimuli from
micro-environment are essential strategies to homeostasis.
Generally, transcription factors-mediated genes expression is
responsible for implementing such reactions, for example,
HIF-1α is activated by hypoxia stress and up-regulates VEGF
(encode vascular endothelial growth factor) and EPO (encode
erythropoietin) to overcome hypoxic condition (Plastino et al.,
2021). Besides, cellular factors, such as cytokines, activate their
corresponding receptors and downstream transcription factors or
regulators, including SMADs (Zhang T. et al., 2020), STATs
(Verhoeven et al., 2020), or NFκB (Zinatizadeh et al., 2021). Once
such cellular responses might play pathological roles if the
modulatory mechanisms are dysfunctional, as well as SETD7
showing its significant part among these regulatory processes.

Yes-Associated Protein and Beta-Catenin
YAP, a transcriptional co-activator belonged to Hippo pathway,
is required for the growth of embryonic tissues, wound healing,

and organ regeneration (Zanconato et al., 2016b). Activated YAP
translocates into the nucleus and cooperates with transcriptional
co-activator PDZ-binding motif (TAZ) to up-regulate
proliferative- and anti-apoptotic-related genes, which is
regulated by cell-intrinsic and -extrinsic signals, such as
oxidative stress or nutrient-depletion (Koo and Guan, 2018;
Moya and Halder, 2019). Unsurprisingly, YAP is
hyperactivated in human malignancies (Moroishi et al., 2015),
which can reprogram cancer cells into cancer stem cells and
promote tumor initiation, progression and metastasis (Nguyen
and Yi, 2019). Thus, YAP is emerging as a potentially therapeutic
target for clinical application (Zanconato et al., 2016a). The
monomethylation of K494 on YAP by SETD7 is critical for
YAP cytoplasmic retention. This event thus represents a
methylation-dependent checkpoint in the Hippo pathway
(Oudhoff et al., 2013). As such, SETD7-dependent methylation
of YAP facilitates Wnt-induced nuclear accumulation of β-
catenin, linking the Wnt/β-catenin and Hippo/YAP pathways
during intestinal regeneration and tumorigenesis (Oudhoff et al.,
2016). These data indicate the triple layered regulation and
crosstalk of two signaling pathways in an intestinal model.

On the other hand, β-catenin, a positive regulator in the
canonical Wnt signaling pathway (Zhang and Wang, 2020), is
activated by Wnt protein binding with frizzled receptors and
translocates into the nucleus to participate in the transactivated
complex (Cheng et al., 2019), promoting cancer progression by
upregulation of proliferative-related genes (Zhang and Wang,
2020). Absence of Wnt stimulation, β-catenin is strictly
modulated by glycogen synthase kinase-3 beta (GSK-3β) via
S33 and S37 phosphorylation, which is recognized by E3 ligase
β-TrCP, leading to ubiquitin-dependent proteosomal
degradation (Valenta et al., 2012). Accumulating evidences
refer oncogenic role of β-catenin in multiple human cancers,
including solid tumors and hematological malignancies (Clevers
and Nusse, 2012). Under condition of oxidative stress, SETD7
interacts with β-catenin and methylates it at K180, which
promotes its phosphorylation by GSK3-β and subsequent
degradation. The result is the suppression of downstream
c-myc and cyclin D1 and inhibition of cell proliferation (Shen
et al., 2015). However, this model currently lacks corresponding
animal model and supportive clinical evidence. SETD7 is indeed
emerging as a negative regulator of the Wnt/β-catenin pathway
depending on the tissue or physical context. Notably, increasing
epigenetic modifications on β-catenin is illustrated (Valenta et al.,
2012), thus, it is interesting and necessary to be addressed that
various of modifications regulate the same protein in certain
physiological status.

NF-κB
NF-κB, a critical transcription factor in broad range of
physiological functions, including inflammation, cell growth
and programmed cell death, mainly retains in cytoplasm.
Activated NF-κB, formed by RelA (also called p65) and p50
subunit (Zinatizadeh et al., 2021), translocates into the nucleus
and up-regulates target genes after diverse extracellular stimuli,
including TNF-α (Hoesel and Schmid, 2013), whichmight benefit
for cell proliferation and survival in leukemia, melanoma, liver,
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breast, prostate and colorectal cancers (Dolcet et al., 2005). K314
and K315 on RelA can be methylated by SETD7, leading to
destabilization of RelA in a ubiquitination-mediated manner
(Yang et al., 2009), which results in downregulation of tumor-
associated genes, such as IL-6, IL-8 and NOS-2. A contradictory
role of SETD7 in the NF-κB pathway has also been described in
which K37 on RelA was methylated, leading to stabilization of the
RelA-DNA complex and enhanced expression of NF-κB-
regulated genes (Ea and Baltimore, 2009). Similar results were
also shown in diabetes models in which SETD7 interacts with
RelA, facilitating the nuclear translocation of RelA and promoted
function of NF-κB to transactivate downstream genes (Fujimaki
et al., 2015; Chokpaisarn et al., 2017). NF-κB regulation by
SETD7 might depend on the cellular context, tissue specificity
or particular physiological condition, such as in cancer cells or
diabetes model.

Hypoxia Inducible Factor
Hypoxia inducible factor-1α (HIF-1α) is a transcription factor
involved in adaption of low oxygen concentration. Under
normoxia, HIF-1α is strictly modulated by an E3 ligase von
Hippel-Lindau (VHL), which induces ubiquitination-
dependent proteasomal degradation of HIF-1α (Semenza,
2003). Activated HIF-1α translocates into the nucleus and
activates targeting genes, which participates in tumor
angiogenesis, metastasis, invasion and glucose homeostasis in
various cancer cell lines (Elzakra and Kim, 2021; Satija et al.,
2021). Here, K32 methylation of HIF-1α by SETD7 promotes
HIF-1α degradation in the nucleus and thus the inhibited
expression of downstream genes in a proline hydroxylation-
independent manner. This effect can be restored upon
exposure to the demethylase LSD1 (Kim et al., 2016). Both
HIF-1α and HIF-2α are reported substrates of SETD7 and are
methylated on K32 and K29, respectively, due to their
homologous of sequence. Interestingly, SETD7 expression is
suppressed under hypoxic conditions (Liu et al., 2015). Others
have reported that SETD7 is a negative regulator of HIF-1α and
downregulates HIF-1α target genes, such as GLUT1, LDHA,
PGK1, EPO, PKM2 and VEGF, which are upregulated after
SETD7 inhibition (Li et al., 2021; Xiaoshi et al., 2021).

Esrtogen Receptor and Androgen Receptor
ER and AR, ligand-dependent transcription factors, are activated
by sex hormones and responsible for the regulation of cell
proliferation, survival and differentiation (Shafi et al., 2013;
Berkel and Cacan, 2021) in breast (Anestis et al., 2020) and
prostate cancer (Tan et al., 2015), respectively. As most
transcription factors, activated ER or AR translocates into the
nucleus and recruits other epigenetic enzymes, such as histone
acetyltransferase or methyltransferase, to transactivate targeting
genes expression (Waddell et al., 2021). Unsurprisingly, aberrant
expression ER and AR are risk factors in many cancers, including
prostate, breast and lung cancers (Burstein, 2020). Anti-ER or AR
approaches thus seem as effective options for such type of
cancers. Here, SETD7-mediated methylation of K302 on ER
ensures protein stability and promotes DNA binding activity
and the expression of ER-downstream genes, such as PS2 and

progesterone receptor (PgR), in breast cancer. These results imply
that lysine methylation of ER facilitates to prevent ubiquitination
on the same residue by E3 ligases (Subramanian et al., 2008).
Similarly, SETD7 interacts directly with AR and enhances AR
transcriptional activity by methylating its K632 residue (Gaughan
et al., 2011), which is not only plays a proliferative role in prostate
cancer but is also involved in TNFR and PTEN/PI3K/AKT
signaling (Wang et al., 2018). SETD7 thus seems to be a
coactivator of hormone receptors, and in this way helps to
promote carcinogenesis. Therefore, ER or AR combines with
SETD7 might serve as the panel of prognostic markers or
therapeutic targets for patients with such cancers.

Gloma-Associated Oncogene Homolog
GLIs, a family of zinc finger transcription factors, serve as nuclear
mediators of the Hedgehog pathway and regulate genes essential
for various stages of tumor development and progression (Naruse
et al., 2010; Katoh, 2019). Without ligand stimulation, GLIs are
suppressed by suppressor of fused (SUFU), leading to
cytoplasmic retention (Sasai et al., 2019). Aberrant activation
of Hedgehog-GLI axis is reported in human malignancies,
including breast, pancreatic, lung and ovarian cancers, which
resulted in upregulation of oncogenic genes (Matissek and
Elsawa, 2020), such as BCL2, CCND1, MYCN, NANOG, SOX2
and SNAL1. As such, GLI family members might be therapeutic
targets in various cancers (Niewiadomski et al., 2019). In previous
study, GLI3 K436 and K595 residues are methylated by SETD7,
which stabilizes GLI3 protein and in turn activates the Sonic
Hedgehog pathway, resulting in the expression of downstream
genes, including Ptch1. These genes promote proliferation,
invasion and metastasis of non-small-cell lung cancer cells (Fu
et al., 2016). To date, however, a clinical correlation between
SETD7 and GLI3 expression at protein level is lacking, which is
still fuzzy to figure out the significance of GLI3-dependent
oncogenesis by SETD7.

Small Mothers Against Decapentaplegic
SMADs, critical regulators participated in transforming growth
factor-beta (TGF-β) signaling, have key roles in development,
carcinogenesis and fibrogenesis (Derynck and Zhang, 2003).
After receptor activating, SMAD2, 3, and 4 translocate into
the nucleus to turn on oncogenic genes, including SNAIL and
SLUG (Zhang T. et al., 2020). While SMAD7 serves as a negative
modulator to promote degradation of TGF-β receptor by
recruiting E3 ligase SMURF1/2 (Smad ubiquitin-related
factor1/2) (Colak and Ten Dijke, 2017). Epigenetic
modification on K70 of SMAD7 by SETD7-mediated
methylation decreases the protein stability of SMAD7 by
ubiquitination-dependent manner via Arkadia E3 ligase in
mouse models of pulmonary fibrosis. In SETD7-deficient mice,
TGF-β-induced lung fibrosis is highly ameliorated (Elkouris et al.,
2016), which indicates SETD7 is a positive regulator in TGF-β
signaling, even plays an oncogenic role in TGF-β-mediated
cancers, such as breast cancer and glioblastoma (Colak and
Ten Dijke, 2017). As such, SETD7 might be a potential
therapeutic target for lung fibrosis or cancers. Others reported
that SETD7 interacts with SMAD3, but not SMAD2, to ensure
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TABLE 1 | SETD7-regulated proteins and methylation sites.

Substrate Methylation Site Sequence Around Methylation Site Study Model Consequence Role of SETD7 References

−5 −4 −3 −2 −1 0 1 2 3 4 5

Transcriptional-related factors
TP53 K372 S H L K S K K G Q S T 293F, U2OS (Osteosarcoma), H1299 (NSCLC) Enhancement of transactivation Tumor suppressor Chuikov et al. (2004)
NF-κB

(Rel A)
K314, K315 F K S I M K K S P F S MEFs (Mouse embryonic fibroblast), U2OS (Osteosarcoma),

A549 (NSCLC)
Protein degradation Tumor suppressor Yang et al. (2009)

K37 M R F R Y K C E G R S HEK293T Stabilization of RelA-DNA complex Oncoprotein Ea and Baltimore,
(2009)

HIF-1α K32 R S R R S K E S E V F Hela (Cervical cancer), RCC4 (Kidney cancer) Protein degradation Tumor suppressor Kim et al. (2016)
HIF-2α K29 R C R R S K E T E V F RCC4 (Kidney cancer) Suppression of transactivation Tumor suppressor Liu et al. (2015)
ER K302 M I K R S K K N S L A Breast cancer Protein stabilization Oncoprotein Subramanian et al.

(2008)
AR K632 G A R K L K K L G N L Prostate cancer Enhancement of transactivation Oncoprotein Gaughan et al. (2011)
Gli3 K436 H N K R S K I K P D E NSCLC Protein stabilization Oncoprotein Fu et al. (2016)

K595 H E G C N K A F S N A
E2F1 K185 I A K K S K N H I Q W NSCLC Protein stabilization/degradation Controversial Lezina et al. (2016)
β-catenin K180 V H Q L S K K E A S R Hela (Cervical cancer) Protein degradation Tumor suppressor Shen et al. (2015)
SMAD7 K70 A V R G A K G H H H P Lung fibroblasts, Hela (Cervical cancer) Protein degradation Fibrosis suppressor Elkouris et al. (2016)
YAP K494 V L A A T K L D K E S Mice intestinal tumor Cytoplasmic retention Oncoprotein Oudhoff et al. (2013)
TAF10 K189 S R S K S K D R K Y T HEK293, F9 Embryonic carcinoma Enhancement of TAF10-RNA

polymerase II complex
Controversial Kouskouti et al, (2004)

FOXO3 K270 G R A A K K K A A L Q HEK293T Protein degradation Neural apoptosis
suppressor

Xie et al. (2012)

K271 R A A K K K A A L Q A HEK293T, NIH-3T3 Protein degradation/Moderately
enhancement of transactivation

Tumor suppressor Calnan et al. (2012)

STAT3 K140 A V V T E K Q Q M L E DLD1(Colon cancer) Partial repression of transactivation Tumor suppressor Yang et al. (2010)
SOX2 K42 S P D R V K R P M N A PA-1 (Ovarian teratocarcinoma) Protein degradation Tumor suppressor Zhang et al, (2018)

K117 P R R K T K T L M K K
pRb K810 Y I S P L K S P Y K I Hela (Cervical cancer), CC42 (Mouse B cell hybridoma), C2C12

(Mouse myoblast), U2OS and SAOS2 (Osteosarcoma)
Protein stabilization Tumor suppressor Carr et al. (2011)

K873 P P K P L K K L R F D Munro et al. (2010)

Substrate Methylation Site Sequence Around Methylation Site Study Model Consequence Role of SETD7 References

−5 −4 −3 −2 −1 0 1 2 3 4 5

Enzymes
SUV39H1 K105 R H H R S K T P R H L MEFs (Mouse embryonic fibroblast), H1299 (NSCLC) Inhibition of enzyme activity Tumor suppressor Wang et al. (2013)

K123 L V Q K A K Q R R A L
ARTD1/

PARP1
K508 L S K K S K G Q V K E U2OS (Osteosarcoma), MEFs (Mouse embryonic fibroblast) Facilitation of DNA repair Oncoprotein Kassner et al. (2013)

RIOK1 K411 A S Q R T K E E R S S Colorectal and gastric cancers Protein degradation Tumor suppressor Hong et al., 2018
SIRT1 K233 L S E P P K R K K R K HEK293T, HCT116 (Colorectal cancer) Interaction with p53 Tumor suppressor Liu et al., 2010

K235 E P P K R K K R K D I
K236 P P K R K K R K D I N
K238 K R K K R K D I N T I

PCAF K89 S A P R A K K L E K L HEK293, U2OS (Osteosarcoma) Nuclear localization Controversial Masatsugu and
Yamamoto, (2009)

DNMT K142 T P R R S K S D G E A Breast cancer Protein degradation Tumor suppressor Esteve et al. (2009)
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protein stability, which is beneficial for increasing of collagen
contractility, as well as wound healing in renal fibroblast
(Shuttleworth et al., 2018). The effects of SETD7 on various
SMAD proteins thus seem to be diverse, which is determined by
unique sequence and structure of each protein, or interacting
proteins in the same protein family.

Signal Transducer and Activator of Transcription 3
STATs, a family of cytoplasmic transcription factors shared an
overall general structure, are responsible for responding to
cytokine stimulation (Bose et al., 2020). Among them, STAT3
is involved in numerous biological processes, including cell
proliferation, survival, differentiation, and angiogenesis (Xin
et al., 2020). STAT3 is hyperactivated in most human cancers,
such as prostate, breast, and ovarian cancer (Yu et al., 2014), and
is generally associated with a poor clinical prognosis (Zou et al.,
2020). Previous study showed that tyrosine phosphorylation is an
essential event for K140 methylation on STAT3 by SETD7.
Moreover, STAT3 activity and its target gene expression are
partially repressed by SETD7-mediated STAT3 methylation
when IL-6 stimulation (Yang et al., 2010). In this case, SETD7
seems to serve as both an inflammatory and tumor suppressor.

SETD7 exhibits it impact as either an oncogenic protein or a
tumor suppressor (Figure 1), thus, SETD7 is emerging as a
therapeutic target in YAP-, ER-, AR-, and GLI3-mediated
tumorgenesis. Recently, (R)-PFI-2 was identified as a first-in-
class, potent (Kiapp = 0.33 nM), selective, and cell-active inhibitor
of the methyltransferase activity of human SETD7 (Barsyte-
Lovejoy et al., 2014). (R)-PFI-2 exhibits an unusual cofactor-
dependent and substrate-competitive inhibitory mechanism by
occupying the substrate peptide binding pocket of SETD7,
including the catalytic lysine-binding channel, and by making
direct contact with AdoMet (Lenstra et al., 2018). (R)-PFI-2
showed its activity in breast cancer cell MCF7 and mouse
embryonic fibroblast in YAP-related studies (Barsyte-Lovejoy
et al., 2014) and thus might be a potential therapeutic option
for SETD7-mediated disease progression.

3 PERSPECTIVES AND CONCLUDING
REMARKS

Methylation events serve to modulate and fine tune various
cellular processes and signaling pathways (Han et al., 2019).
As we have outlined in this review, SETD7-mediated
methylation of transcription-related factors and enzymes
(Table 1) has wide-reaching effects in different cell types and
contexts. For example, SETD7 may act as either an oncogene or
tumor suppressor. Meanwhile, SETD7-mediated methylation at
different lysine residues within the same protein can even lead to
divergent outcomes in different cancer cells and contexts (Batista
and Helguero, 2018). Given the potential implications of
intervening on SETD7-mediated methylation in disease
contexts, namely cancer, researchers are keen to discover novel
SETD7 substrates. Currently, researchers can use online
prediction software of putative methylation sites combined
with the SETD7 consensus methylation sequence to explore

uncharacterized candidate proteins or isoforms of known
SETD7 substrates, as exemplified for HIF-1α and HIF-2α (Liu
et al., 2015).

Gene expression depends on not only activity of transcription
factors, but also heterochromatin status which is regulated by
some epigenetic modifiers. Besides SIRT1 we mentioned before,
SETD7-mediated methylation has significance in regulation of
such modifiers, such as suppressor of variegation 3-9 homolog 1
(SUV39H1) (Wang et al., 2013), p300/CBP-associated factor
(PCAF) (Masatsugu and Yamamoto, 2009), ADP-
ribosyltransferase diphtheria toxin-like 1 (ARTD1/PARP1)
(Kassner et al., 2013) and DNA methyltransferase (DNMT)
(Esteve et al., 2009). A multi-layered and -dimension
regulatory network of SETD7 reveals the complexity and
diversity of genetic modulation in the nucleus.

Data thus far, however, suggest that SETD7 exhibits a
suppressive pattern in breast cancer, having a negative
correlation with DNMT and E2F1 expression (Montenegro
et al., 2016). In addition, low SETD7 expression correlates
with a poor prognosis and lower survival rate in patients with
gastric cancer (Akiyama et al., 2016), colorectal cancer (Zhang S.
L. et al., 2020) and glioma metastasis (Li C. et al., 2020). On the
other hand, data from a cohort study showed a positive
correlation between SETD7 expression and the staging of
cancer progression, which also seems to serve as a serum
biomarker in colorectal cancer (Duan et al., 2018). SETD7 is
also reported to have an oncogenic character in hepatoma cellular
carcinoma, being progressively upregulated according to cancer
stage (Gu et al., 2018). Interestingly, strong nuclear staining of
SETD7 in high grade patients suggests that its subcellular
localization is a significant indicator in the development and
progression of prostate cancer (Gaughan et al., 2011), which
might associate with the role of AR in nucleus. Due to the
complexity of clinical specimens and differences among
individuals, verifying the role of SETD7 and its corresponding
substrates is unlikely in most cancer types. For this reason, the
study of SETD7 is still largely confined to cellular based research
or studies conducted in animal models.

Remarkably, SETD7 also acts as a tumor suppressor in certain
contexts and indeed is downregulated in some cancers; thus, a
method by which to elevate SETD7 expression and increase its
activity is also warranted. Berberine, an anticancer agent, is a
major botanical alkaloid that can be isolated from the root of
Rhizoma coptidis (Huanglian) (Khan et al., 2022). Berberine can
modulate various methylation- and acetylation-related enzymes
that upregulate SETD7 expression in human multiple myeloma
U266 cells in a dose-dependent manner (Wang et al., 2016).
Moreover, SETD7 upregulation by berberine promotes RelA
methylation and suppresses RelA-dependent transactivation of
miR-21 in U266 cells (Hu et al., 2013). Unfortunately, due to the
multi-bioactivity of berberine, a more specific agonist or inducer
needs to be discovered in order to avoid off-target effects.

Going forward, further studies into the physiological and
pathological effects of SETD7 are warranted to help develop
novel diagnostic, prognostic, and/or therapeutic approaches in
the cancer contexts. Although not discussed in this review,
SETD7 is also a potential target to ameliorate diabetes,
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inflammatory diseases, and aging-associated disorders (Batista
and Helguero, 2018). However, as more and more substrates of
SETD7 are discovered, researchers have to consider the effects
from known substrate of SETD7 in their models when they
find a novel candidate of SETD7, which might be as a reason
leading to the decreasing of SETD7-related articles in recent
years. According to tissue or cellular specificity, SETD7-
related studies tend to investigate multi-substrate
interactions in the same model to determine the ultimate
effects of increasing or reducing various factors. Improving
our fundamental knowledge on the mechanism of SETD7-
mediated regulation of its substrates will be extremely
informative to define tissue and cellular characteristics that
are beneficial for SETD7-associated therapies.
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