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Abstract

The modulation of the sensitivity, or gain, of neural responses to input is an important component of neural computation. It
has been shown that divisive gain modulation of neural responses can result from a stochastic shunting from balanced
(mixed excitation and inhibition) background activity. This gain control scheme was developed and explored with static
inputs, where the membrane and spike train statistics were stationary in time. However, input statistics, such as the firing
rates of pre-synaptic neurons, are often dynamic, varying on timescales comparable to typical membrane time constants.
Using a population density approach for integrate-and-fire neurons with dynamic and temporally rich inputs, we find that
the same fluctuation-induced divisive gain modulation is operative for dynamic inputs driving nonequilibrium responses.
Moreover, the degree of divisive scaling of the dynamic response is quantitatively the same as the steady-state responses—
thus, gain modulation via balanced conductance fluctuations generalizes in a straight-forward way to a dynamic setting.
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Introduction

Gain modulation (or gain control) is an adjustment of the input-

output response of neurons, and is widely observed during neural

processing [1]. Gaze direction sets the response gain in primary

visual [2], posterior parietal cortex [3], and auditory brainstem

[4]. In specific species, gain control mechanisms produce an

invariance of receptive field properties [5] and orientation

selectivity [6] to changes in overall stimulus contrast. Higher

cognitive processes, such as attention, modulate the response gain

of cells in primary visual cortex [7], as well as in V4 [8]. Finally, it

has recently been shown that gain control schemes are needed to

control behavior in invertebrates [9]. Despite the clear importance

of gain control in a variety of neural computations, the biophysical

mechanisms that support specific gain control mechanisms have

been elusive [10–20].

Noise induced phenomena in nonlinear systems are a rich

avenue of study [21], with recent interest on the impact of

fluctuations on excitable systems, such as neurons [22]. Chance et

al., Doiron et al., and Hô & Destexhe [11,16,23] all report that an

increase in the fluctuations of background conductance inputs

results in a decrease of the overall gain of the transfer between a

static driving input and the mean output firing rate. In particular,

if the balance between background excitation and inhibition is

carefully controlled [11], then the gain control is purely divisive (or

multiplicative). This means that an increase in conductance

fluctuations acts to scale the transfer function over a large range of

input by a simple constant multiplier (,1). Related work has

further explored the impact of fluctuations on spike response [13–

15,20,24,25], with a the manipulation of the neural transfer

function by background fluctuations being a central focus.

These studies address the gain control of a transfer function

where the signal is either static or statistically stationary and the

neural output is the time averaged firing rate. However, many

neural coding tasks involve the processing of time-varying, high

frequnecy stimuli. In these situations neural response are often

transient, and a quasi-static approximation of input-output

transfer fails to capture the actual spike response. For example,

in the rodent vibrissa sensory [26], auditory [27–29], and

electrosensory systems [30] stimuli and responses modulate on

the order of a few milliseconds, i.e., on the order of, or even faster,

than typical membrane time constants of neurons. Even in the

visual system, where the relevant timescales of natural scenes are

much slower, the response precision of thalamic neurons is at the

millisecond level, and standard static transfer function analysis fails

to capture neural response [31], yet contrast induced gain control

persists [32]. In this study, we address the question of whether the

fluctuation induced gain control mechanism explored for static

transfer [11,16,23] can be operative for dynamic stimuli as well.

Any theoretical treatment of this problem requires 1) a

framework accurately capturing the time varying spike response

owing to time varying input statistics (e.g. temporally inhomoge-

neous input and output statistics), and 2) sufficient biophysical

detail to incorporate conductance based synaptic inputs within

spike creation. A useful tool for incorporating these two features

into neuron models is the population density method [33–39]. In

particular, Nykamp & Tranchina [35] have developed a simple

one-dimensional population density method of conductance based

leaky integrate-and-fire models (LIF). The one-dimensional

version of the population density method allow us to easily study

the firing rate responses to dynamic stimuli in the conductance

based formalism of Chance et al. [11]. Minor differences in our
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proposed model and their dynamic clamp experiments to mimic

conductance based inputs are presented in the discussion section.

We first show that divisive gain modulation of the steady-state

responses only hold for low output firing rates, in particular, where

neurons are in the classical subthreshold regime. Second, when

restricted to this regime we find the transient responses to dynamic

stimuli, which can differ greatly from the quasi-static equilibrium

response, also exhibit divisive gain modulation via fluctuation

background conductances with the same scaling factor as

computed in the static case. Thus, the divisive gain modulation

proposed by Chance et al., Doiron et al., and Hô & Destexhe

[11,16,23] generalizes to the dynamic situation in a very natural

way.

Methods

Integrate-and-fire neuron
We consider a leaky integrate-and-fire neuron (LIF) driven by a

pre-synaptic population of excitatory (e) and inhibitory (i) cells.

The neuron’s voltage change is given by a random differential

equation:

C
du

dt
zgl

: u{erð ÞzĜGe tð Þ: u{eeð ÞzĜGi tð Þ: u{eið Þ~0: ð1Þ

Dividing by the leakage conductance gl yields:

tm
du

dt
z u{erð ÞzGe tð Þ: u{eeð ÞzGi tð Þ: u{eið Þ~0, ð2Þ

Ge tð Þ~
X

ke
Ake

d t{Tke
ð Þ,

Gi tð Þ~
X

ki
Aki

d t{Tki
ð Þ,

where tm~C=gl is the membrane time constant, Ake=i
is the

random size (for simplicity, chosen from the same distribution) of

the excitatory/inhibitory kth synaptic event. The arrival times Tk

of both excitatory and inhibitory synaptic inputs are governed by

modulated Poisson processes with mean rates ne tð Þ and ni tð Þ,
respectively. Throughout, er is the resting membrane voltage, ee is

the excitatory while ei is the inhibitory reversal potential. When

the neuron’s voltage crosses uth, a spike is recorded and the neuron

enters a refractory period for a fixed time of tref , after which, its

voltage is reset to ureset. Consequently, the neuron’s voltage u

varies between ei and uth (eiƒuƒuth). Throughout this paper, we

will set ureset~er, er~{70 mV, ei~{80 mV, ee~0 mV,

uth~{55 mV, tref ~2 ms, and tm~20 ms in accordance with

estimates from experimental measures. We choose the average

value of the random variables mAe
and mAi

so that the neuron’s

voltage change (from u{~er) is 60.5 mV [40]. The random

variable Ae=i has a parabolic distribution function with finite

support: fA xð Þ~{
3

4m3
A

x x{2mAð Þ for x[ 0,2mA½ � and 0 otherwise.

It is convenient to define a new random variable

C�e=i~1{e{Ae=i=tm , because upon receiving an excitatory synaptic

event, the neuron’s voltage will increase by

Du~ 1{e{Ae=tm
� �

ee{u{ð Þ~C�e ee{u{ð Þ (see Nykamp & Tran-

china [35] for a derivation). The neuron’s voltage will decrease in

a similar way upon receiving an inhibitory event:

Du~C�i ei{u{ð Þ. Thus, mAe=i
satisfy: 1{e{mAe=tm~

0:5 mV= ee{erð Þ and 1{e{mAi
=tm ~{0:5 mV= ei{erð Þ.

We decompose the pre-synaptic input into a time-inhomoge-

neous ‘driver’ term nd tð Þ, and time-homogeneous background

terms n0
e and n0

i :

ne tð Þ~n0
eznd tð Þ,

ni tð Þ~n0
i :

ð3Þ

The background synaptic activity is balanced [11,40], namely

n0
e and n0

i are chosen so that, in the absence of the driver input

(nd~0), the random target voltage will have mean equal to the

resting potential: mV ~er. This will be true if:

n0
e~n0

i

mAi

mAe

er{ei

ee{er

: ð4Þ

Of interest are the output threshold crossing times, and we

estimate response statistics by combining the responses from N
trials where the arrival times Tk are statistically independent across

trials yet share the same generating intensities ne tð Þ and ni tð Þ. The

instantaneous firing rate of the neuron is defined as

r tð Þ~ lim
N??

1

N

XN

i~1

X
j

ðtz
ij

t{
ij

d t{tij

� �
dt: ð5Þ

where tij is the jth threshold crossing recorded during trial i.

Throughout the paper we are interested in the relationship

between the driver nd tð Þ and the response r tð Þ, and specifically

how the balanced activity n0
e and n0

i can modulate the relationship.

Figure 1 is a schematic diagram of the representative leaky

integrate-and-fire neuron from the population receiving the

combination of driver and balanced inputs. For the sake of

exposition, we focus on three different intensities of balanced

background inputs: n0
i to be 1100 s21, 1400 s21, and 1900 s21

(with corresponding n0
e~1069:55 s{1, 1361.24 s21, and

Author Summary

Many neural computations, including sensory and motor
processing, require neurons to control their sensitivity
(often termed ‘gain’) to stimuli. One common form of gain
manipulation is divisive gain control, where the neural
response to a specific stimulus is simply scaled by a
constant. Most previous theoretical and experimental work
on divisive gain control have assumed input statistics to be
constant in time. However, realistic inputs can be highly
time-varying, often with time-varying statistics, and
divisive gain control remains to be extended to these
cases. A widespread mechanism for divisive gain control
for static inputs is through an increase in stimulus
independent membrane fluctuations. We address the
question of whether this divisive gain control scheme is
indeed operative for time-varying inputs. Using simplified
spiking neuron models, we employ accurate theoretical
methods to estimate the dynamic neural response. We find
that gain control via membrane fluctuations does indeed
extend to the time-varying regime, and moreover, the
degree of divisive scaling does not depend on the
timescales of the driving input. This significantly increases
the relevance of this form of divisive gain control for neural
computations where input statistics change in time, as
expected during normal sensory and motor behavior.

Gain Modulation with Dynamic Stimuli
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1847.40 s21, respectively), which we respectively label low (black),

medium (red), and high (blue). Chance et al. [11] modified the

background level by various rate factors and labeled the regimes

1X, 2X, etc., which is slightly different than our convention of low,

medium, and high. However, the resulting steady-state input/output

curves (Fig. 2) are similar to those in Chance et al. [11]. Also, our

results below hold equally well for many other sets of balanced

background activity. For a particular background intensity (low in

this case) with random excitatory drive nd tð Þ, the output is random

(see spike raster plots). As the balanced background activity is

increased, the variability in the voltage also increases (Fig. 1B).

Population density approach
A Monte Carlo simulation of Equation (2) would be

computationally expensive to ensure an accurate result. In many

studies only qualitative effects are reported, and thus quantitative

accuracy is not at a premium. However, in our study the accuracy

demands are large, as we will quantitatively compare the time

dependent r tð Þ for various levels of background intensities. To

overcome the errors inherent in finite data from Monte Carlo

simulations we use population density methods [35], known to give

very accurate estimates of r tð Þ (Fig. 1E) for the idealized neural

models described by Equations (2)–(5).

In the population density method, neurons with similar

biophysical properties are grouped together, and the evolution of

a density function r u,tð Þ is considered. In brief, r u,tð Þ describes

the voltage probability density over many statistically independent

neurons. Integrating the density over a region in state space gives

the probability that a neuron randomly chosen from the

population will be in that region of state space:

Pr V tð Þ[Ið Þ~
ð

I

r u,tð Þdu: ð6Þ

Let JV u,tð Þ denote the probability current; a signed quantity

with the convention that positive/negative JV is the probability

per unit time of crossing u from below/above. The evolution of

r u,tð Þ is governed by a continuity equation [35]:

L
Lt

r u,tð Þz L
Lu

JV u,tð Þ~d u{uresetð Þr t{tref

� �
: ð7Þ

We separate the probability current into three distinct terms:

JV u,tð Þ~Jl u,tð ÞzJe u,tð ÞzJi u,tð Þ:

The first term, Jl u,tð Þ represents the deterministic leak to rest in

the absence of synaptic events. The second and third terms,

Je u,tð Þ and Ji u,tð Þ, model the excitatory and inhibitory synaptic

Figure 1. Input-output schematic for population of LIF neurons with a combination of driving input and balanced background
fluctuations. (A) Excitatory driving input with rate nd tð Þ. (B) Balanced fluctuating background inputs with rates n0

e and n0
i . For illustrative purposes

the evolution of u is shown when nd tð Þ~0; three intensities of background input are shown. (C) Sample realization of the LIF dynamic. (D) Raster plots
of the output spikes are shown (Monte Carlo). (E) The output firing rate r tð Þ, computed by the population density method (see Equations (6)–(8)), is a
fast and efficient method for capturing the output firing rate. It matches the average firing rate of 100,000 random LIF neurons computed by Monte
Carlo simulation.
doi:10.1371/journal.pcbi.1000365.g001

Gain Modulation with Dynamic Stimuli
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input driving the population. Mathematically we have:

Jl u,tð Þ~{
1

tm

u{erð Þr u,tð Þ,

Je u,tð Þ~ne tð Þ
ðu

ei

~FFC�e

u{u’
ee{u’

� �
r u’,tð Þdu’,

Ji u,tð Þ~{ni tð Þ
ðuth

u

~FFC�i

u{u’
ei{u’

� �
r u’,tð Þdu’,

where ~FFC�
e=i

is the complementary cumulative distribution function:

~FFC�
e=i

yð Þ~Pr C�e=i§y
� �

, for y[ 0,1ð Þ. With the chosen distribution

for Ae=i, the functions above are (setting x~{tm log 1{yð Þ):

~FFC�
e=i

yð Þ~~FFAe=i
{tm log 1{yð Þð Þ~

1, xƒ0

1z
x3

4m3
Ae=i

{
3x2

4m2
Ae=i

, 0vxv2mAe=i

0, x§2mAe=i

8>>>><
>>>>:

Finally, the instantaneous firing rate, r tð Þ, is the flux of probability

current through uth from below:

r tð Þ~JV uth,tð Þ

~ne tð Þ
ðuth

ei

~FFC�e

uth{u’
ee{u’

� �
r u’,tð Þdu’: ð8Þ

The firing dynamics are implemented by an absorbing boundary

condition at spike threshold, r uth,tð Þ~0, and the source term

d u{uresetð Þr t{tref

� �
in Equation (7), modeling membrane reset

after a refractory delay. The population average firing rate r tð Þ by

the population density method (see Eqs (6)–(8)) is a computation-

ally efficient way of capturing r tð Þ, compared to computationally

expensive Monte Carlo simulations.

Divisive gain modulation
Gain modulation is typically studied in the equilibrium regime

[10,11,16], where the driver input is constant in time nd tð Þ~nd

and the response req ndð Þ~ limt?? r nd ,tð Þ denotes the equilibrium

firing rate as a function of input. A divisive gain modulation for

nd[ 0,nm½ � satisfies

r
eq
j ndð Þ~r

eq
1 ndð Þ

.
c

eq
j , ð9Þ

where r
eq
j ndð Þ is the response of the population with some

background activity ‘j’ (for our purposes j = 1 is low, j = 2 is

medium, and j = 3 is high background activity) and cj is a scalar.

To measure the divisive gain modulation of a response r
eq
j vdð Þ we

fit the scaled response curves to r
eq
1 udð Þ (low) by minimizing the

mean-squared error E
eq
j :

E
eq
j ~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðnm

0

r
eq
1 ndð Þ
�� {c

eq
j r

eq
j ndð Þ 2dndj

s
: ð10Þ

Finding the cj that minimizes E
eq
j is easily obtained by

orthogonally projecting onto the subspace spanned by rj ndð Þ:

c
eq
j ~

ðnm

0

r
eq
j ndð Þreq

1 ndð Þdndðnm

0

r
eq
j ndð Þ 2dnd

����� : ð11Þ

Because we want the largest possible range for divisive gain

modulation, we steadily increase the maximum of nd nmð Þ until the

error in (10) becomes significant (i.e., the scaled curves no

longer lie on top of each other). Let that maximum nd value be nmax.

The nonequilbirum response r tð Þ to a time-varying input nd tð Þ
is given by Equation (8). We extend divisive gain modulation to the

Figure 2. Gain modulation in the steady state. (A) The response
curve req ndð Þ for different levels of balanced background activity (n0

e is
determined once n0

i is specified, see Equation (4)). For high output firing
rates outside of the boxed region, the slopes of all of the response
curves are almost equal. (B) Top Panel: zoomed region of (A). Bottom
Panel: a least squares fit was used to find the scalar c

eq
j (see Equation

(11)), and we plot the scaled response c
eq
j r

eq
j . Here, c

eq
2 ~1:72 and

c
eq
3 ~3:2.

doi:10.1371/journal.pcbi.1000365.g002
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nonequilbrium setting, with the analogous description:

rj tð Þ~r1 tð Þ
	

cj , ð12Þ

Ej~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið
r1 tð Þj {cjrj tð Þ 2dtj

s
, ð13Þ

cj~

Ð
rj tð Þr1 tð ÞdtÐ

rj tð Þ 2dtj
�� : ð14Þ

The degree of divisive gain modulation in the nonequilibrium

setting is determined by how well the time-varying responses scale

with one another over a range of t. Thus, the scalar cj is now

computed from integrals over t, compared to integrals over n for

the equilibrium case (11).

Results

Divisive gain modulation in the steady state for
subthreshold firing rates

We compute the equilibrium input/output relationship, req ndð Þ,
using the same framework as Chance et al. [11] (section: Integrate-

and-fire Neuron), in hopes of first reproducing their results. Using

balanced excitation and inhibition to mimic background synaptic

activity, we compute req ndð Þ for different fixed values of the driving

input nd (Fig. 2). To obtain computationally accurate results in

reasonable time we employ population density methods (section:

Population Density Approach) to estimate the response req.

Divisive gain modulation via increases of the background rates

n0
e and n0

i occurs in the low firing rate region (boxed region of

Fig. 2A). In this regime the neuron response is dominated by input

fluctuations rather than any intrinsic spike rhythmicity, thereby

replicating the high variability observed in the spike responses in

cortical networks [40]. Throughout we refer to this as the fluctuation

driven regime. In the fluctuation dominated regime the responses can

be scaled, in the sense of Equations (10)–(11), to nearly

quantitatively match one another (Fig. 2B). This rescaling of the

response by background fluctuations qualitatively matches the

results presented in [11].

In contrast, for very high output firing rates divisive gain

modulation does not occur. The responses neq ndð Þ are nearly linear

with very similar slopes (Fig. 2A), showing only a background

activity induced translation of the response (often termed

subtractive gain modulation [10]). This region corresponds to a

regime where input fluctuations have limited impact and the

neuron response is predominately determined by the mean value

of the input rates, and we refer to this as drift dominated regime.

Fluctuation induced divisive gain control restricted to low firing

rates is consistent with [16], where simulations of a large-scale

compartmental neuron model were used. The insensitively of nd to

input fluctuations at large nd has also been recorded in pyramidal

cells and fast-spiking interneurons [41,42]. However, the exact nd

where gain manipulation changes from divisive to subtractive (as

nd increases) is difficult to compute and is often model specific

[14]. Indeed, there are neurons where the influence of noise

persists at high firing rates, such as in layer 5 of rat medial

prefrontal cortex [24], however, the biophysical mechanisms that

support this effect are absent in the standard LIF model.

In summary, population density methods (section: Population

Density Approach) can replicate fluctuation-induced divisive gain

modulation of the equilibrium response at low firing rates,

previously observed in: simple integrate-and-fire models [14–16],

simulations of biophysical realistic cell models [16,20], as well as

simulated conductance experiments in vitro [11].

Divisive gain modulation with dynamic stimuli
We study the influence of background fluctuations on the

nonequlibrium response to a highly time-varying excitatory drive.

We choose an input rate nd tð Þ consisting of sums of sinusoids with

various amplitudes, phases, and frequencies to mimic ‘rich’ time

varying stimuli (for an example see Fig. 3A). This produces an

inhomogeneous Poisson process driver input nd tð Þ, resulting in a

non-stationary in time stochastic driving current. The response

r tð Þ inherits the non-staionarities of nd tð Þ and is temporally

modulated (Fig. 3B, black curve). Even though the stimulus results

in a rather narrow range of response firing rates r tð Þ, it has

adequately rich temporal modulation to produce output firing

rates that are different than the quasi-static response (Fig. 3B,

brown curve), obtained by setting r tð Þ~req nd tð Þð Þ.
The main result of our study is that fluctuation-induced divisive

gain modulation is robust for low to moderate output firing rates in

response to dynamic stimuli, despite the complicated dynamics of

the leaky integrate-and-fire neuron in the nonequilibrium regime

(i.e
L
Lt

r u,tð Þ=0). To demonstrate we compute the nonequilibrium

responses (r1 tð Þ, r2 tð Þ, and r3 tð Þ), for the three levels of

background activity used for the equilibrium case (low, medium,

and high). For larger background activity the overall response is

reduced, observed here since r3 tð Þƒr2 tð Þƒr1 tð Þ for all t (Fig. 3C).

We compute the dynamical analogue of c
eq
j , cj (see Equations (11)

and (14)) and the scaled response cjrj tð Þ, which quantitatively

matches the base response r1 tð Þ (Fig. 3D). This mimics the results

for the equilibrium case (compare Figs. 2B and 3C and 3D). It is, a

priori, unexpected that the dynamic response r tð Þ (with timescale

tm and refractory period tref ) should scale in the same way as the

equilibrium response req.

Previously, Holt & Koch [10] showed that an increase in

membrane shunting without a change in input fluctuation causes a

translational shift, rather than division of the equilibrium response

curves, which was also verified by Chance et al. [11]. To verify that

a pure shunting change cannot result in divisive gain modulation of

the nonequilibrium responses (Fig. 3D), we fix the background

fluctuation level and driver nd tð Þ, but increase the deterministic

leakage conductance gl (Equation 1) to mimic different background

synaptic activity (conductance) levels. Equivalently, tm is replaced

with a scaled version: tm

	
1zn0

emAe
zn0

i mAi

� �
, which has the same

mean conductance in the absence of driving input as (n0
e ,n0

i ). In

simulations where the background activity is set by deterministic

leak rather than by synaptic conductance fluctuations, the neurons

had negligible firing rates because they were unlikely to fire by

random chance and did not scale in a divisive manner (not shown).

For exposition, we set all of the background fluctuation levels to that

of low and vary gl , and hence tm, to mimic deterministic effects of

changing background activity so that there are less fluctuations, but

still some amount to induce background firing. The unscaled

responses (Fig. 4A) were scaled via a least squares fit (Equation (14)).

Not surprisingly, the responses do not scale in a divisive manner

(Fig. 4B). Thus, divisive gain modulation in the nonequilibrium

regime critically depends on changing the background fluctuation

levels. We remark that Chance et al. were in the high conductance

state when they verified this whereas our regime has less overall

conductance.

When the dynamic stimuli are increased so that resulting output

firing rates are larger, the neurons no longer exhibit divisive gain

Gain Modulation with Dynamic Stimuli
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modulation. Increasing the overall intensity of the driving input

nd tð Þ (compare Fig. 5A with Fig. 3A) yields firing rates r tð Þ that are

an order of magnitude larger (compare Fig. 5B with Fig. 3C).

Increasing the overall background activity reduces the overall

response magnitude (Fig. 5B), similar to what is observed in both the

equilibrium and nonequlibrium regimes. However, when the

response curves are scaled by cj computed for the low rate case

pure divisive gain modulation is not observed for the high rate

response. There is no trivial (a time independent cj ) or natural way

to scale the output firing rate curves so that they lie on top of each

other. Since divisive gain modulation does not hold in the

equilibrium setting for high output firing rates (drift dominated

regime), one would expect that it does not hold in the

nonequilibrium state. However, both the equilibrium and nonequi-

librium states are quite different and we present the failure of

fluctuation induced division for the sake of completeness. It is

interesting to note that for periods of time when the output firing

rates are low, divisive gain modulation appears evident, likely owing

to a transient excursion into the fluctuation driven regime.

In our model, when the driving input rate nd tð Þ is low, the

population of neurons rarely fire action potentials (i.e., low

spontaneous activity). The firing rates in our simulations in this

state range from nearly 0 to 3 s21, depending on the background

level of activity. Although extracellular recordings in the cortex

suggest the neurons can fire spontaneously at rates larger than

2 s21 [43], such experiments are usually biased towards active

neurons. Extracellular recordings by [44] that were unbiased

towards responsive neurons suggest that many neurons have low

spontaneous firing rates and that only a small fraction of neurons

respond ‘well’ to stimuli in unanesthetized animals; this fact was

also discussed in [43]. Moreover, calcium imaging experiments of

awake and anesthetized rats in layer 2/3 of the cortex show that

many neurons have resting firing rates less than 1 s21 [45]. The

actual firing rate of neurons in the resting state is a contentious

issue, but our results hold for many parameter regimes (see Fig. 6).

Divisive gain modulation with dynamic stimuli is robust in the

subthreshold regime (Fig. 6). To illustrate this point, the response

r1 tð Þ with low background level to a time-varying driver input and

the response rj tð Þ to the same driver input with a second level of

background activity are computed. We plot the logarithm of the

area (or error Ej , see Equation (13)) between the time-dependent

response scaled by the equilibrium scale factor c
eq
j rj tð Þ and the

Figure 3. Gain modulation with temporally rich stimuli, and a refractory period. (A) The driving input nd tð Þ~
P

j sin 2pfjtzwj

� �
for fj

ranging from {1, 10, 25, 30, 50, 60}s21 and wj chosen randomly. (B) For the highly varying temporal driving input nd tð Þ in (A) the output firing rate r tð Þ
for balanced background synaptic input low computed using the population density method does not match the quasi-static approximation
rq tð Þ~req nd tð Þð Þ (brown curve). Inset: plot of r tð Þ{rq tð Þ

�� ��	 r tð Þzrq tð Þ
�� �� shows the absolute value of the difference of rq tð Þ and the actual response

r tð Þ divided by the arithmetic mean can differ greatly. (C) The firing rate response to driving input in (A) with different balanced background levels.
(D) The responses scaled with the same coefficients c

eq
j used in Figure 2C are used here (ceq

2 ~1:72 and c
eq
3 ~3:2).

doi:10.1371/journal.pcbi.1000365.g003
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r1 tð Þ response:

log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT

0

r1 tð Þ{c
eq
j rj tð Þ

��� ���2dt

s0
@

1
A:

A logarthmic scale was used (Fig. 6) to better highlight the variety

of values. The driver input is scaled as follows:

nd tð Þ~an tð Þzm 1{að Þ,

where n tð Þ is the driver input used previously (see Fig 3A), a is the

scaling parameter, and m is a parameter that insures nd tð Þ in positive

and not too small. Notice a~1 corresponds to the driver input in

Fig. 3A, and a~1:8 with m~1550 s{1 corresponds to the driver

input in Fig. 5A. The vertical dot-dashed line in black corresponds to

0 error because it is the reference background curve for a given a.

The two points marked by stars (*) in Fig. 6A at a~1 and n0
i ~1400,

1900 s21 correspond to the difference in area between the curves in

Fig. 3D, which is quite small. In fact, for a large region of parameter

space, divisive gain modulation holds (any patch that is orange to

blue in Fig. 6A). The two black circles (N) in Fig. 6A at a~1:8 and

n0
i ~1400, 1900 s21 correspond to the difference in area between

the curves in Fig. 5B. With larger a values, the neurons are in the

drift dominated regime, and divisive gain modulation no longer

holds, as expected (red regions in Fig. 6A).

The average (unscaled) time-dependent response of the neurons

with the same parameters and driver inputs as Fig. 6A are plotted

in Fig. 6B on a logarithmic scale:

Figure 4. Background fluctuations required for divisive gain
modulation. (A) The response with the same driver input as before
(Fig. 3A), but with increased leakage conductance gl to mimic various
background synaptic activity (conductance) levels in a deterministic
way. The balanced background fluctuations levels (n0

e ,n0
i )are the same

(low) in all 3 curves. The black curve has tm~20 ms (same curve in
Fig. 3), the red curve has tm~18 ms, and the blue curve has tm~16 ms.
(B) The three responses do not scale in a simple manner. A least squares
fit cj (Equation (14)) was used.
doi:10.1371/journal.pcbi.1000365.g004

Figure 5. Divisive gain modulation does not hold for high
intensity input drivers. (A) Top Panel: Same stimulus in Figure 3, but
magnified to include higher output firing rates. Bottom Panel: The
response for different balanced background levels n0

e=i . (B) The three
responses do not scale in a simple way.
doi:10.1371/journal.pcbi.1000365.g005
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log2

1

T

ðT

0

rj tð Þdt

� �
:

The three stars (*) at a~1 are the average firing rates of the

unscaled responses in Fig. 3C, and the three black circles (N) at

a~1:8 are the average firing rates of the unscaled responses in

Fig. 5A (bottom panel). The average firing rate gives a qualitative

idea of how large or small the response is as a and n0 are varied.

For example, the average firing rate at the low level is about 2 s21

but the firing rate response can be quite low and as high as 15 s21

(see Fig. 3B). Thus, divisive gain modulation holds for many

parameters in a variety of subthreshold regimes.

Comparison of optimal scaling factor of equilibrium and
nonequlibrium responses

A gain control scheme will be effective in unpredictable

environments if it is quantitatively insensitive to the timescales of

the input, or in other words the degree to which the response is

scaled should not depend on the spectral content of the signal. For

fluctuation induced gain control we then require that the scaling

factor cj associated with a specific background state would need to

be independent of the temporal frequencies in the driver input

nd tð Þ. To test this we compare the optimal scaling factor c between

two dynamical responses (each with a distinct balanced back-

ground state) where the synaptic driving input is:

nd tð Þ~ nmax

2
1{sin 2pvtð Þð Þ:

Notice the specified nd tð Þ varies from 0 to nmax, so that synaptic

input rates are non-negative. Let us denote c by c vð Þ for two given

background rates driven by sinusoidal input with frequency v in

Hz (here v is not the conventional radian frequency). When nmax

is in a low range the differences between c vð Þ and c 0ð Þ are

negligible over a wide range of v (Fig. 7). This result is robust for a

range of background states (Fig. 7A–D). The quantitative match

between the divisive scaling of equilibrium and nonequlibrium

responses extends to more complicated temporal modulations of

the driving input (Fig. 3A). Specifically, we find that cj&c
eq
j for the

results shown previously (c2&c
eq
2 &1:72 and c3&c

eq
3 &3:2 in

Figs. 2 and 3). Thus, fluctuation induced gain control is

quantitatively insensitive to the timescales of the driving input.

Frequency response to weakly time varying inputs
To better describe the mechanism underlying fluctuation-

induced divisive gain control in the nonequlibrium, we focus on

a weak time modulation of the input drive and compute the linear

frequency response [34,46,47]. The frequency response function

gives the first order temporal modulation of output firing rate

assuming the synaptic driving input consists of a large constant

component and a small time-varying component:

nd tð Þ~n
eq
d zeei2pvt:

Here we have set neq
d to be some fixed driver synaptic input rate,

making the overall time independent excitatory input ne~n
eq
d zn0

e ,

while the inhibitory input is still ni tð Þ~n0
i . In total we then have

the equilibrium state defined by the triplet B~ neq
d ,n0

e ,n0
i


 �
, and

the time dependent component of the driver simply eei2pvt.

Assuming e%1 we approximate:

r tð Þ~reqzeZ v,Bð Þei2pvtzO e2
� �

: ð15Þ

The time modulation of the response is characterized by Z v,Bð Þ,
indicating how large or small the first order response is to time-

Figure 6. Parameter space where divisive gain modulation
extends to the nonequilibrium regime. (A) The logarithm of
the area (or error) between the time-dependent response curve
scaled by the equilibrium scale factor c

eq
j rj tð Þ and the r tð Þ curve

f o r m a ny b a c k g r o u n d l e v e l s a n d m a n y d r i v e r i n p u t s :

log2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÐ T

0 r tð Þ{c
eq
j tð Þrj tð Þ

��� ���2dt

r !
. The a values on the vertical axis

corresponds to a scaling of the driver input used in Figure 3A (see text
for details). The two points at a~1 and n0

i ~1400, 1900 s21 marked by
stars (*) correspond to the difference in area between the curves in
Figure 3D, and the two black circles (N) at a~1:8 and n0

i ~1400,
1900 s21 correspond to the difference in area between the curves in
Figure 5B. Any region with colors in the range of orange to blue
correspond to parameters where divisive gain modulation persists. (B)
The average (unscaled) time-dependent response of the neurons with
the same parameters and driver inputs as (A) are plotted on a
logarithmic scale. The three stars (*) at a~1 are the average firing rates
of the unscaled responses in Figure 3C, and the three black circles (N) at
a~1:8 are the average firing rates of the unscaled responses in
Figure 5A (bottom panel). A logarthmic scale was used to better
highlight the variety of values.
doi:10.1371/journal.pcbi.1000365.g006
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varying input of frequency v and amplitude e. Z v,Bð Þ is a

complex number with a modulus Z v,Bð Þj j and phase W v,Bð Þ:
Z~ Zj jeiW.

Our earlier results (Fig. 3) show that for the same driver input

ud tð Þ and different background inputs that rj tð Þ&r1 tð Þ
	

cj for

some scaling factor cj . However, we know that in limit e?0 the

equilibrium response also satisfies r
eq
j &r

eq
1

	
cj (Fig. 2). Combining

these two results, and neglecting the O e2
� �

terms in Equation (15),

predicts that Z v,Bj

� �
&Z v,B1ð Þ

	
cj where Bj is a background

state. Satisfyingly, when neurons are in the fluctuation-dominated

regime Z v,Bð Þj j does indeed multiplicatively scale in the same

quantitative manner for different levels of balanced background

synaptic input scale (Fig. 8A and 8B). The phase component

W v,Bð Þ is the same for all B and v tested (insert Fig. 8A) and

hence can not change the response r tð Þ for different B. Thus from

the quantitative scaling match of both req and Z v,Bð Þj j we expect

fluctuation-induced divisive gain control to extend to weak inputs.

We remark that the near exact scaling of Z v,Bð Þj j in the high

frequency range (vw10 Hz) is important; if the multiplicative

scaling was only true in the flat region of Z v,Bð Þj j (vv10 Hz)

then fluctuation-induced divisive gain control would fail in the

nonequlibrium, i.e. when the quasi-static approximation fails. To

be more specific, limv?0 Z 0,Bð Þj j~dreq=dnd , if we neglect the

fluctuations given by the driver Poisson process. Thus the scaling

of Z v,Bð Þj j for vv10 Hz is completely explained by the scaling

of the gain of req. However, multiplicative scaling for vw10 Hz
ensures that fluctuation induced gain control will extend into the

nonequilibrium regime, even though the quasi-static approxima-

tion fails.

When the neurons are in the drift dominated regime, the

frequency responses does not scale in a multiplicative manner

because there are resonant peaks at integer multiples of the steady-

state firing rate [34,48,49], and these resonant peaks occur at

different frequencies for various balanced background synaptic

activity (see Fig. 5B). Thus, divisive gain modulation with dynamic

stimuli cannot possibly occur. The frequency responses in the drift

dominated regime are scalar multiples of each other up to 10 Hz,

where there appears to be divisive gain modulation with the same

equilibrium scaling factors (see Fig. 5B). As explained in the

previous paragraph, frequency response for 0vvv10 Hz is equal

to the frequency response for v~0. However, the multiplicative

scaling breaks down for the same v range where the quasi-static

Figure 7. Optimal scaling factor for sinusoidal input compared with equlibrium scaling factor. The red line is the optimal scaling factor
ceq (11) of the equilibrium input/output curves computed for 0vndvnmax, and the black line with dots is the optimal scaling factor c vð Þ (14) of the
two dynamical responses with sinusoidal input nd tð Þ. The scaling factors match very well for a variety of pairs of balanced background synaptic
inputs. Top panels to bottom panels have background synaptic input rates of: (A) n0

i ~1900 Hz?n0
i ~1100 Hz, (B) n0

i ~1700 Hz?n0
i ~1400 Hz, (C)

n0
i ~800 Hz?n0

i ~1200 Hz, (D) n0
i ~900 Hz?n0

i ~500 Hz. See Equation (4) for corresponding n0
e background balance of excitation and inhibition.

doi:10.1371/journal.pcbi.1000365.g007
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approximation breaks down, meaning that for drift dominated

responses any fluctuation induced gain control in the equilibrium

regime will not transfer to the nonequilibrium response.

Discussion

Chance et al. [11] described a mechanism by which divisive

gain modulation results from a balanced, fluctuating background

synaptic activity which both shunts and linearizes the membrane

to spike transfer. The response r
eq
j is a scaled version of a baseline

condition r
eq
1 , and the dividing factor cj is independent of the

driver intensity u
eq
d . However, many stimuli induce input and

output statistics which vary on the timescale of neural integration

[26,27,30,31]. Extending fluctuation induced gain control to

accurately divide the response to these inputs is not automatic, as

the spike-reset and refractory dynamics significantly shape the

response in the nonequilibrium regime to be significantly different

than the quasi-static approximation. However, our results show

that the fluctuation induced gain control does extend to the

nonequilibrium regime, increasing the potential utility of this form

of gain control in neural processing. Furthermore, establishing the

independence of the scaling term cj from the timescale of the

driver greatly simplifies the circuitry required to implement gain

control. In its simplest scenario, the gain of the response is set by

the background rates n0
e and n0

i which maintain their scaling effect

despite processing unpredictable environments where inputs

statistics can vary dramatically.

The analysis of the time dependent response for weak signals

showed how a scaling of r tð Þ is inherited from an equivalent

scaling of req and the response function Z v,Bð Þj j by fluctuating

background conductances. The response to an input s tð Þ of

arbitrary strength and spectrum can be written using the Volterra

expansion [50]:

r tð Þ~reqz

ð
~ZZ1 t,Bð Þs t{tð Þdtz

ðð
~ZZ2 t,t’,Bð Þs t{tð Þs t{t’ð Þdtdt’

z

ððð
~ZZ3 t,t’,t’’,Bð Þs t{tð Þs t{t’ð Þs t{t’’ð Þdtdt’dt’’z . . . ,

where ~ZZ1 t,Bð Þ is the inverse Fourier transform of the response

function Z v,Bð Þ described in Equation (15). Fluctuation induced

gain control extends well into the nonlinear regime, evidenced by

the empirical agreement in regimes where r tð Þ varies significantly

about req (Fig. 3D). In this case, the influence of the higher order

terms in the Volterra expansion are likely important. We

conjecture that, within the fluctuation dominated regime, each

response function ~ZZi t, . . . ,t ið Þ,Bj

� �
&~ZZi t, . . . ,t ið Þ,B1

� �	
cj , mean-

ing that the multiplicative scaling extends, response function-by-

response function, analogously into the nonlinear regime. This

scenario is opposed to the one where each term exhibits scaling

with distinct terms, yet the sum of terms somehow scales with cj ,

forcing agreement with our results where s tð Þ has large temporal

variance (Fig. 3D). In principle computing ~ZZi t, . . . ,t ið Þ,Bj

� �
is

quite difficult, however, if this scaling is correct then the influence

of the stochastic background on ~ZZi t, . . . ,t ið Þ,Bj

� �
, in the

fluctuation driven regime, becomes straightforward.

Divisive gain control is a central tool in many neural

computations [1], yet robust biophysical mechanisms that produce

gain control are elusive [10–13,16]. Our work gives further

evidence that using background fluctuations as a mechanism to

scale responses is a surprisingly stable mechanism operable for a

variety of input statistics. Fluctuation induced effects on the

equilibrium state transfer different from divisive gain control have

been reported [24,25]. Notably, [24] have shown that the firing

response of pyramidal cells in layer 5 is sensitive to fluctuations at

high rates, where the mean current no longer determines the spike

rate. The mechanisms responsible are not present in the standard

LIF model, however, modifications could possibly be made to

model these effects and a population density equation could, in

principle, be derived. These models would require more state

Figure 8. The frequency response in the fluctuation and drift
dominated regimes. (A) Fluctuation driven regime. Top Panel: the
frequency response is flat up to very large frequencies for all 3 different
levels of balanced background activity. In all 3 cases, there was a
constant excitatory �nnd~2300 s{1 super-imposed on top of various
balanced background inputs: low, medium, and high. Bottom Panel: the
frequency responses for the 3 different levels of balanced background
activity are scaled the same multiplicative factor (ceq

j in Figs. 2 and 3) for
a large range of frequencies. (B) Drift dominated regime. Top Panel: the
frequency response for 3 levels of balanced background activity with a
constant excitatory �nnd~3500 s{1 super-imposed on top of various
balanced background inputs: low, medium and high. Bottom Panel: the
frequency responses do not scale in a multiplicative manner.
doi:10.1371/journal.pcbi.1000365.g008
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variables and/or equations and in general are not computationally

tractable without some reduction or approximation. Sophisticated

methods for other neuron models have been developed [51–53].

Extending gain control to nonequilibrium responses to a larger

class of models is currently an open avenue of research.

The LIF model we have used is an approximation to the

dynamic clamp experiments of Chance et al. [11]. One difference

is that our model does not have temporal correlations in the

synaptic conductances, while there are temporal correlations in the

experiments even though Chance et al. average over time (and

trials) to obtain the firing rate. Also, we are using a simple yet

biophysical spiking neuron model, where the level of background

activity determines the variance of the background voltage (see

Fig. 1B), consistent with the observations that membrane potential

variability changes with the internal brain state [54]. In Chance et

al. the variance of background voltage was the same for all

background fluctuation levels, ensuring that the variability of the

output firing rate is constant. Despite these differences, our results

suggest that fluctuation induced divisive gain modulation is viable

with dynamic stimuli.

The population density equations (6)–(8) that characterize the

LIF model contain a partial differential-integral equation that is

difficult to analyze. Our model is more general than white noise

models that have an advection/diffusion density equation (e.g,

Fokker-Planck equation) because it allows for large voltage

changes upon receiving synaptic input events. However, the

simulations shown in this paper are in the regime where the

diffusion approximation is good. If the voltage change upon

receiving synaptic events (excitatory or inhibitory) is assumed to be

small, a good diffusion approximation of (6)–(8) is obtained by

replacing r u’,tð Þ with r u,tð Þz Lr u,tð Þ
Lu

u’{uð Þ in the integrals in

the probability current terms Je u,tð Þ and Ji u,tð Þ (see Text S1 and

Figure S1). With large voltage changes, a similar approximation

can be obtained by a re-scaling of the equation around the

(deterministic) mean. However, a direct comparison to the Fokker-

Planck equation with white noise conductances still must be done

numerically because of the conductance-based input (Text S1

outlines the Fokker-Planck approximation to the full density

equation and Figure S1 shows the magnitude of the advection/

diffusion coefficients). Moreover, the analytic formulas obtained

with advection/diffusion equations are often computed numeri-

cally and usually assume at least a quasi-static approximation.

With Poisson current injection however, a closed form Fokker-

Planck approximation is obtained with drift and diffusion

coefficients that can be written exactly in terms of voltage, input

rates, and the statistics of C�e=i. An analytical explanation of the

robust scaling of the firing rate responses that is observed remains

elusive yet is conceivable because of the many analytical results

obtained for density equations of a variety of neuron models

[51,52]. However, we remark that even in the equilibrium regime

an analytic explanation of divisive gain modulation via conduc-

tance fluctuations is difficult to obtain [14].

Supporting Information

Figure S1 The advection/diffusion coefficients. (A) The func-

tions de/i
0(v). (B) The functions de/i

1(v). Parameters: PSP = +0.5 or

20.5 mV (see main text for an explanation), tm = 20 ms,

ei = 280 mV, er = 270 mV, Vth = 255 mV, ee = 0 mV.

Found at: doi:10.1371/journal.pcbi.1000365.s001 (8.28 MB TIF)

Text S1 Fokker-Planck approximation to full density equations

Found at: doi:10.1371/journal.pcbi.1000365.s002 (0.01 MB TEX)
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