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Bone remodeling, a dynamic process in which bone formation by osteoblast is preceded
by bone resorption by osteoclast, is a vital physiological process for maintaining bone
mass and strength, imbalances in which could precipitate osteoporosis. Due to the
unilateral mechanism of the existing bone remodeling drugs, identifying compounds
that could regulate the balance between osteoclast and osteoblast could improve the
treatment of osteoporosis. Here, we show that compounds isolated from Wikstroemia
taiwanensis modulate osteoclast and osteoblast activities. Specifically, astragalin (1) and
kaempferol 3-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (2), besides increasing
mineral deposition, increased alkaline phosphatase activity (137.2% for 1 and 115.8%
for 2) and ESR-α expression (112.8% for 1 and 122.5% for 2) in primary human
osteoblasts. In contrast, compounds 1, 2, 3, and 5 inhibited tartrate-resistant acid
phosphatase (TRAP) activity in receptor activator of nuclear factor-κB ligand-induced
osteoclasts by 40.8, 17.1, 25.9, and 14.5% and also decreased the number of TRAP-
positive cells by 51.6, 26.8, 20.5, and 18.6%, respectively. Our findings, therefore, showed
that compounds isolated from W. taiwanensis could increase osteoblast activity while
simultaneously decreasing osteoclast activity, and hence, warrant further evaluation for
development as anti-osteoporosis agents.
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INTRODUCTION

Osteogenesis or bone remodeling is a physiological process in
which bone tissue undergoes continuous metabolism. It involves
the removal of old and damaged mineralized bone by osteoclasts
and the formation of new bone by osteoblasts on the matrix,
which further becomes mineralized in order to maintain the
overall integrity and stability of the bone (Eriksen, 2010).
Osteoblast and osteoclast cells function in small anatomic
units called basic multicellular units, where bone remodeling
such as resorption followed by mineralization takes place.
Osteoclastogenesis, the formation of the osteoclast bone-
resorbing cells, is regulated by two major factors, the receptor
of nuclear factor-κB (RANK) ligand (RANKL), and
osteoprotegerin (OPG). RANKL is produced by osteoblast and
binds to the RANK present on pre-osteoclasts leading to the
formation of a fused polykaryon, a multinuclear cell that further
matures into functional and mature osteoclasts (Crockett et al.,
2011). In contrast, OPG, which is similarly produced by
osteoblasts, is a decoy receptor of RANKL and, therefore, can
inhibit osteoclastogenesis (Chen et al., 2018). The inhibition
caused by OPG can directly affect osteoclast formation,
differentiation, activation, and survival. Hence, the appropriate
RANKL/OPG ratio is essential for balanced bone remodeling,
and since they are both produced by osteoblasts, it implies that
osteoblasts have a key role in maintaining balanced bone
remodeling (Owen and Reilly, 2018). Given the exquisitely
regulated nature of bone remodeling, imbalance in this
physiological process could lead to the onset of conditions
such as Buchem disease and osteoporosis (Niedzwiedzki and
Filipowska, 2015).

Osteoporosis is a disease of bones that is characterized by
reduced bone mass and weak bone microarchitecture, making
them susceptible to fractures. It is a critical public health threat
affecting approximately 200 million people worldwide, the
majority of whom are postmenopausal women. Although
several treatment strategies are currently available to combat
osteoporosis, they are fraught by their unilateral mechanism-
of-action (they modulate either osteoblast or osteoclast activity,
but very seldom both). Given the importance of the balance
between osteoclast and osteoblast activity in maintaining the
proper bone function, identifying therapeutic strategies that
could increase bone formation while concomitantly decreasing
bone resorption could improve the management of osteoporosis.

Plants are an essential source of drug discovery, and plants
derived from the Wikstroemia genus are known to possess
phytochemicals with numerous medicinal benefits.
Wikstroemia dolichantha Diels (Thymelaeaceae), which
contains the biflavonoid, chamaejasmine, was found to be
effective against atopic dermatitis in SKH-1 hairless mice (Kim
et al., 2019). W. chamaedaphne Meisn. has been used to treat
cough, edema, schizophrenia, hepatitis, and antifertility in
traditional Chinese medicines (Qian et al., 2020). W. indica
(L.) C.A. Mey. has been used as folk medicine to treat arthritis
and bronchitis in China for a very long time (Li et al., 2009).
Besides, compounds isolated from the Wikstroemia genus of
plants exhibited antiviral activities against the hepatitis B virus

and hepatitis C virus (Khong et al., 2012; Li et al., 2018). They also
protected PC12 neuronal cells against oxygen and glucose
deprivation/restoration-induced injury (Yao et al., 2017; Yao
et al., 2019). These studies provided compelling evidence for
the medicinal properties of Wikstroemia genus plants.
Wikstroemia taiwanensis C.E. Chang (Thymelaeaceae) (WT), a
plant endemic to Taiwan, is a shrub found in the Pingtung area of
southern Taiwan. A study showed that bioflavonoids such as
wikstaiwanones A–C, sikokianins B and C, isochamaejasmin and
methyl 4-hydroxybenzoate were isolated from the EtOAc-soluble
fraction. Sikokianin B and C exhibited antitubercular activity
against Mycobacterium tuberculosis (Chen et al., 2012). WT was
identified through our screening to possess osteogenic potential
(Supplementary Table S1). However, whether WT enhances
bone formation is unknown. Given the need to identify
compounds that simultaneously modulate both osteoblast and
osteoclast activities for the treatment of osteoporosis, we
examined the effect of WT osteoblasts activity. Our results
show that WT increases osteoblast activity while at the same
time, decrease osteoclast activity, making it an ideal candidate for
the treatment of osteoporosis.

MATERIALS AND METHODS

Reagents and General Instrumentation
Alizarin red S, ascorbic acid, bovine serum albumin, dexamethasone,
3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
(MTT), 17β-estradiol, β-glycerophosphate (β-GP), sodium
carbonate, sodium hydroxide, and trypan blue were purchased
from Merck (Darmstadt, Germany). ACS/liquid chromatographic
(LC)-grade acetone and methanol were purchased from Echo
Chemical (Miaoli, Taiwan). Cetylpyridinium chloride,
p-nitrophenyl phosphate, paraformaldehyde, sodium bicarbonate,
and sodium phosphate were purchased from Mallinckrodt
Pharmaceuticals (St. Louis, MO, United States). Dimethyl sulfoxide
(DMSO), Dulbecco’s modified Eagle’s medium (DMEM), Dulbecco’s
phosphate-buffered saline (PBS), fetal bovine serum (FBS), penicillin-
streptomycin, Triton X-100, and trypsin were purchased from
Thermo Fisher Scientific (Waltham, MA United States).
Recombinant mouse TRANCE/RANKL/TNFSF11 was purchased
from R&D Systems (Minneapolis, MN, United States). Sodium
acetate and sodium tartrate were purchased from Tokyo Chemical
Industry (TCI, Tokyo, Japan). The Synergy™ HT multi-detection
microplate reader was purchased from BioTek (Winooski, VT,
United States). The high-performance LC (HPLC) system
(consisting of an L-7100 pump and L-7455 diode array detector),
and a UV-2800 UV-VIS spectrophotometer was purchased from
Hitachi (Tokyo, Japan). The Orbitrap Elite Mass Spectrometer was
purchased from Thermo Fisher Scientific (Waltham, United States).
Nuclearmagnetic resonance (NMR) instruments of 300 and 500MHz
were purchased from Bruker (Karlsruhe, Germany).

Plant Extract Preparation
Leaves of WT were collected from Mutan, Pingtung County,
Taiwan and identified by Ih-Sheng Chen, School of Pharmacy,
Kaohsiung Medical University (Kaohsiung, Taiwan). An
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herbarium voucher specimen (M-393) was deposited in the
Graduate Institute of Pharmacognosy, Taipei Medical
University (Taipei, Taiwan). WT leaves (WTL, 1,280 g) were
extracted with 70% acetone three times for seven days each time.
After rotary evaporation and vacuum drying, the WTL extract
(250 g) was obtained.

Compound Isolation
TheWTL extract (250 g) was suspended in an aqueous solution and
fractionated through a Diaion® HP-20 column (250–850 μm,
Merck) to obtain six fractions, WTL 1-1∼1-6. After bio-guided
fractionation and isolation, the active WTL 1-4 fraction was
subjected to a Cosmosil® C-18 column (75 μm, Nacalai Tesque,
Kyoto, Japan) eluted with an H2O-100% methanol (MeOH)
gradient, to yield 13 sub-fractions (WTL 1-3-1∼1-3-13). Sub-fractions
WTL 1-4-10 and 1-4-8 were further purified using a Cosmosil® C-18
column and a semipreparative C-18 reverse-phase HPLC column
(Biotic Aqu-ODS-W 5 μm, 10 × 250mm; Biotic Chemical, New
Taipei City, Taiwan) with 50%MeOH as the mobile phase to isolate
1 (51.1 mg) and 2 (38.0 mg). The active WTL 1-2 fraction was
subjected to a Sephadex® LH-20 column (18–111 μm,Merck KGaA)
eluted with an H2O-100%MeOH gradient, to yield 11 sub-fractions
(WTL 1-2-1∼1-2-11). Sub-fraction WTL 1-2-4 was further
separated using a semipreparative C-18 reverse-phase HPLC
column with 25% MeOH as the mobile phase to isolate 3
(6.6 mg) and 4 (13.0 mg). The active WTL 1-3 fraction was
subjected to a Cosmosil® C-18 column eluted with an H2O-100%
MeOHgradient, to yield 15 sub-fractions (WTL 1-3-1∼1-3-15). Sub-
fraction WTL 1-3-4 was further separated using an MCI GEL®
CHP20P column (75–150 μm, Merck KGaA) and semipreparative
Luna PFP (2) (5 μm, 10 × 250mm, Phenomenex, Torrance, CA)
reverse-phase HPLC column with 35% MeOH as the mobile phase
to isolate 5 (6.6 mg).

Acid Hydrolysis of the Isolated Compounds
The isolated compound (1.0 mg) was hydrolyzed with hydrochloric
acid into monosaccharide and polysaccharide hydrolysates. They
were then separated using a Dionex® high-performance anion-
exchange chromatographic system (Thermo Fisher Scientific)
with a Dionex™ Carbopac™ anion-exchange column (PA-10, 4.6
× 250mm, Thermo Fisher Scientific). The mobile phase was 18mM
sodium hydroxide. Monosaccharides were identified by comparing
the retention times with standards, and quantification was
performed using calibration curves (Hsu et al., 2006).

Cell Culture
Primary human osteoblasts (HOb cells, Cell Applications, San
Diego, CA, United States ) weremaintained in an osteoblast growth
medium kit (Cell Applications) in an atmosphere of 5% CO2 at
37°C. In order to obtain fully differentiated HOb cells, cells were
incubated with an osteoblast differentiation medium (ODM) kit
from Cell Applications, containing ascorbic acid, dexamethasone,
and β-GP for the mineralization assay (Mao et al., 2014).

RAW264.7 cells (American Type Culture Collection,
Manassas, VA, United States) were maintained in DMEM
supplemented with 10% FBS, 100 U/mL streptomycin, and
100 U/mL penicillin in an atmosphere of 5% CO2 at 37°C.

RAW264.7 cells were induced by RANKL (50 ng/ml) for five
days to differentiate into RANKL-induced osteoclasts (Yan et al.,
2019). For all the cell experiments, samples were dissolved in
DMSO to make the stock solutions.

Cell Viability Analysis
HOb cells were treated with samples at various indicated
concentrations for 5 days. RANKL-induced osteoclasts were
treated with samples for five days. Cell viability was measured
with an MTT assay performed at an absorbance of 600 nm (Mao
et al., 2014).

Alkaline Phosphatase Activity
HOb cells were treated with samples at various indicated
concentrations for 5 days. Cells were washed with PBS twice
and sonicated in lysis buffer containing 0.1% Triton X-100. ALP
activity was measured with p-nitrophenyl phosphate (dissolved in
6 mM sodium bicarbonate-sodium carbonate buffer, pH 10.0)
and normalized to the protein concentration. The protein
concentration was measured with a bicinchoninic acid (BCA)
protein assay kit (Thermo Fisher Scientific). ALP activity was
assessed at an absorbance of 405 and 562 nm (Mao et al., 2014).

Alizarin Red S Staining
HOb cells were treated with samples at various indicated
concentrations for 11 days. HOb cells were washed with PBS
and fixed with 4% paraformaldehyde for 20 min. Cells were
washed with PBS, and then exposed to an alizarin red S
solution for 20 min at room temperature. Mineralization-
positive cells stained red. After taking photos, 10%
cetylpyridinium chloride (dissolved in 10 mM sodium
phosphate, pH 7.0) was used to quantify mineralization
staining at an absorbance of 550 nm (Imtiyaz et al., 2019).

RNA Isolation and Real-Time Quantitative
Polymerase Chain Reaction
Total RNA from HOb cells was isolated using a high pure RNA
isolation kit (Roche Life Science, Mannheim, Germany). An
Applied Biosystems™ high-capacity complementary (c)DNA
reverse-transcription kit (Thermo Fisher Scientific) was used
to synthesize cDNA. A Roche™ universal probe library (UPL)
probe (Roche Life Science) and SensiFAST™ probe no-ROX kit
(Bioline, London, United Kingdom) were used for PCR
amplification with the LightCycler® 480 system (Roche Life
Science). The primer sequences for the PCR were as follows:
Runx2, forward, 5′-CAGTGACACCATGTCAGCAA-3′ and
reverse, 5′-GCTCACGTCGCTCATTTTG-3′; osterix (OSX),
forward, 5′-CATCTGCCTGGCTCCTTG-3′ and reverse, 5′-
CAGGGGACTGGAGCCATA-3′; osteopontin (OPN), forward,
5′-GGGCTTGGTTGTCAGCAG-3′ and reverse, 5′- TGCAAT
TCTCATGGTAGTGAGTTT-3′; bone morphogenetic protein
(BMP)-2, forward, 5′-CGGACTGCGGTCTCCTAA-3′ and
reverse, 5′- GGAAGCAGCAACGCTAGAAG-3′, bone
sialoprotein (BSP), forward, 5′-GATTTCCAGTTCAGGGCA
GT-3′ and reverse, 5′-TCTCCTTCATTTGAAGTCTCCTCT-
3′; type I collagen (Col-1), forward, 5′-AGGTCCCCCTGG
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AAAGAA-3′ and reverse, 5′-AATCCTCGAGCACCCTGA-3′;
and GAPDH, forward, 5′-AGCCACATCGCTCAGACAC-3′
and reverse, 5′-GCCCAATACGACCAAATCC-3′′. Gene
expression results were analyzed by the 2(−ΔΔCt) method and
the Livak formula, and were normalized against GAPDH
expression and expressed as relative expression compared to
that of the controls (Imtiyaz et al., 2019).

Estrogen Receptor Expression
According to the ESR (Human) α and β enzyme-linked
immunosorbent assay (ELISA) Kit (Abnova, Taipei, Taiwan)
manufacturer’s instructions, HOb cells were fixed and quenched,
and wells were blocked. Primary antibodies (anti-ESR-α, anti-ESR-β,
and anti-GAPDH) specific for target antigens were added and
allowed to bind to their respective epitopes. Horseradish
peroxidase (HRP)-conjugated secondary antibodies (anti-rabbit
and anti-mouse immunoglobulin G) specific for the primary
antibody were added and allowed to bind to their respective
epitopes. The 3,3′,5,5′-tetramethylbenzidine (TMB) substrate was
converted to the blue TMB diimine via the HRP enzyme. Upon
addition of acid, the reaction was terminated, and the absorbance was
read at 450 nm (Imtiyaz et al., 2019).

Tartrate-Resistant Acid Phosphatase
Activity
TRAP was evaluated as a specific biochemical marker of RANKL-
induced osteoclasts (Blumer et al., 2012). RANKL-induced
osteoclasts were treated with samples for five days. Cells were
washed twice with PBS. TRAP activity was measured with
p-nitrophenyl phosphate (dissolved in 40 mM sodium acetate-
10 mM sodium tartrate buffer, pH 5.0). Cells were incubated for
30 min at room temperature, and then 0.1 N sodium hydroxide
was added to stop the reactions. TRAP activity was determined at
an absorbance of 410 nm (Yan et al., 2019).

Tartrate-Resistant Acid Phosphatase
Staining
Osteoclastogenesis was confirmed by TRAP staining with a
leukocyte acid phosphatase kit from Sigma (St. Louis, MO,
United States). According to the manufacturer’s instructions, the
TRAP enzyme from RANKL-induced osteoclasts cleaves the
substrate, forming a red azoic dye with a purplish-red color that
can be detected with an Eclipse TS100 inverted microscope (Nikon
Instruments, Tokyo, Japan). Mature osteoclasts were identified as
TRAP-positive multinucleated cells (MNCs) containing five or
more nuclei at the end of the culture period (Yan et al., 2019).

Statistical Analysis
For all parameters measured, values for all samples in different
experimental conditions were averaged, and the standard
deviation (SD) was calculated. Statistical significance of
differences between groups was determined with a one-way
analysis of variance (ANOVA) followed by a post-hoc
Student-Newman-Keuls method used to determine differences
among multiple pairs.

RESULTS

Effects of Various Parts of Wikstroemia
taiwanensis and Fractions from the Crude
Extract on Cell Viability and Alkaline
Phosphatase Activity
In order to select the part of the plant for extraction, leaves
(WTL), stems (WTS), and roots (WTR) from the plant were
extracted in small batches using 70% acetone. None of these
three extracts caused the cell viability to decrease to below the
80% threshold (Figure 1A); hence ALP activity was analyzed,
and results showed that WTL, WTS, and WTR respectively
increased ALP activity up to 126.7, 118.5, and 106.9%
(Figure 1B). These results indicate that WTL showed the
highest activity among all three parts, and thus we used the
WTL extract extraction and compound isolation. The WTL
extract was obtained using 70% acetone as the extractant.
Compound isolation was performed by a bio-guided
method. Thus the extract was subjected to a Diaion® HP-20
column, and six fractions (WTL 1-1∼1-6). The cytotoxic
effects of these fractions were analyzed, and WTL 1-2∼1-5
did not affect cell viability beyond the threshold (Figure 1C).
Next, we analyze the effect of the fractions on ALP activity. All
four fractions significantly increased ALP activity, with WTL
1-3 showing the highest increase (Figure 1D).

Isolated Compounds from Wikstroemia
taiwanensis Leaves
Column chromatography and semipreparative HPLC were
used for bio-guided fractionation, isolation, and purification
of compounds from the WTL 1-2, 1-3, and 1-4 fractions
(Supplementary Chart S1). On the basis of physical and
spectroscopic techniques, we elucidated five major
compounds and compared their 1D and 2D NMR data with
the literature (Supplementary Method S1, Figures S1–S5). As
shown in Supplementary Figure S1F, glucose was the
dominant sugar component of compound 1 when compared
to standards by an acid hydrolysis method. The compounds
were identified as astragalin (1) (Foo et al., 2000; Deng et al.,
2009), kaempferol 3-O-β-D-apiofuranosyl-(1→6)-
β-D-glucopyranoside (2) (Wu et al., 2007), adenosine (3)
(Moyroud and Strazewski, 1999), tryptophan (4) (Lee and
Phillips, 1992), and 2,5-dimethoxy-3-O-β-D-glucopyranosyl
cinnamic alcohol (5) (Wu et al., 2014) (Figure 2). These
five isolated compounds are reported herein for the first
time from WT.

Effects of the Isolated Compounds on the
Cell Viability of HOb Cells
Upon analyzing the effects of isolated compounds 1, 2, and 5 on
the cell viability of HOb cells, results showed that compounds 1
and 2 had no significant effect on the cell viability of HOb cells
(Figure 3A). However, isolated compounds 3 and 4 were
extensively studied in our previous research, in which they
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were isolated from a different plant (Mao et al., 2014). Thus, we
only studied the effects of compounds 1 and 2 on bone formation
in HOb cells.

Effects of Isolated Compounds on Alkaline
Phosphatase Activity and Mineralization of
HOb Cells
In order to identify the osteogenic potential of compounds 1 and
2, we first studied their effects on ALP activity. Compound 1
increased ALP activity in a dose-dependent manner, with 60, 80,
and 100 μM, increasing ALP activity to 128.8, 132.3, and 137.3%
respectively. In contrast, compound 2 significantly increased ALP
activity up to 115.8% at 100 µM (Figure 3B). These results
indicate that both compounds can induce ALP activity and
therefore, their activities on mineral deposition were examined
in HOb cells. We found that compound 1 significantly increased
mineral deposition to 119.5 and 124.0% at 80 and 100 μM,
respectively. Similarly, compound 2 at 80 and 100 μM,
increased mineral deposition up to 108.8 and 109.6%
respectively (Figures 3C,D). Given the significance of ALP as

an inducer of mineralization, the difference in the level of
mineralization between 1 and 2, could be, due in part, to their
difference in ALP activity.

Effects of the Isolated Active Compounds
on Expressions of ESRs in HOb Cells
ERs play essential roles in the process of bone formation (Khosla
et al., 2012). On analyzing the effects of compounds 1 and 2 on
ESR-α and -β, we observed that neither compound 1 nor 2 had a
significant effect on ESR-β (Supplementary Figure S6).
However, both compounds markedly increased the ESR-α
expression in the HOb cells. Thus, we asked whether the
compounds could exhibit a dose-dependent effect on ESR-α
expression. While Compound 1 exhibited a dose-dependent
increase, with 60, 80, and 100 µM increasing ESR-α expression
up to 113.5, 116.8, and 122.5% respectively, compound 2 only
increased ESR-α expression to 112.8% at 100 µM (Figure 4).
Similar to the ALP and mineralization results, these results
showed that compound 1 is more effective in inducing ESR-α
that compound 2.

FIGURE 1 | Effects of crude extracts of various parts ofWikstroemia taiwanensis and fractions from the active extract on cell viability and alkaline phosphatase (ALP)
activity of human osteoblast cells. Cells were seeded in 96-well plates, and after 24 h, samples (100 μg/ml) were added. (A)Cell viability and (B) ALP activity assays were
performed using leaves (WTL), stems (WTS), and roots ofW. taiwanensis (WTR). (C)Cell viability and (D)ALP activity after treating cells with theWTL fraction for five days.
Experiments were carried out in triplicate. * p < 0.05 and ** p < 0.01; data are presented as the mean ± standard deviation.
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Effects of the Isolated Active Compounds
on the Molecular Biomarkers in HOb Cells
Genetic markers which play essential roles in the process of
osteoblast differentiation and bone formation were examined
under the influence of compounds 1 and 2. For BMP-2,
compound 2 induced increased its messenger (m)RNA
expression in a dose-dependent manner, which were up to
1.3- and 1.7-fold at 80 and 100 μM, respectively. In contrast,
compound 1 only induced a significant increase of up to 1.8-
fold at 100 µM. Increases in mRNA expression of BSP were
induced in a dose-dependent manner by both compounds;
compound 1 increased expression levels up to 1.5-, 2.7-, and
6.8-fold, while increases by compound 2 were up to 1.3-, 2.0-,
and 3.0-fold at 60, 80, and 100 μM, respectively. Compound 1
also increased the mRNA expressions of Col-1 (by 1.7- and
2.5-fold) and OPN (by 1.6- and 2.7-fold) at 80 and 100 μM,
respectively. Besides, it also increased the expression level of
Runx2 up to 2.1-fold at 100 µM. Significant increases of up to
1.5-, 1.9-, and 1.8-fold were seen in expression levels of Col-1,
OPN, and Runx2 at 100 µM of compound 2, respectively
(Figure 5).

Effects of the Isolated Compounds on
RANKL-Induced Osteoclastogenesis
Bone resorption is an important step in bone remodeling. In
order to fully elucidate the roles of the isolated compounds on the
process of bone remodeling, their effects on osteoclastogenesis
were studied by evaluating their influence on the cell viability and
TRAP activity of RANKL-induced osteoclasts. Results showed
that none of the five isolated compounds had a significant effect
on the viability of RANKL-induced osteoclasts. Compared to the

RANKL group, cell viability was higher than 90% in all the other
study groups (Figure 6A). Compounds 1, 2, 3, and 5 significantly
inhibited TRAP activity by 40.8, 17.1, 25.9, and 14.5%,
respectively (Figure 6B). Moreover, TRAP staining and the
numbers of TRAP-positive MNCs of isolated compounds were
assessed. Compared to the RANKL group, compounds 1, 2, 3, and
5 reduced the number of TRAP-positive MNCs by 51.6, 26.8,
20.5, and 18.6%, respectively (Figures 6C,D). These results
indicated that isolated compounds 1, 2, 3, and 5 attenuated
RANKL-mediated osteoclast differentiation and formation.

DISCUSSION

Natural products are an essential source of secondary metabolites,
and various activities of these compounds have been explored.
Several drugs were designed from natural compounds to fight
diseases, such as the discovery of aspirin from Salix alba L,
artemisinin from Artemisia annua, and others (Weathers
et al., 2014; Aleebrahim-Dehkordy et al., 2017). There are
numerous plants that possess various medicinal properties,
and after initial screening, we found that WT displays
properties of promoting bone formation (Supplementary
Table S1). Thus, we chose certain biomarkers to explore
which part of the plant is highly active, and then we further
carried out a series of chromatographic purification and bio-
guided isolation to obtain pure compounds which were studied.
In the present study, we utilized 70% acetone to perform
extraction of W. taiwanensis, then fractionation using Diaion
gel. Among the isolated compounds, adenosine (3) and
tryptophan (4) were previously studied by our group (Mao
et al., 2014). So we extensively explored the effects of

FIGURE 2 | Structures of isolated compounds from Wikstroemia taiwanensis. 1, astragalin; 2, kaempferol 3-O-β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside; 3,
adenosine; 4, tryptophan; and 5, 2,5-dimethoxy-3-O-β-D-glucopyranosyl cinnamic alcohol.
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astragalin (1) and kaempferol 3-O-β-D-apiofuranosyl-(1→6)-
β-D-glucopyranoside (2) on osteoblastic and osteoclastic cells
to elucidate their effects on the process of bone formation and
understand the underlying mechanisms.

As mentioned before, the underlying idea of using two
antagonist cell lines to confirm a singular outcome is to
identify a strategy that can later be developed and used for
designing better therapeutic agents. ALP is regarded as one of
the most common biomarkers of osteoblast differentiation, and
both compounds 1 and 2 significantly induce ALP activity
(Figure 3B). ALP plays an essential role in mineral deposition,
and upon analyzing the effects of compounds 1 and 2 on
mineralization, we found that both compounds increased
mineralization (Figure 3C). However, compound 1 exhibited a
stronger effect on mineralization than compound 2. Genes like
BSP and OPN, which are characterized as small integrin-binding
ligandN-linked glycoproteins, play key roles in bone development
by facilitating mineral nucleation, mineralization, and cell
adhesion; they also possess a collagen-binding domain (Zurick
et al., 2013). Our results showed that both compounds 1 and 2
significantly increased BSP and OPN levels, with compound 1
yielding a more significant increase in the expression of these

genes than compound 2, which is consistent with our
mineralization results (Figure 5). Runx2 belongs to the runt
domain gene family, and it is essential for the development
and formation of bone. It plays a vital role in the maturation
of osteoblasts by regulating expressions of matrix proteins such as
osteocalcin, OPN and Col-1 (Haxaire et al., 2016). Our results
showed that both compounds 1 and 2 could increase the mRNA
expression of Runx2, OPN, and Col-1 in HOb cells, indicating the
bone formation potentials of these compounds.

Several phytochemicals have the capacity to mimic activities of
human proteins, and flavonoids are well-known to have
estrogenic activity (Baker and Lathe, 2018); so we studied their
effects on ERs in HOb cells. Compounds 1 and 2were both able to
significantly increase ESR-α expression; however, we found that
compound 2 was more active than compound 1, suggesting that
compound 2 might be a stronger phytoestrogen. TRAP is
expressed by osteoclasts, and it initiates the dephosphorylation
of matrix phosphoproteins like OPN and BSP; thus, it is
considered to be a specific histochemical marker for
osteoclasts (Blumer et al., 2012). We found that compounds 1,
2, 3, and 5 significantly inhibited TRAP activity. As mentioned
earlier, TRAP targets OPN and BSP, and compounds 1 and 2

FIGURE 3 | Effects of isolated compounds on cell viability, alkaline phosphatase (ALP) activity, and mineralization in human osteoblast cells. Cells were seeded on
96-well plates for (A) cell viability and (B) ALP activity assays. Samples were added after 24 h of seeding, which was followed by performing detection assays after
5 days. To assess mineralization, cells were seeded in 48-well plates, and after 4 days, drugs were added alternatively using osteoblast differentiation medium and
enhancers. An alizarin red S assay was performed after 11 days. (C) Detection of mineral deposition after using alizarin red S stain. (D) Quantification of mineral
deposition. Experiments were carried out in triplicate. * p < 0.05 and ** p < 0.01; data are presented as the mean ± standard deviation. 1, astragalin; 2, kaempferol 3-O-
β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside; and 5, 2,5-dimethoxy-3-O-β-D-glucopyranosyl cinnamic alcohol.
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were also able to increase their mRNA levels, which means that
they both can enhance osteoblast activity while decreasing
osteoclast activity at non-cytotoxic levels.

Astragalin (1), also known as kaempferol-3-O-glucoside, was
found to possess antioxidant (Cho et al., 2014) and anti-
inflammatory activities (Korb-Pap et al., 2016). It was also
reported to be effective against acute ischemia-reperfusion
injury in Sprague-Dawley rats via attenuation of intracellular
oxidative stress and apoptosis, and was found to suppress
expressions of malondialdehyde (MDA), tumor necrosis factor-
α, and interleukin-6 (Qu et al., 2016). A study carried out on
Caenorhabditis elegans demonstrated that astragalin 1) was able to
decrease 6-hydroxydopamine-induced neurodegeneration. It was
found to reduce transcription levels of the proapoptotic gene, elg-
1, which is associated with neuronal death alongside decreases in
ROS andMDA levels and inhibition of lipid peroxidation (Li et al.,
2016). Compound 1 was reported to be effective against
hyperglycemia and diabetic retinopathy by alleviating the
effects of high glucose in the blood (Ke et al., 2012). Several
studies showed the anticancer effect of compound 1, as it was
observed to significantly inhibit the proliferation of cancer cell
lines such as HL-60 leukemia cells, HaCaT skin cancer cells, and
A549 lung cancer cells (Burmistrova et al., 2011; You et al., 2017).
In a separate study, astragalin 1) isolated from Cuscuta chinensis,
displayed estrogenic activity in osteoblast-like UMR-106 cells, and
enhanced their cell proliferation (Yang et al., 2011). In that study,
astragalin (1) was unable to induce a significant increase in ALP
activity; however, astragalin (1) may promote osteoblastic
differentiation in MC3T3-E1 cells via BMP and MAPK
pathways and also promote bone formation in ovariectomized-
induced osteoporotic mouse (Liu et al., 2019). In our study,
compound 1 significantly increased ALP activity, by up to

128.8%. The possible reasons for this discrepancy could be due
to the different cell lines used, as in our study, we used human
osteoblasts. Many studies have shown several bioactivities of
compound 1, however, our study is the first to show that it has
anti-osteoporotic potential not only via increasing bone formation
markers but also through suppressing osteoclastogenesis. Due to
the limited amount of the isolated compound 1, in the future, this
compound could be a potential candidate for chemical synthesis
and molecular docking of its novel derivatives (Chen et al., 2019).
These molecules can be then used to evaluate the bone remodeling
potential using in vivo models.

We investigated the structure-activity relationship of two isolated
flavonol glycosides. Astragalin (kaempferol 3-O-β-D-glucopyranoside,
1) and kaempferol 3-O-β-D-apiofuranosyl-(1→6)-
β-D-glucopyranoside (2) are both glycosides of kaempferol, resulting
from various modifications. Kaempferol was found to be very effective
at enhancing bone formation, and studies showed that after treating
ovariectomized rats with kaempferol, the microarchitectural
parameters and bone mineral density significantly increased
(Nowak et al., 2017; Zhao et al., 2019). Kaempferol was found to
increasemRNA levels of BSP,OSX, andRunx2 inUMR106 cells (Yang
et al., 2010). In our study, both active compounds, 1 and 2, were able to
induce significantly increases the mRNA expression levels of BSP and
Runx2 in a dose-dependentmanner. However, compound 1wasmore
efficient at enhancing themRNAexpression levels of these genes. Thus,
it is possible to deduce that the higher osteogenesis of compound 1was
due to the absence of an apiofuranosyl group. As glucocorticoids are
significant causal agents of bone loss, kaempferol was reported to
attenuate glucocorticoid-induced bone loss in adult female rats

FIGURE 4 | Effects of active compounds on the expression of estrogen
receptor (ESR)-α in human osteoblast cells. Cells were seeded in 96-well
plates, and samples were added 24 h later. After five days, expression of
ESR-α was detected using an ELISA kit according to the
manufacturer’s instructions. Experiments were carried out in triplicate. * p <
0.05 and ** p < 0.01; data are presented as the mean ± standard deviation.
1, astragalin and 2, kaempferol 3-O-β-D-apiofuranosyl-(1→6)-
β-D-glucopyranoside.

FIGURE 5 | Effects of active compounds on mRNA expression levels of
bone formation-related genes in human osteoblast cells. Cells were seeded in
6 cm dishes, and after 24 h, samples were added using fresh osteoblast
differentiation medium. Following this, cells were collected for RNA
isolation and cDNA generation. mRNA expression levels were detected using
a UPL-probe system, and data are depicted as multiples. Experiments were
carried out in triplicate. * p < 0.05 and ** p < 0.01; data are presented as the
mean ± standard deviation. 1, astragalin and 2, kaempferol 3-O-
β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside.

Frontiers in Pharmacology | www.frontiersin.org July 2021 | Volume 12 | Article 6702548

Imtiyaz et al. Wikstroemia taiwanensisRegulate Bone Remodeling

https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles


(Adhikary et al., 2018), and also promoted bone formation (Zhao et al.,
2019). Besides, kaempferol and its derivatives were reported to induce
bone formation, and also reported to have remarkable effects on bone
resorption (Suvarna et al., 2018). In our study on analyzing the effects of
the isolated compounds on osteoclasts, we found that compounds 1, 2,
and 3 significantly decreased TRAP activity at non-cytotoxic
concentration, indicating that these compounds can equally
decrease osteoclast activity. Likewise, compound 1 exhibited higher
osteoclastogenesis was due to the absence of an apiofuranosyl group.

CONCLUSION

In this study, the active compounds isolated from 70% acetone
extract of W. taiwanensis, astragalin (1) and kaempferol 3-O-

β-D-apiofuranosyl-(1→6)-β-D-glucopyranoside (2), enhanced
bone formation while simultaneously impeding bone
resorption, as evidenced by their effects on the markers of
bone formation and bone resorption. Our findings, therefore,
pinpoint W. taiwanesis as a natural bioactive agent with potent
anti-osteoprosis attributes, deserving further evaluation for
development as an anti-osteoporosis treatment.
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FIGURE 6 | Effects of isolated compounds on cell viability, tartrate-resistant acid phosphatase (TRAP) activity and TRAP staining in receptor activator of nuclear
factor-κB ligand (RANKL)-induced osteoclasts. Cells were seeded on 96-well plates for (A) cell viability and (B) TRAP activity assays. RANKL and samples were added
24 h after seeding, and detection assays were performed 5 days later. (C) For TRAP staining, cells were seeded in 24-well plates, and RANKL and samples were
alternatively added. A leukocyte acid phosphatase kit was utilized after 5 days. (D) Quantification of TRAP-positive multinucleated cells (MNCs). Experiments were
carried out in triplicate. * p < 0.05 and ** p < 0.01; data are presented as the mean ± standard deviation. 1, astragalin; 2, kaempferol 3-O-β;-D-apiofuranosyl-(1→6)-
β-D-glucopyranoside; 3, adenosine; 4, tryptophan; and 5, 2,5-dimethoxy-3-O-β-D-glucopyranosyl cinnamic alcohol.
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