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A B S T R A C T   

EEG provides a rich measure of brain activity that can be characterized as neuronal oscillations. However, most 
developmental EEG work to date has focused on analyzing EEG data as Event-Related Potentials (ERPs) or power 
based on the Fourier transform. While these measures have been productive, they do not leverage all the in-
formation contained within the EEG signal. Namely, ERP analyses ignore non-phase-locked signals and Fourier- 
based power analyses ignore temporal information. Time-frequency analyses can better characterize the oscil-
lations contained in the EEG data. By separating power and phase information across different frequencies, time- 
frequency measures provide a closer interpretation of the neurophysiological mechanisms, facilitate translation 
across neurophysiology disciplines, and capture processes not observed by ERP or Fourier-based analyses (e.g., 
connectivity). Despite their unique contributions, a literature review of this journal reveals that time-frequency 
analyses of EEG are yet to be embraced by the developmental cognitive neuroscience field. This manuscript 
presents a conceptual introduction to time-frequency analyses for developmental researchers. To facilitate the 
use of time-frequency analyses, we include a tutorial of accessible scripts, based on Cohen (2014), to calculate 
time-frequency power (signal strength), inter-trial phase synchrony (signal consistency), and two types of phase- 
based connectivity (inter-channel phase synchrony and weighted phase lag index).   

Electroencephalography (EEG) is an established and practical tool 
for studying brain function, psychology, and psychiatry across devel-
opment. Most developmental EEG work to date has focused on Event- 
Related Potentials (ERP) analyses or power analyses based on the 
Fourier transform. Although these measures have proven fruitful, they 
do not utilize all the information contained within the EEG signal. 
Namely, ERP analyses ignore non-phase-locked signals and Fourier- 
based power analyses ignore temporal information. Time-frequency 
(TF) analyses can better characterize the temporal dynamics of three 
of the features of oscillations contained in the EEG data: frequency, 
power, and phase. As such, time frequency measures provide a closer 
interpretation of the neurophysiological mechanisms and provide a link 
to multiple disciplines of neurophysiology (e.g., single-cell recordings, 
nonhuman animal work, intracranial EEG, and MEG). Time frequency 
computations can be both computationally intensive and intimidating to 
researchers who are beginning to characterize more aspects of the EEG 
signal. The goal of this paper is to provide a comprehensive and 

understandable tutorial and automated, but easily customizable, Matlab 
scripts to calculate TF power, inter-trial phase synchrony (ITPS) and two 
types of phase synchrony, inter-channel phase synchrony (ICPS) and 
weighted phase lag index (wPLI), for developmental EEG researchers. 

We start by providing a theoretical overview of TF analyses, high-
lighting its advantages over other commonly used methods (e.g., ERPs 
and Fourier-based power). The goal of this first section is to provide the 
reader with the motivations behind TF analyses and a conceptual un-
derstanding of the main TF measures. In the following section, we cover 
how to estimate TF measures, including their mathematical definitions 
and how to use the publicly available code. After discussing the moti-
vations and how to estimate TF measures, we discuss the limitations and 
the practical challenges of applying TF analyses for developmental data. 
Finally, we illustrate how to perform TF analyses with the code provided 
by using a dataset of adolescents. 
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1. Why time-frequency analyses? 

Throughout the lifespan, from infancy to adulthood, EEG can be 
collected in laboratory and mobile environments (e.g., at home or in 
schools) at relatively low costs while maintaining excellent temporal 
resolution and being fairly robust to movement and noise, compared to 
other neuroimaging modalities. In the last several decades, EEG has 
been utilized to study the development of cognition, socioemotional 
abilities, and psychopathology. Historically, partly due to limitations in 
computational power, most EEG studies focused on ERP or Fourier- 
based power analyses. For example, we identified 177 empirical arti-
cles published in the journal Developmental Cognitive Neuroscience be-
tween 2011 and June of 2021 that examined EEG by searching for “EEG” 
in the journal’s search bar on the website and screening out studies that 
only mentioned EEG or were review articles. Of those 177 empirical 
articles, ~77% used ERPs, ~15% examined Fourier-based power, and 
~4% used TF, and ~4% used other methods like signal complexity (e.g., 
entropy), frequency tagging (e.g., steady state visually evoked poten-
tials), or microstates analyses. This quick search illustrates that even 
though TF analyses have been available to the EEG research community 
for several years (Delorme and Makeig, 2004), are widely used in the 
cognitive neuroscience literature, and there have been previous calls for 
the benefits of TF analyses on developmental EEG data (Maguire and 
Abel, 2013), TF analysis as an EEG method is still rarely used. Moreover, 
this review demonstrates that most studies in the developmental 
cognitive neuroscience field rely on ERPs and Fourier-based power. 

While ERPs and Fourier-based power are informative and have 
provided important insight to our understanding of the development of 
psychological phenomena, ERPs and Fourier-based power do not fully 
leverage all of the information in the EEG signal. ERP analyses assume 
that the component of interest is temporally synchronous across trials, 
only focusing on neural activity that is time-locked to the event of in-
terest and disregarding signals that are not synchronized across trials 
(Luck, 2014). For example, as illustrated in Fig. 1, imagine you have two 
ERPs, one at 0 ms and the other at 500 ms. If these components vary 
slightly in their latency across trials (i.e., are not temporally consistent 
across trials) like the first component at 0 ms, the activity will be lost as 

noise as we average trials. In contrast, the second component at 500 ms 
is perfectly synchronous across trials and clearly retained when we 
average across trials. Although our example is clearly hypothetical, the 
assumption that brain responses are temporally synchronous across 
trials is not always met and is particularly questionable when examining 
developmental processes. For example, in a longitudinal sample of 
children, DuPuis and colleagues (2015) found that temporal consistency 
across trials increased with age from 5 to 9 years, partly explaining the 
age-related differences observed in the ERPs. Other studies have also 
found that the latency of brain responses significantly varied from 
trial-to-trial across development – with more trial-to-trial variability 
earlier in development (Gavin et al., 2019). Consequently, it is especially 
important to consider this variability when examining ERP in develop-
mental populations, especially when comparing ERPs across age. 

2. Brain activity as oscillations 

One possibility is to consider brain activity as oscillations, rather 
than as deflections in voltage at a specific time (i.e., ERPs). Character-
izing EEG as oscillations has the advantage that brain activity can be 
characterized as several independent measures, such as frequency, 
amplitude, and phase. The frequency of an oscillation captures the 
number of full oscillations per unit time, usually one second, and is 
measured in Hertz (Hz). In Fig. 2A, we show a sine wave that completes 
two full cycles per second, so it has a frequency of 2 Hz. In contrast, the 
sine wave shown in Fig. 2D is oscillating faster, completing four cycles 
per second, having a frequency of 4 Hz. The other characteristic of these 
sine waves is that they cycle from 1 to − 1 around 0. This range or height 
of the oscillation represents the amplitude, which is the distance be-
tween the point of equilibrium and the highest and lowest points, so the 
waves shown in Fig. 2A and Fig. 2D both have an amplitude of 1. On the 
other hand, the oscillation shown in Fig. 2B has the same frequency as 
Fig. 2A, but smaller amplitude of 0.5. 

Finally, we can characterize an oscillation with respect to its phase. 
Phase is the position on the oscillation at a specific time (usually 0). In 
this way, we can use phase to estimate the alignment of the oscillations 
relative to a specific time, event, or other oscillations. For example, the 

Fig. 1. ERP and TF analysis comparison. On the left column, the figure shows a simulated EEG signal across five trials. The trials were simulated to have a non- 
phased-locked 6 Hz response around 0 ms and a phase-locked 10 Hz response around 500 ms. The middle column shows the average ERP of each trial and all 
previous trials. The third column is the average TF power of each trial and all previous trials. 
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waves in Figs. 2A and 2B have the same frequency and phase (i.e., they 
are perfectly aligned), such that both start at the peak of the oscillation. 
These are often referred to as “phased-locked” signals. On the other 
hand, Fig. 2C shows a wave identical to Fig. 2A, but it is shifted, starting 
at its equilibrium or zero. In other words, relative to the other oscilla-
tions (Figs. 2A and 2B), it is one quarter through its cycle so it is in a 
different phase of the oscillation. Phase is formally measured in degrees 
with 360 degrees, representing a full cycle of the oscillation. This is 
illustrated on the right column of Fig. 2 using polar plots. As shown in 
Fig. 2, the sine wave shown in Fig. 2C is 90 degrees (or ¼ of 360 degrees) 
compared to the waves shown in Figs. 2A and 2B. These signals, shifted 
in phase compared to each other, are often referred to as “non-phased 
locked” signals. Another example of non-phase locked signals is the 
component at time 0 ms on Fig. 1, which would not be captured by ERPs. 

Now that we covered the basics of oscillations, we can highlight how 
these measures can be used to characterize brain activity. The most 
common way oscillations are used to characterize brain activity is by 
using the Fourier transform to measure the amount of activity in a given 
frequency. This approach is done by convolving sine waves at different 
frequencies with the EEG data to measure their amplitude at a given 
frequency. The activity or energy of the signal at a given frequency is 
commonly measured as power, which is the amplitude squared. 
Importantly, this measure of power at each frequency includes non- 
phase locked signals. However, it assumes that the signal is stationary, 
losing the rich temporal information embedded in the EEG signal. 
Moreover, when the signal is not stationary, the Fourier transform loses 
precision (Cohen, 2014). Except for resting state paradigms or 
short-time windows (hundreds of a second), this assumption is likely 
violated as psychophysiological processes change across time because of 
external and internal processes. Going back to our example on Fig. 1, if 
we think of our ERP components as oscillations, a Fourier-based analysis 
(not shown) would reveal increased power around 6 Hz and around 
10 Hz, which are the frequencies in which the components at 0 and 
500 ms occur, respectively. However, Fourier-based analyses would not 

be able to indicate when in the trials 6 Hz and 10 Hz increases in power 
occur. Thus, it is of interest to examine measures that capture phase and 
non-phase locked signals as well as how these signals change across 
time. Finally, Fourier-based analyses are rarely used to examine the 
phase of the signal in developmental studies. 

TF analyses measure the dynamic changes in amplitude and phase of 
neural oscillations across different frequencies. By differentiating be-
tween amplitude and phase information, both phase-locked and non- 
phase-locked signals can be studied in relation to an event of interest. 
For example, returning to Fig. 1, we have a 6 Hz non-phase locked 
oscillation at 0 ms that is not captured by ERPs, but is clearly observed in 
the TF representation as an increase in signal strength or power at 6 Hz 
between 0 and 200 ms. Similarly, TF analyses capture the 10 Hz phase- 
locked oscillation at 500 ms as an increase in power at that time and 
frequency. As a separate measure, TF analyses also provide an estimate 
of the phase across time for a given frequency. This phase information 
can be examined for its consistency or synchronicity across trials. This 
measure is commonly referred to as inter-trial phase synchrony (ITPS; 
but also as inter-trial phase clustering or phase-locking value). In our 
example in Fig. 1, the non-phase locked component at 6 Hz yields an 
ITPS value of ~.23 from 0 to 200 ms. In contrast, the phase-locked 
component at 10 Hz results in an ITPS of 1.0, indicating perfect phase 
consistency across trials. In addition to examining the consistency of 
phase oscillations across trials (ITPS), TF analyses can also examine the 
consistency of phase oscillations across different electrodes across trials 
or time. This measure is often interpreted as a measure of connectivity 
between electrodes and is called inter-channel phase synchrony (ICPS). 
We will discuss ICPS in detail below, but conceptually (and mathemat-
ically), it is similar to ITPS. The difference is that ICPS is examined be-
tween two electrodes, while ITPS is calculated within the same 
electrode. 

Fig. 2. Characteristics of oscillations. The left 
column shows the oscillations across time. The 
phase of oscillations is measured in degrees 
with 360 degrees, representing a full cycle of 
the oscillation. The phase is indicated by the 
blue numbers and also illustrated on the right 
column using a circular representation of the 
oscillations by using polar plots. A) Illustrates a 
2 Hz sine wave with an amplitude of 1; B) 
Shows a 2 Hz sine wave with an amplitude of 
0.5; C) Depicts the same sine wave as A, but 
with a different phase; D) Shows a 4 Hz sine 
wave with an amplitude of 1.   
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3. Benefits of TF analyses 

A major strength of TF analyses over other EEG methods is their 
interpretability. Because neuronal oscillations are a fundamental prop-
erty of the brain (Buzsaki, 2004), TF measures provide more direct in-
formation regarding the neurophysiological mechanisms underlying the 
processes captured by the EEG data. This also provides a link to multiple 
disciplines of neurophysiology (e.g., single-cell recordings, nonhuman 
animal work, intracranial EEG, and MEG). For example, by using TF 
analyses, it is possible to study shared processes across species like 
neural responses to errors – as TF analyses reveal similar brain responses 
in similar frequency and timing between humans, non-human primates, 
and rodents (Narayanan et al., 2013; Tsujimoto et al., 2006; Womelsdorf 
et al., 2010). 

Because TF analyses provide separate measures of signal strength 
(power), phase consistency across trials (ITPS), and connectivity (ICPS), 
they may provide unique insight into the development of neurocognitive 
processes. For example, emerging evidence suggests that TF analyses are 
able to capture developmental changes when they are not evident when 
using traditional approaches like ERPs. For example, Bowers et al. 
(2018) and Morales et al. (2021) did not observe age-related differences 
in using ERPs, but observed age-related increases in both the strength 
(power), consistency (ITPS), and connectivity (ICPS) of the neural re-
sponses to feedback and error processing, respectively. These results 
suggest that TF analyses, by distinguishing between power and phase 
information at specific frequencies, may be more sensitive to detect 
developmental changes. Moreover, even if age-related changes in ERPs 
are observed, TF analyses may also help provide a more nuanced un-
derstanding of the developmental processes underlying the develop-
mental changes observed with ERPs (Bishop et al., 2011; DuPuis et al., 
2015). For instance, in a prospective study in early childhood, an ERP 
component in response to errors showed increases in amplitude from 
ages 5–7 years. Importantly when examining the same data with TF 
analyses, phase synchrony, but not power, mediated the developmental 
changes observed in the ERPs (DuPuis et al., 2015), implying that 
age-related increases in the signal consistency, rather than signal 
strength (power), underlay the age changes observed in this ERP. A 
recent study further supported this conclusion by measuring the tri-
al-to-trial latency variability in the ERP by using an Adaptive Woody 
technique finding that variability significantly decreases across age 
(7–25 years). Moreover, adjusting for the trial-to-trial latency variability 
reduced the age-related difference initially observed in the ERP (Gavin 
et al., 2019). Together these studies illustrate the importance of exam-
ining signal strength (power) and consistency (ITPS) separately, as these 
separate signal components are confounded in ERPs. 

Finally, there are several processes that can only be captured by 
using TF as they do not generate clear ERP components. They can also be 
captured with Fourier-based power, but this may miss important tem-
poral dynamics. One example of such processes is an EEG measure to 
capture activity of the mirror neuron system, called mu desynchroni-
zation (Fox et al., 2016). Mu rhythm reflects EEG activity occurring in 
the alpha range (~8 − 13 Hz in adults and ~6 − 9 Hz in infants and 
children) over the motor cortex (i.e., C3 and C4) that decreases in 
amplitude when an individual executes or observes an action. For 
example, in a sample of infants, Debnath et al. (2019) found mu 
desynchronization when executing and observing actions. Importantly, 
the mu desynchronization during action observation was only present 
for movement onset and was not observable for movement completion, 
which even showed some mu synchronization. Using a Fourier trans-
form over a traditional, larger time window (e.g., 500–1000 ms) would 
have likely missed these crucial dynamics; however, TF analyses are 
better suited to capture the brain’s dynamics on a finer timescale. As a 
further illustration of the advantage of TF analyses, in the same study, 
the phase information was leveraged to examine the connectivity be-
tween different brain regions. Results showed increased connectivity 
between the visual and motor cortex during action observation, 

compared to connectivity between other brain areas, providing further 
evidence of mirror neuron system activity when infants observed others’ 
actions. 

In sum, TF analyses have several notable advantages over the most 
commonly used ways of analyzing EEG data in developmental cognitive 
neuroscience: ERPs and Fourier-based power. In the next section, we 
discuss more details on how to compute TF analyses. 

4. Computing TF analyses 

4.1. Convolution 

The main operation behind TF analyses is called convolution. 
Convolution is a procedure that involves combining two signals to 
produce another signal that captures the aspects that are common or 
shared between the two original signals. In this way, convolution can be 
conceptualized as a measure of the similarity between two signals. 
Mathematically, the first step of convolution involves computing the dot 
product between two signals. The dot product involves multiplying two 
signals, element by element, and then summing all their products: 

Dot Productab =
∑n

i=1
aibi  

Where a is the first signal, for TF analyses this would be the EEG signal, 
and b is the second signal, for TF analyses this would be a signal with a 
predefined/known function, called the kernel. For Fourier-based ana-
lyses, the kernel used is a sine wave. Because sine waves are constant 
over time, Fourier-based analyses are not able to provide time infor-
mation and just provide frequency information. For TF analyses, rather 
than using a sine wave, a time-varying sine wave is used. These time- 
varying sine waves are called wavelets and are an oscillation whose 
amplitude starts at zero, increases, and then decreases. The most 
commonly used wavelets are called Morlet or Gabor wavelets. Morlet 
wavelets are the combination of a sine wave and a Gaussian window. 
Namely, it is not tapered at the center and it is symmetrically filtered/ 
dampened. An example of a Morlet wavelet and its relation to a sine 
wave and a Gaussian window is shown in Fig. 3. 

Convolution involves performing the dot product repeatedly over 
time. As shown in Fig. 4, this is performed by sliding/shifting the 
wavelet across the EEG signal. The result of convolution is a new time 
series that captures the similarity between the EEG and the wavelet of 

Fig. 3. Example of Morlet wavelet and its relation to sine waves. A 6 Hz sine 
wave (blue) is convolved with a Gaussian filter (red), which produces a Morlet 
wavelet (black). (For interpretation of the references to colour in this figure, the 
reader is referred to the web version of this article.) 
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interest. For example, in Fig. 4, we convolve the first trial from Fig. 1 and 
a 6 Hz wavelet, capturing all the 6 Hz oscillations, which are greater 
around 0 ms. For TF analyses, convolution is actually performed using 
complex Morlet wavelets. The reason they are called “complex” is 
because they are composed of a real and an imaginary component. 
Because the main goal of the current article is an accessible introduction 
to TF analyses to developmental psychologists or neuroscientists, we 
will not cover in the detail complex numbers here – interested readers 
can find more in-depth explanations in Cohen (2014). For the purposes 
of this article, the main thing to know about complex numbers is that by 
utilizing both the real and imaginary components, it is possible to 
independently measure the amplitude of the oscillations as well as their 
phase. In this way, convolving the EEG signal and a complex Morlet 
wavelet produces a time series of complex numbers. Mathematically, the 
convolution process can be characterized by the following formula: 

Mtf eiϕtf  

Where M corresponds to amplitude, ϕ indicates the angle of the phase, e 
is the base of the natural logarithm, and i is the imaginary unit. More-
over, all of the terms have subscript t, to indicate that this is applied 
across time as the wavelet is shifted across the EEG signal, creating a 
time series at frequency f. Fig. 4, illustrates the convolution process and 
how this is done repeatedly, obtaining the amplitude (M) and phase (ϕ) 
for each time point. Although we illustrate the convolution procedure 
with a 6 Hz wavelet, the process can be repeated with wavelets of 
different characteristics (e.g., different frequencies), allowing re-
searchers to capture the amplitude and phase information of the EEG 
signal across time and frequencies. Thus, it is important to carefully 
select the characteristics of the wavelets, which can be done by defining 

different parameters (see below). Now that we have covered convolu-
tion as a fundamental operation of TF analyses, we can discuss the main 
outcomes of TF analyses: power and phase synchrony. 

4.2. Time frequency power 

Examining TF power is one of the most common ways that re-
searchers employ TF analyses. Developmental researchers have utilized 
TF power analyses to link a variety of TF dynamics to cognitive and 
affective processes including auditory discrimination (Bishop et al., 
2011), conflict and error processing (Buzzell et al., 2019, 2020), social 
rejection (Morales et al., 2019), processing others actions (Debnath 
et al., 2019; Meyer et al., 2020), learning and cognitive engagement 
(Begus and Bonawitz, 2020; Meyer et al., 2019), as well as reward 
processing (Bowers et al., 2018; Nelson et al., 2018). In order to measure 
the temporal dynamics of TF power over a period of time in different 
frequency bands, researchers utilize the convolution procedure previ-
ously described, also called time-frequency decomposition, to isolate the 
amplitude of the signal at each time and frequency. The amplitude is 
usually squared as a measure of power (μV2; Fig. 4). This measure of TF 
power captures the amount of energy or the signal strength at a specific 
time and frequency. The TF decomposition from each trial is then 
averaged together to reveal the amount of total power. Included in total 
power are both phase locked and non-phase locked activity. Phase 
locked activity is also called evoked power and non-phase locked ac-
tivity is also referred to as induced power. Although it is possible to 
separate these forms of power, analyzing total power is the most com-
mon way TF analyses are used. 

After averaging over trials to compute total power, there are several 
potential confounding factors when interpreting these values of “raw” 

Fig. 4. Convolution with complex Morlet 
wavelet to measure amplitude and phase of 
oscillations across time for each frequency. The 
EEG signal is convolved with a complex Morlet 
wavelet using the dot product (element-by- 
element multiplication and summing the prod-
ucts), creating a complex number. This process 
is repeated across the signal by shifting the 
wavelet across the signal, yielding a time series 
of complex numbers. These complex numbers 
contain information about the amplitude (M) 
and phase (ϕ) of the oscillations for each time 
point. This process can be repeated with 
wavelets of different characteristics like 
different frequencies to capture the amplitude 
and phase information of the EEG signal across 
time and frequencies.   
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total power. First, raw total power values are heavily influenced by 
outside factors like skull thickness, electrical activity in the recording 
location, and cortical anatomy. Similarly, raw total power values are 
affected by underlying background neural activity that is occurring 
regardless of event-related activity (e.g., increased background activity 
could lead to what seems like increased event-related activity). Also, raw 
total power values can only be positive, as they are the squared ampli-
tude, creating a skewed distribution. Finally, the nature of the frequency 
power spectrum, with lower frequencies having higher levels of power 
and higher frequencies having lower levels of power, makes comparing 
low frequency and high frequency activity difficult. To rectify some of 
these issues, researchers generally use the decibel conversion below to 
baseline normalize raw total power values: 

dBtf = 10 ∗ log10(
Activitytf

Baseline Activityf
)

Where the average activity across trials at time t and frequency f is 
divided by the average activity over the baseline period at frequency f, 
log10 transformed, and multiplied by 10, producing decibels (dB). After 
baseline normalization, all activity will be on the same scale and any 
activity common to the average baseline time period will be removed, 
allowing for TF power to be interpreted as levels of activity relative to 
the baseline period; thus, the baseline time period should be carefully 
selected by the researcher, as there are several factors to consider. 

Ideally, the baseline period would be as long as the event of interest 
to provide a comparable time period, cancel out any potential random 
fluctuations in activity, and thus, provide a robust and representative 
measure of pre-stimulus activity. However, because of the brain activity 
is rapidly changing and there are no time periods in which the brain is 
“at rest,” having a long baseline could lead to the inclusion of other 
cognitive processes (e.g., a child adapting from the previous trials or 
getting distracted). Moreover, and particularly relevant to develop-
mental data, having a longer baseline period creates longer epochs, 
which will likely lead to higher rates of trials being rejected because of 
artifact contamination. Finally, a baseline that is further away from the 
event of interest will make it less comparable due to cognitive changes 
and differences in signal drift. Because of this, using a time period that is 
10–20% of the overall epoch duration is recommended (Luck, 2014). 
Because in most cases epochs range from 1.5 to 2 s, commonly used 
baseline windows are 200–400 ms. However, this is not a strict rule. It is 
important to consider the most appropriate time for a specific study (e. 
g., it is better to use 100 ms that are particularly suited to serve as a 
baseline period than 400 ms that are contaminated by previous events). 
When unsure, it is recommended to examine different baseline periods 
and examine activity of the baseline period to ensure that it is the most 
appropriate (Cohen, 2014; Luck, 2014). 

A final point of consideration for TF analyses, compared to ERPs, is 
that baseline windows for TF analyses should usually stop before the 
start of the event of interest. This is because of temporal smearing (see 
Section 5 below). As such, TF analyses often use a few hundred milli-
seconds and ends prior to the event of interest – usually time zero (e.g., 
− 300 to − 100 ms). Moreover, it is often not necessary for the baseline to 
have its own epoch – unless the study design does not have the baseline 
right before the event of interest. In that case, the baseline condition 
should ideally have a similar length to the epoch of interest. It is 
important to keep in mind these considerations about choosing a base-
line not only when analyzing the EEG data, but also when designing the 
study to ensure an appropriate baseline time window. Finally, while 
decibel conversion is a common type of baseline normalization, there 
are other methods, which may be useful, including percent change or z- 
scored baseline normalization (see Cohen, 2014 for more details). 

Traditional baseline-normalized time frequency calculations are 
commonly displayed in a time by frequency plot, in which power is color 
coded with warmer colors to indicate more power and cooler colors to 
indicate less power. An example of these plots was shown on the 

rightmost column of Fig. 1, illustrating how power changes at different 
frequencies over the time period of interest. Additionally, results can be 
displayed in a topographic plot that shows where on the scalp power at a 
certain time and frequency is maximal over the electrode montage. 

4.3. Phase synchrony 

The other main outcome of TF analyses is the phase information of 
the EEG signal. As with power, the phase information can be captured 
for each time point at different frequencies. This phase measure provides 
information about the timing of the oscillations at a specific frequency 
and can be examined across trials to capture how consistent or syn-
chronous the phase of the oscillations is across trials (e.g., does the 
oscillation rise and fall at the same time across trials; Fig. 2). This 
measure is often called phase synchrony, but is also known in the 
literature by a variety of names such as coherence, phase clustering, and 
phase locking – to name a few. Phase synchrony can be estimated by 
averaging the phase angle values across trials. However, phase angles 
cannot be simply averaged like an ERP or TF power because phase an-
gles are circular, rather than linear. Due to this circular distribution, the 
average of the phase angle differences is computed via vector math, in 
which phase angles are represented in a complex plane with real and 
imaginary components (for more details see Cohen et al., 2014). The 
resulting vector is a value between 0 and 1 with a lower value repre-
senting less consistency and a higher value indicating greater 
consistency. 

4.3.1. Inter-trial phase synchrony (ITPS) 
One manner in which phase synchrony can be applied in TF analyses 

is inter-trial phase synchrony (ITPS) or inter-trial coherence. ITPS is a 
measure of phase consistency at a specific time and frequency when 
examined across trials. Generally, event-related EEG paradigms include 
multiple trials of various types or conditions that are time-locked to a 
specific event of interest (e.g., presentation of a stimulus or a partici-
pant’s response). ITPS captures the consistency of the EEG activity to the 
event of interest at a specific time and frequency – with higher ITPS 
values reflecting more consistency (1 = perfect consistency) and 
decreased ITPS representing closer to random phase alignment time- 
locked to events of interest (0 = random phases at that time-
–frequency point across trials). Mathematically, ITPS is calculated using 
the following equation: 

ITPS =

⃒
⃒
⃒
⃒
⃒

1
n
∗
∑n

x=1
eiϕtf

⃒
⃒
⃒
⃒
⃒

which represents the average of the phase angle (ϕ) vectors of n trials on 
trial x at timepoint t and frequency f. Developmental researchers have 
used ITPS to examine the consistency of the brain responses to specific 
events to examine error processing (DuPuis et al., 2015; Gavin et al., 
2019; Morales et al., 2021), reward processing (Bowers et al., 2018), and 
auditory discrimination (Bishop et al., 2011). Across studies and event 
types, results often show that signal consistency increases with age. The 
mechanisms behind these increases in consistency are unclear, but they 
have been interpreted as increased variations in the timing of the acti-
vation and the coordination of various sensory and motor neural circuits 
(Gavin et al., 2019) as well as variability in the neural representations of 
the stimuli (Buss et al., 2006, 2009). 

One important caveat is that, in instances with largely different 
numbers of trials between conditions or participants, ITPS estimates can 
be biased. Specifically, for the instances that have fewer trials, ITPS 
estimates can be artificially inflated for that condition/participant 
(Cohen, 2014). Thus, it is useful to employ a strategy that equates the 
number of trials across conditions. For example, a subsampling pro-
cedure selects an amount of trials at random and calculates the phase 
synchrony measure for that random subsample of trials. This procedure 
is then repeated for a specified number of subsamples. By using this 
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subsampling approach, conditions with unequal numbers of trials can be 
equated to reduce the inflated estimates of phase synchrony measures 
for conditions with fewer trials. Moreover, to further mitigate the impact 
of unequal numbers of trials and to isolate the events of interest (e.g., 
responses to a stimulus or action), it is also possible to perform a baseline 
correction similar to the one done for ERPs. This is done by subtracting 
the average ITPS during the baseline (e.g., − 300 to − 100 ms relative to 
the event of interest) time window from the rest of the epoch. 

4.3.2. Phase synchrony as a measure of connectivity 
In addition to ITPS, phase synchrony can be examined across chan-

nels as an indicator of the consistency in the phase of the signals for a 
given frequency. This measure has been interpreted as a measure of 
connectivity between different electrodes across the scalp (Cavanagh 
et al., 2009). The rationale behind this interpretation is that brain areas 
communicate with each other by using synchronized neural oscillations 
(Fries et al., 2005; Singer, 1999). Developmental researchers have used 
this measure to examine the connectivity in the Mu (alpha) band be-
tween visual areas and motor areas to study infant’s processing of 
others’ actions (Debnath et al., 2019) as well as connectivity between 
medial prefrontal cortex and lateral prefrontal cortex to study cognitive 
control (Bowers et al., 2021; Buzzell et al., 2019). 

Quantifying inter-channel phase synchrony (ICPS) is similar to ITPS, 
but rather than examining consistency of phase across trials, ICPS cal-
culates phase synchrony between different channels. Thus, ICPS uses 
similar phase angle vector math as ITPS. The formula for ICPS is similar 
to ITPS, but rather than estimating the average phase vectors across 
trials, the average of the phase angle differences between two channels 
is calculated. If the phase angles from the two channels fluctuate syn-
chronously over time, their difference will be constant, producing ICPS 
values close to 1. In contrast, if the phase angles from the two channels 
fluctuate randomly to one another over time, their difference will be 
highly variable, producing ICPS values close to 0. The ICPS measure is 
formalized in the following equation: 

ICPS =

⃒
⃒
⃒
⃒
⃒

1
n
∗
∑n

x=1
ei[ϕjtf − ϕktf ]

⃒
⃒
⃒
⃒
⃒

which represents the average of the phase angle (ϕ) differences between 
channel j and channel k of n trials on trial x at timepoint t and frequency 
f. 

One limitation to EEG analyses between electrodes is the poor spatial 
resolution of EEG. Due to volume conduction, signals generated by one 
source can propagate to different areas of the scalp and readings 
recorded at one location on the scalp have activity from multiple gen-
erators. However, there are some transformations or filters that can be 
applied to the EEG signal to mitigate volume conduction. For example, 
current source density or a Laplacian transform works to attenuate 
broadly-distributed (e.g., diffusely synchronized) activity, which would 
be indicative of volume conduction (Tenke and Kayser, 2012). In order 
to calculate ICPS with a greater degree of spatial specificity, these 
transformations must be applied to the data before ICPS is calculated. 
Importantly, these transformations require a certain number of elec-
trodes to be accurate and should not be used for a low-density electrode 
montage (e.g., < 64 channels). 

An alternative to using a data transformation prior to ICPS calcula-
tion is to use a different algorithm called weighted phase lag index 
(wPLI). The phase lag index (PLI) measures lags or leads of the phase 
between two different electrodes (or clusters). The PLI mathematical 
formula discards phase differences of 0 or 180 degrees (see Fig. 2), 
which are most likely caused by volume conduction, by averaging the 
sign of the estimated phase difference. However, using PLI risks missing 
true instantaneous interactions (Cohen, 2015). In contrast, wPLI weights 
the magnitude of the lag instead of removing all 0 or 180 degree phase 
difference (for the mathematical details of this measure, see Vinck et al., 
2011), de-weighting estimates that are likely due to volume conduction, 

becoming less sensitive to noise, and showing a more reliable relation-
ship with true phase consistency. Thus, while it does not completely 
mitigate concerns about volume conduction, wPLI does reduce concerns 
about volume conduction and the necessity of a spatial transform. In the 
developmental cognitive neuroscience literature, studies have recently 
used wPLI as a measure of connectivity in relation to parenting quality 
(Perone and Gartstein, 2019), physical growth (Xie et al., 2019), 
cognitive development (Xie et al., 2019), and neurodevelopmental dis-
orders like autism (Haartsen et al., 2019; Orekhova et al., 2014) and 
attention deficit hyperactivity disorder (Debnath et al., 2021). 

These phase-based measures of connectivity (ICPS and wPLI) can be 
calculated between every electrode on the head, called “all-to-all con-
nectivity.” Conversely, if the researcher has an a priori hypothesis about 
connectivity between two specific regions, ICPS and wPLI can be 
calculated from one seed electrode to the other electrodes of interest, 
called “seed-based connectivity.” All-to-all methods can be computa-
tionally intensive, especially with high-density electrode montages. 
Furthermore, connectivity matrices (e.g., from all-to-all connectivity) 
can be subsequently examined using network and graph theory metrics, 
providing a characterization of the overall network. For example, 
developmental researchers have utilized such methods to characterize 
the development of attention networks in infancy (Xie et al., 2018) or 
resting state networks across childhood (Miskovic et al., 2015). 

Finally, in addition to quantifying ICPS and wPLI over trials, these 
phase-based measures can be estimated for each trial averaging over 
time – known as connectivity over time rather than over trials (Cohen, 
2014). As discussed in the sections above, ICPS/wPLI over trials results 
in a frequency by time matrix so the researcher can see periods of 
increased or decreased ICPS/wPLI over the time period of interest at 
each channel of interest. Alternatively, ICPS/wPLI over time results in a 
frequency by trials matrix, which removes the time dimension, but al-
lows the researchers to examine connectivity (ICPS/wPLI) over an entire 
epoch changes per trial. For example, Colomer et al. (2021) utilized ICPS 
over time to examine functional connectivity between visual and motor 
brain areas during action observation and how this connectivity varies 
as a function of infants’ previous experiences. 

These different TF frequency measures are summarized in Table 1, in 
which we provide their mathematical and conceptual definition as well 
as studies that have used them with developmental populations. 

5. Challenges and Limitations of TF Analyses 

TF measures are extremely informative as they allow for investi-
gating time, frequency, phase and power dynamics of neural oscilla-
tions. However, calculating these measures does have some challenges 
and limitations. First, on a practical note, the computation of these 
different characteristics of the neural signal can be both computationally 
intensive and time consuming, especially compared to other EEG ana-
lyses like ERPs or Fourier-based power. We recommend using a high- 
powered computer or high-performance computing cluster to run 
these analyses in order to ensure enough memory and computing power. 
Additionally, the code creates large multidimensional matrices for each 
participant and condition that must be stored for later plotting and an-
alyses (see below for down sampling suggestions to alleviate this 
concern). 

Another challenge is that TF analysis yields a large number of mea-
sures, creating a multiple comparisons problem. One way to overcome 
this challenge is to use the existing literature to define a priori the 
different regions of interest (e.g., scalp locations, time periods, or fre-
quency bands). However, at times, this can be difficult, especially with 
developmental data, which may not produce the same pattern of results 
as expected based on adult data. For example, the frequency bands 
commonly used in adults might be different for infants and children 
(Marshall et al., 2002). Another approach to alleviate this problem is to 
use non-parametric cluster-based approaches to account for the de-
pendencies between sample points across topography, time, and 
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frequencies, while at the same time controlling for the family-wise error 
rate (Maris and Oostenveld, 2007). Importantly, this approach is data 
driven and can be done for a condition contrast or for a relation with an 
individual difference measure of choice (see FieldTrip’s online docu-
mentation). Another approach is to use dimension reduction techniques 
like principal component analyses to characterize the time-frequency 
information into a subset of parameters that capture meaningful activ-
ity (Bernat et al., 2005). 

Another limitation of TF analyses is the trade-off between frequency 
and time. In general, TF analyses that use the wavelet transform, as 
described in this article, represent lower frequencies with higher fre-
quency resolution and lower/coarser time resolution. The reverse is true 
for higher frequencies, such that frequency resolution is coarser and 
time resolution is higher. This can potentially lead to some low fre-
quency neural processes that are close in time to be smeared together, 
making it hard to dissociate them (e.g., distinguish pre- and post-event 
dynamics). To ameliorate this issue, it is possible to use a different 
kind of time-frequency decomposition like Cohen’s class reduced 
interference distributions, which yields uniformly high resolution in 
both time and frequency (Bernat et al., 2005). For example, Buzzell and 
colleagues (2019) used this approach together with TF principal 
component analyses to distinguish between pre- and post-response theta 
power dynamics. 

Another important issue to consider when examining time-frequency 
analyses is the nature of the oscillations. In the current manuscript, we 
have assumed that neuronal oscillations have a sinusoidal shape. 
Although this is a reasonable assumption for EEG data (Cohen, 2019), 
brain oscillations might not be shaped exactly like sine waves (Cole and 
Voytek, 2017) and there are instances in which this may lead to spurious 
results, especially when examining coupling across frequencies 
(Donoghue et al., 2021). Another assumption of brain activity as 
described in the current manuscript is that oscillations are relatively 
stable and continuous across trials, rather than occurring in bursts. 
Recent evidence suggests that brain activity, especially at higher fre-
quencies like beta and gamma (>15 Hz), might occur in bursts rather 
than as sustained oscillations (Jones, 2016; Sherman et al., 2016). 
However, when these brief periods of activity are averaged across trials, 
they might appear as sustained oscillations. A solution is to examine 
trial-by-trial activity to ensure that the interpretation of averaged power 
is supported. For a more detailed discussion of these assumptions, along 
with recent recommendations and solutions, see Donoghue and col-
leagues (2021). 

Because TF measures are relatively newer in developmental cogni-
tive neuroscience research, fewer standards exist (e.g., minimum trials). 
Pediatric and clinical populations pose a unique challenge because 
participants are not always able to sit still or pay attention for the length 
of time needed to collect the optimal number of trials. Current work is 

beginning to examine the robustness of TF measures in developmental 
populations and the minimum number of trials needed to observe the 
effect of interest and reach acceptable internal consistency reliability 
(Morales et al., 2021). Initial findings from a study of 4- to 9-year-olds’ 
responses to errors found that TF measures and ERPs required a similar 
number of trials to observe an effect of interest – in this case error vs. 
correct contrasts. Effect sizes increased with the number of trials and age 
(for measures that showed age-related effects). However, for this spe-
cific contrast (error vs. correct) ERP and TF measures showed large ef-
fect sizes with only 4–12 trials. This suggests that to detect error-related 
effects using TF or ERP measures, a large number of trials might not be 
as practically relevant as the age of the participants. Importantly, the 
number of trials needed to detect a significant difference between con-
ditions depends on the effect of interest. Future studies should examine 
other psychological phenomena, as error-related effects might be 
particularly robust. 

For reliability, TF measures required similar numbers of trials as 
ERPs to achieve acceptable internal consistency reliability (≥0.60), 
ranging from 8 to over 32 trials depending on the measure, condition of 
interest, and age of the participant. In general, younger participants, 
measures related to correct responses (compared to errors), and phase- 
based measures (ITPS and ICPS) need more trials to achieve accept-
able reliability (Morales et al., 2021). Similarly, in a longitudinal ex-
amination of children’s responses to errors from Kindergarten to second 
grade (5–7 years), signal strength (power) showed high levels of stability 
across the three assessments – stronger than ERPs, which displayed 
low-to-moderate stability, and phase-based measures, which did not 
show stability across development (DuPuis et al., 2015). Together, these 
results suggest that signal consistency and connectivity measures may 
require more trials than ERP and TF power measures. 

The number of trials required to obtain a reliable signal per condition 
poses an important challenge to developmental EEG, especially in-
vestigations interested in individual differences. However, this chal-
lenge is not unique to TF measures and likely impacts any type of event- 
related EEG data similarly, as for most TF investigations the epoch 
length can be similar to ERPs (e.g., 1500–2000 ms, except when 
examining 1-Hz delta; see above). Even in the adult literature, which 
likely deals with higher signal-to-noise data than developmental data, it 
is commonly recommended to use over 40 trials per condition for both 
ERPs and TF measures (Cohen, 2014; Luck, 2014). Future studies should 
develop processing algorithms that effectively remove artifacts to 
maximize the data collected and use experimental paradigms that yield 
high signal-to-noise measures. Moreover, developmental EEG re-
searchers could utilize a multi-session approach recently employed in 
other neuroimaging modalities (e.g., fMRI; Ellis et al., 2020), in which 
the same participant is repeatedly assessed in a short period of time to 
provide enough data in each condition of interest. Finally, it is important 

Table 1 
Summary of Time-Frequency Measures.  

Measure Formula Definition Example Studies 

TF 
Power 

TF Power =
1
n
∗
∑n

x=1

(
Mtf

)2  Signal strength at a specific time and frequency (Bishop et al., 2011; Bowers et al., 2018; 
Buzzell et al., 2020; Morales et al., 2019; 
Nelson et al., 2018) 

ITPS 
ITPS =

⃒
⃒
⃒
⃒
⃒

1
n
∗
∑n

x=1
eiϕtf

⃒
⃒
⃒
⃒
⃒

Phase consistency at a specific time and frequency examined 
across trials 

(Bishop et al., 2011; Bowers et al., 2018; 
DuPuis et al., 2015; Gavin et al., 2019; 
Morales et al., 2021) 

ICPS 
ICPS =

⃒
⃒
⃒
⃒
⃒

1
n
∗
∑n

x=1
ei[ϕjtf − ϕktf ]

⃒
⃒
⃒
⃒
⃒

Phase consistency at a specific time and frequency examined 
across a pair of electrodes or clusters 

(Bowers et al., 2021; Buzzell et al., 2019; 
Debnath et al., 2019; Morales et al., 2021) 

wPLI 

wPLI =

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

∑n
x=1

⃒
⃒
⃒Imag

[
ei(ϕjtf − ϕktf )

] ⃒
⃒
⃒sgn

(
Imag

[
ei(ϕjtf − ϕktf )

] )

∑n
x=1

⃒
⃒
⃒Imag

[
ei(ϕjtf − ϕktf )

] ⃒
⃒
⃒

⃒
⃒
⃒
⃒
⃒
⃒
⃒
⃒

Phase consistency at a specific time and frequency examined 
across a pair of electrodes or clusters that minimizes activity 
likely due to volume conduction 

(Debnath et al., 2021; Haartsen et al., 2019; 
Perone and Gartstein, 2019; Orekhova et al., 
2014; Xie et al., 2019)  
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to emphasize that these are initial investigations regarding the reliability 
of TF measures in developmental populations and have only focused on 
error monitoring. Even the limited evidence highlights that reliability 
depends on several factors (e.g., age, condition, and measure). Because 
of this, researchers must examine the psychometric properties of TF 
measures calculated in their own data and be cognizant of potential 
nuances of TF psychometrics for different tasks, different ages, and 
different populations. For this, there are emerging publicly available 
tools to assist and encourage each EEG study to examine and report the 
reliability for their specific measures (Clayson and Miller, 2017; Morales 
et al., 2021; Parsons, 2021). 

6. Computing TF using Matlab 

TF measures can be computed using a variety of software, including 
both script-based and GUI-based programs like FieldTrip (Oostenveld 
et al., 2011) and EEGLAB (Delorme and Makeig, 2004) – both of which 
have excellent tutorials on their respective websites. We chose to 
implement our TF analysis script in Matlab, so that the user can both 
easily edit the code for their specific needs, unlike a GUI, and to elimi-
nate any type of “black box” feel as our script allows a novice user to see 
exactly how the code manipulates data. Our scripts utilize the EEGLAB 
data format, are largely based on Cohen (2014), and can be accessed 
here: osf.io/taed5. 

The input to the code should be cleaned and epoched data. These TF 
scripts can analyze both resting state and event-related data. The initial 
TF analysis script (MainScript_Calculate_TF_ITPS_ICPS.m) includes a 
variety of settings and parameters for the researcher to choose from. As 
shown in Fig. 5, the scripts begin with the user inputting the paths 

indicating 1) the data_location path to folders that contain the data to be 
analyzed, 2) the save_location path to the folder in which they would 
like the data to be saved, 3) the scripts_location path to the location of 
the scripts, and 4) the path to the location of EEGLAB (see EEGLAB’s 
documentation for how to install this toolbox). 

Next, the user inputs some information about the dataset and anal-
ysis procedures (Fig. 5). The researcher inserts the number of channels 
(nbchan) and whether it is resting or event-related data (RestorEvent). If 
resting state data has multiple conditions (e.g., eyes open vs. eyes 
closed), we recommend inputting that data as event-related. If the 
paradigm contains multiple conditions, the researcher will also need to 
designate the names of each condition (Conds). For ease, we are also 
providing a script (Edit_events.m) that will re-label the events of interest 
in the naming convention needed to run these scripts. The researcher 
will also need to indicate the minimum number of trials the participant 
must have in a condition order to be analyzed (mintrialnum). If one of 
the conditions for the participant does not meet this threshold, a blank 
file named “notenoughdata.mat” will be saved for that participant and 
the script will skip to the next participant in the list. Here, the re-
searchers also input whether they would like the data to be baseline 
corrected (BaselineCorrect) and the time period of the baseline period to 
use. 

The researcher also will decide whether they would like the data to 
be downsampled. Data will automatically be downsampled to 250 Hz at 
the beginning of the scripts to reduce file sizes and computation time; 
however, if the researcher would like to further downsample the data 
after TF computations to 125 Hz to reduce file size and storage space, 
without losing substantial resolution, they can choose to downsample 
again. We recommend downsampling to 125 Hz after TF decomposition 
especially for datasets with many conditions and/or a large sample size. 
Finally, the researcher can choose to append an extension of a study 
identifier to the final filenames. 

Next, the researcher must determine the parameters for the TF 

Fig. 5. Settings and dataset information to be input by the researcher for the 
first script called “MainScript_Calculate_TF_ITPS_ICPS.m.”. 

Fig. 6. Settings and parameters for TF power, ITPS, and ICPS/wPLI calculations 
to be input by the researcher for the MainScript_Calculate_TF_ITPS_ICPS. 
m script. 
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analyses (Fig. 6). First, the user will need to decide the lowest frequency 
to analyze. This decision is influenced by a few factors including a priori 
bands of interest and the length of the epoch. For example, if low fre-
quencies like delta (1–4 Hz) are not of interest, then there is no need to 
analyze down to 1 Hz. However, if delta is of interest, the epoch needs to 
be long enough to have a few cycles of activity. It is recommended that 
the data have at least 3 full cycles of the lowest frequency to be analyzed 
(Cohen, 2014). Second, the user will also choose the highest frequency 
to analyze. Again, this will be influenced by a priori hypotheses about 
particular frequency bands, but also must stay below the Nyquist fre-
quency (½ of the sampling rate). For example, if the highest frequency to 
be analyzed is the alpha frequency band (8–13 Hz), then it may be 
computationally unnecessary to analyze much higher than that fre-
quency of interest. 

Third, the researcher needs to decide on the resolution between 
frequencies or how many frequency bins should be in between the 
lowest and highest frequency. This resolution will depend on the pre-
cision needed for the analyses. For example, if interested in larger fre-
quency bands (e.g., 4–8 Hz), frequency bins of 0.5 Hz should be 
sufficient and allows for the researcher to create larger frequency bands 
(e.g., 4–8 Hz or 4–7 Hz) to investigate either based on literature or data 
patterns. The frequency resolution is also important for plotting. Twenty 
to thirty frequency bins should be sufficient to flexibly create frequency 
bands but also maintain adequate resolution for plotting (Cohen, 2014). 
Finally, the researcher needs to establish the number of cycles included 
in the wavelet, which roughly equates to the width of the wavelet. The 
width of the wavelet influences both the temporal and frequency pre-
cisions. More cycles increases frequency precision, while fewer cycles 
lead to increased temporal precision. A common approach, which is 
implemented in this Matlab code, is to start with fewer cycles at lower 
frequencies and gradually increase the number of cycles as frequency 
increases. This strategy increases temporal precision at lower fre-
quencies and strengthens frequency precision at higher frequencies, 
balancing both temporal and frequency precision. 

Finally, the researcher will set parameters for phase-based analyses 
(Fig. 6). First, they will determine if they would like to compute or skip 
ITPS. The researcher will also decide whether they would like to use the 
subsampling procedure to equate number of trials if their conditions 
have different numbers of trials. For subsampling, they will also need to 
decide 1) how many trials to randomly sample on each subsample and 2) 
the number of subsamples. In choosing these parameters, we encourage 
the researcher to make sure that they choose numbers that will make it 
likely that all of the data are being used. For example, if there are 300 
trials in one condition, but only 5 trials are being pulled in each of 10 
subsamples, a lot of data are being left out. After subsampling proced-
ures are set, the user will determine whether or not they would like to 
compute or skip ICPS/wPLI calculations. If they would like to do this, 
they decide whether they would like to compute ICPS or wPLI. Note 
again that if ICPS is chosen, we recommend doing a CSD or Laplacian 
transform to the data. The researcher also needs to determine whether 
ICPS/wPLI should be computed over time or over trials. Because over 
time analyses eliminate the time dimension, baseline correction and 
downsampling are not completed for over time analyses. The researcher 
can also choose if they would like to compute ICPS/wPLI between all 
electrodes (all-to-all) or between a seed electrode and other specific 
electrodes (seed-based). If the seed-based approach is chosen, then both 
a seed and the other specific electrodes need to be indicated. Generally, 
all-to-all analyses are more common in a resting state analysis and seed- 
based analyses are more useful for a priori hypotheses for event-related 
designs. The all-to-all analyses, especially if subsampling procedures are 
being used, require powerful computers or servers to run. Running that 
analysis on a regular desktop computer may error out due to a lack of 
Matlab memory. Finally, the researcher needs to use a regular expres-
sion (e.g., sequence of characters that a search index will use) for the 
script to find the files of interest in the data location path and create a list 
of the subjects to loop through. With these settings and parameters 

chosen, the MainScript_Calculate_TF_ITPS_ICPS.m script will calculate 
the measures of interest using the timefreq.m, ITPS.m, ICPS.m, and 
wPLI.m scripts and save Matlab (.mat) files with final measures for each 
condition and subject. 

In addition to the scripts to calculate the various TF measures, we are 
also providing two other scripts. One script (Edit_events.m) will ensure 
that events/flags in the EEG file for different conditions are labeled in a 
way that will be easily read into the scripts. This script should be run on 
all of the epoched files before they are run through the Main Script. 
Second, after the TF scripts calculate the appropriate measures, a final 
script called Compiling_and_plotting.m will create a matrix that com-
piles the frequency by time by channel data for all subjects and condi-
tions. This matrix is then used by the script to plot TF surfaces and 
topographic plots for each condition averaged over all subjects. 

The Compiling_and_plotting.m script requires the researcher to again 

Fig. 7. Settings, dataset information, and plotting parameters to be input by the 
researcher for the Compiling_and_plotting.m script. 
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input some information (Fig. 7). First, the researcher will input three 
paths: 1) the data_location path, which should lead to the folder that 
contains the.mat files for each subject and condition calculated by the 
Main Script, 2) the save_location path, which should lead to the folder 
where researchers want the compiled data to be saved, and 3) add the 
path to the location of EEGLAB. Next, the researcher designates whether 
the data was resting or event-related, the names of the conditions as 
named in the Edit_events.m script, and the generic names of the condi-
tions. The researcher will also indicate specifics about the TF calcula-
tions based on what was performed by the Main Script. First, they will 
choose whether their TF data was baseline corrected (TF_bln). They will 
also indicate whether they chose to calculate ITPS, ICPS, or wPLI 
(ITPS_calc, ICPS_calc, or wPLI_calc) and whether they chose to baseline 
correct those measures (ITPS_bln, ICPS_bln, and wPLI_bln). Finally, they 
will indicate if they chose to downsample their data. 

Finally, the researcher will make some decisions regarding plotting 
parameters (Fig. 7) for both surface plots (i.e., time by frequency) and 
scalp topography plots (TF measure values over scalp locations based on 
channel montage). They will need to choose what time window 
(time_window_surface) will be plotted on the x-axis of the surface plot. 
Generally, this time window should encompass time both before the 

event of interest and after the event of interest. They also need to choose 
what frequency window (freq_window_surface) should be plotted on the 
y-axis of the surface plot. The choices of the time window and frequency 
window allow for the researcher to customize their plots to illustrate the 
effects of interest. Additionally, the researcher will need to decide which 
electrode (or cluster of electrodes) they would like to plot the surface for. 
If multiple electrodes are chosen, the script will average the TF surface 
over all of the listed electrodes. They will need to do this separately for 
TF (chans2plot_TF), ITPS (chans2plot_ITPS), and ICPS/wPLI (chans2-
plot_ICPSwpli). In order to plot all-to-all ICPS or wPLI in a similar 
manner, the researcher will have to choose a seed electrode (Seed). 
When plotting surface plots ICPS or wPLI, the researcher should only 
plot non-seed electrodes. 

In addition to parameters for surface plots, the researcher will set a 
few parameters for scalp topography plots. Again, the researcher will 
need to input the time window (time_window_for_topo) and frequency 
window (freq_window_for_topo) to be plotted in the scalp topography. 
While the surface plots generally include a larger time and frequency 
window (e.g., the entire epoch and 1–30 Hz), scalp topographies 
generally zoom in on the time period and frequency band of the specific 
event of interest (e.g., 0–100 ms and 4–8 Hz). 

Fig. 8. A) ERP plot and scalp topography of 
230–350 ms surrounding the N2 for the incon-
gruent condition. B) Time frequency surface 
plots and scalp topographies (4–8 Hz from 0 to 
300 ms) for stimulus-locked TF power in the 
incongruent condition. C) Time frequency sur-
face plots and scalp topographies (4–8 Hz from 
0 to 300 ms) for stimulus-locked ITPS in the 
incongruent condition. D) wPLI surface plots 
and scalp topographies for the congruent and 
incongruent stimulus-locked activity. The sur-
face plots depict an average of wPLI values from 
seed E6 to electrodes E24, E27, and E23. The 
scalp topographies also depict wPLI values from 
seed E6 at 4–8 Hz from 0 to 300 ms.   
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7. Examples 

Next, we will illustrate the output of our TF processing scripts with 
TF surface plots and topographic plots from a study of reward’s influ-
ence on cognitive control in adolescent males using a rewarded cued 
flanker paradigm (Bowers et al., 2021). For the purposes of this illus-
tration, we will focus on stimulus-locked data from incongruent stimuli 
in 25 male children (Mean age = 10.55, SD = 1.10, 
Range = 9.08 − 13.92). Parental consent and child assent was obtained 
for all participants. All data were preprocessed using the Maryland 
analysis of developmental EEG (MADE) pipeline (Debnath et al., 2020; 
Leach et al., 2020) – see Bowers et al. (2021) for more details. 

In the stimulus-locked ERP plot (Fig. 8A), there is a clear negative 
deflection around 300 ms over the frontocentral areas, indicating the 
presence of the N2. The TF power (Fig. 8B) and ITPS (Fig. 8C) surfaces 
for the incongruent condition display elevated theta (4–8 Hz) from 
about 0–400 ms. Examining how theta (4–8 Hz) power and ITPS are 
distributed across the scalp, we see increased signal strength (power) 
and consistency (ITPS) in fronto-central and occipital regions. As an 
example of connectivity, we used seed-based wPLI with a fronto-central 
seed (electrode E6). Results show increased connectivity in theta from 
0 to 300 ms. Notably, the scalp topography looks somewhat different 
because these plots are in relation to the seed of interest (E6). Thus, the 
pattern observed likely represents increased bilateral connectivity 
(wPLI) to frontal regions in the incongruent condition. 

8. Conclusions 

The present manuscript provides an introduction to TF analyses, 
highlighting the unique contributions of this approach to the study of 
developmental cognitive neuroscience, particularly over the more 
traditionally used approaches such ERPs and Fourier-based power. ERP 
analyses ignore non-phase-locked signals and Fourier-based power ap-
proaches ignore temporal information. TF analyses dissociate the power 
and phase information contained in the EEG data at specific frequencies 
providing a more comprehensive characterization of the EEG signal. By 
reviewing the emerging studies using TF analyses of developmental EEG 
data, we underscore the potential of these analyses to increase our un-
derstanding of developmental processes. We also discuss the challenges 
and future directions of TF methods. Finally, in order to promote the use 
of TF analyses by the developmental cognitive neuroscience community, 
we provide an approachable tutorial of Matlab scripts, based on Cohen 
(2014), to calculate the mostly widely used TF measures on a sample of 
adolescents. 
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